1
|
Zhang Q, Wei Z, Jia X. Controllable detection threshold achieved through the toehold switch system in a mercury ion whole-cell biosensor. Biosens Bioelectron 2024; 256:116283. [PMID: 38608495 DOI: 10.1016/j.bios.2024.116283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Due to the toxicity of mercury and its harmful effects on human health, it is essential to establish a low-cost, highly sensitive and highly specific monitoring method with a wide detection range, ideally with a simple visual readout. In this study, a whole-cell biosensor with adjustable detection limits was developed for the detection of mercury ions in water samples, allowing controllable threshold detection with an expanded detection range. Gene circuits were constructed by combining the toehold switch system with lactose operon, mercury-ion-specific operon, and inducible red fluorescent protein gene. Using MATLAB for design and selection, a total of eleven dual-input single-output sensing logic circuits were obtained based on the basic logic of gene circuit construction. Then, biosensor DTS-3 was selected based on its fluorescence response at different isopropyl β-D-Thiogalactoside (IPTG) concentrations, exhibiting the controllable detection threshold. At 5-20 μM IPTG, DTS-3 can achieve variable threshold detection in the range of 0.005-0.0075, 0.06-0.08, 1-2, and 4-6 μM mercury ion concentrations, respectively. Specificity experiments demonstrated that DTS-3 exhibits good specificity, not showing fluorescence response changes compared with other metal ions. Furthermore spiked sample experiments demonstrated its good resistance to interference, allowing it to distinguish mercury ion concentrations as low as 7.5 nM by the naked eye and 5 nM using a microplate reader. This study confirms the feasibility and performance of biosensor with controllable detection threshold, providing a new detection method and new ideas for expanding the detection range of biosensors while ensuring rapid and convenient measurements without compromising sensitivity.
Collapse
Affiliation(s)
- Qinglong Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.
| | - Zixiang Wei
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.
| | - Xiaoqiang Jia
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.
| |
Collapse
|
2
|
Guan M, Li H, Tu M, Fu C, Yang X, Wang F. A novel fluorescent "Off-On" probe based on phenanthro[9,10-d]imidazole conjugated polymers (PIPF) for Cr 3+ detection with high selectivity and sensitivity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:123988. [PMID: 38324948 DOI: 10.1016/j.saa.2024.123988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/09/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Trivalent chromium (Cr3+) causes serious environmental pollution, degradation of the quality of edible agricultural products and human diseases. A novel phenanthro[9,10-d]imidazole-derived conjugated polymers (PIPF) was obtained from 4-(5,10-dibromo-1H-phenanthro[9,10-d]imidazol-2-yl)phenol and diethyl 4,4'-(2,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-fluorene-9,9-diyl)dibutyrate by Suzuki polymerization reaction, which was reasonably demonstrated by 1H NMR spectroscopy, infrared spectroscopy and quantum chemical calculations. The PIPF exhibits a "turn-on" fluorescence response to Cr3+ in DMSO/H2O (98:2, v/v) with naked-eye detection. The limit of detection for Cr3+ was calculated to be 0.073 μM with a linear range of 3-9 μM. The possible mechanism of the PIPF-based Cr3+ fluorescence "turn-on" sensor is due to the inhibition of the PET process by the coordination of Cr3+ to the hexaalkyl ester carbon chain of PIPF (RCOO-). The high sensitivity, good selectivity, and utility of this sensor indicated that PIPF-based "turn-on" fluorescence sensor is a potential fluorescence application for measuring Cr3+ in environmental samples.
Collapse
Affiliation(s)
- Mingyi Guan
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Hui Li
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Man Tu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China; Jing Brand Research Institute, Jing Brand Co.Ltd, Huangshi 435100, PR China
| | - Chenchen Fu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Xiyu Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Feng Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| |
Collapse
|
3
|
Liu X, Sun C, Chai M, Song W. Highly dispersive PEI-modified CDs@ZIF-L dual-emitting fluorescent sensor for detecting metal ions. RSC Adv 2023; 13:31353-31364. [PMID: 37901263 PMCID: PMC10600832 DOI: 10.1039/d3ra04250b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023] Open
Abstract
The leaf-like zeolitic imidazolate framework (ZIF-L) is a promising porous nanomaterial that has attracted increasing attention as an ideal host material to encapsulate functional fluorescent nanoparticles for designing fluorescent sensors. However, owing to the large particle size, gravity readily facilitates the precipitation of the ZIF-L from the aqueous solution, and thus lead to imperfect experimental results. Herein, we report a simple and rapid synthetic method which uses the polyethyleneimine (PEI)-modified ZIF-L as a host to solve the precipitation problem and construct a dual-emitting system that combines its fluorescence with carbon dots (CDs). Furthermore, CDs@ZIF-L/PEI with dual-emitting centres could be utilised as a ratio fluorescence sensor to detect Hg2+ ions. The sensor exhibited excellent dispersibility and good selectivity for sensing Hg2+ ions, with a limit of detection (LOD) of 14.5 nM. Furthermore, experimental results reveal that the CDs@ZIF-L/PEI fluorescent sensor could be effectively dispersed into agarose and less polar organic solvents such as DMF, MeOH, EtOH and CH3CN, expanding the application scope of the fluorescent sensor.
