1
|
Homocianu M, Perju E. Photophysical Properties and Metal Ion Sensing of a Pyrene-Based Liquid Crystalline Dimer. Int J Mol Sci 2025; 26:2566. [PMID: 40141209 PMCID: PMC11941919 DOI: 10.3390/ijms26062566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
This study investigates the liquid crystalline behavior, photophysical properties, and metal ion sensing capabilities of a pyrene-based imine dimer (DPyH9). The compound exhibits monotropic nematic mesophase behavior, with a glass transition at 43 °C, as confirmed by polarized light microscopy (PLM) and differential scanning calorimetry (DSC). Its photophysical properties, including UV-vis absorption, solvatochromic fluorescence, and acidochromism, observed through spectral shifts upon HCl addition, were systematically analyzed. Notably, DPyH9 displayed selective metal ion sensing capabilities towards Sn2+ and Cu2+ with binding constants of 4.51 × 106 M-1 and 4.03 × 107 M-1 and detection limits of 1.61 × 10-5 M (Sn2+) and 4.73 × 10-5 M (Cu2+). Fluorescence titrations revealed distinct responses: Sn2+ induced an initial quenching and an enhancement at higher concentrations, while Cu2+ caused significant fluorescence quenching. These results therefore highlight DPyH9 as a potential candidate for sensing applications and optoelectronic devices.
Collapse
Affiliation(s)
- Mihaela Homocianu
- “Petru Poni” Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| | | |
Collapse
|
2
|
Kalavathi A, Satheeshkumar K, Dharaniprabha V, Vennila KN, Elango KP. Multi-Spectroscopic and TD-DFT Studies on Chromogenic and Fluorogenic Detection of Cyanide in an Aqueous Solution. J Fluoresc 2024; 34:2691-2705. [PMID: 37889454 DOI: 10.1007/s10895-023-03473-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Different spectroscopic techniques and Density Functional Theory (DFT)/Time-Dependent Density Functional Theory (TDDFT) calculations have been employed to investigate the dual channel CN- detection behaviour of the developed chemo-dosimeter (AK3). The CN- with AK3 reaction triggered a colour change from pale yellow to colourless and enhanced fluorescence. UV-Vis, fluorescence, 1H & 13C NMR and mass techniques coupled with theoretical calculations (Mulliken charges, dihedral angles) revealed that the CN- sensing process mechanism involves deprotonation of the N-H group followed by nucleophilic addition reaction. Detailed TD-DFT calculations showed that the relaxation of excited electrons from LUMO and to two different ground states is responsible for the weak/moderate fluorescence of AK3. Nucleophilic addition of CN- to the C-atom of the CH = CH bridge terminated the π-conjugation between donor and acceptor regions, reduced the coplanarity, decreased the ICT transition and consequently enhanced the fluorescence of the probe. The practical utility of the probe was demonstrated by detecting cyanide in food materials and determining CN- in environmental water samples.
Collapse
Affiliation(s)
- A Kalavathi
- Department of Chemistry, Gandhigram Rural Institute (Deemed to Be University), Gandhigram, 624302, India
| | - K Satheeshkumar
- Department of