Collapse
Affiliation(s)
- Xiaoyun Liu
- School of Chemical Engineering, Qinghai University Xining 810016 P. R. China
| | - Chunyan Sun
- School of Chemical Engineering, Qinghai University Xining 810016 P. R. China
| | - Mingxia Chai
- Key Laboratory of Plateau Ecology and Agriculture, Qinghai University Xining 810016 P. R. China
| | - Weijun Song
- School of Chemical Engineering, Qinghai University Xining 810016 P. R. China
| |
Collapse
|
4
|
Caglayan MO, Üstündağ Z, Şahin S. Spectroscopic ellipsometry methods for brevetoxin detection. Talanta 2022; 237:122897. [PMID: 34736713 DOI: 10.1016/j.talanta.2021.122897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/10/2021] [Accepted: 09/19/2021] [Indexed: 11/28/2022]
Abstract
The spectroscopic ellipsometry (SE), and attenuated internal reflection spectroscopic ellipsometry (TIRE) are promising methods in label-free biosensing applications. An ellipsometer running under surface plasmon resonance (SPR) conditions has unique advantages over other SPR-based methods in terms of sensitivity and real-time/label-free measurement capability. In this study, both SE and TIRE-based brevetoxin B (BTX) sensors were developed using two anti-BTX aptamers reported before. A new aptamer sequence was also derived from these two antiBTX aptamers using predictive modeling tools and an exclusion method. All three antiBTX aptamers' analytical performances were quite competitive in terms of both detecting range and detection limits. However, the selectivity of the previously reported aptamers against analogs of BTX was poor at low detection ranges, especially for okadaic acid. Furthermore, the selectivity of the derived aptamer was lower than its predecessors. The sensors were capable of detecting BTX in the range of 0.05 nM-1600 nM in the TIRE and 0.5 nM-2000 nM in the SE configuration. The detection limits of the sensors were 1.48 nM (1.32 ng/mL) and 0.80 nM (0.72 ng/mL) for SE and TIRE configurations, respectively. Both configurations have been used successfully to detect BTX standards spiked into real fish and shrimp samples.
Collapse
Affiliation(s)
| | - Zafer Üstündağ
- Department of Chemistry, Kütahya Dumlupınar University, 43100, Kütahya, Turkey
| | - Samet Şahin
- Department of Bioengineering, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| |
Collapse
|
5
|
Kong L, Jiao C, Luan L, Li S, Ma X, Wang Y. Reversible Ni2+ fluorescent probe based on ICT mechanism and its application in bio-imaging of Zebrafish. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Faheem A, Cinti S. Non-invasive electrochemistry-driven metals tracing in human biofluids. Biosens Bioelectron 2021; 200:113904. [PMID: 34959184 DOI: 10.1016/j.bios.2021.113904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/03/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022]
Abstract
Wearable analytical devices represent the future for fast, de-centralized, and human-centered health monitoring. Electrochemistry-based platforms have been highlighted as the role model for future developments amid diverse strategies and transduction technologies. Among the various relevant analytes to be real-time and non-invasively monitored in bodily fluids, we review the latest wearable achievements towards determining essential and toxic metals. On-skin measurements represent an excellent possibility for humankind: real-time monitoring, digital/fast communication with specialists, quick interventions, removing barriers in developing countries. In this review, we discuss the achievements over the last 5 years in non-invasive electrochemical platforms, providing a comprehensive table for quick visualizing the diverse sensing/technological advances. In the final section, challenges and future perspectives about wearables are deeply discussed.
Collapse
Affiliation(s)
- Aroosha Faheem
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Stefano Cinti
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy; BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli "Federico II", 80055, Naples, Italy.
| |
Collapse
|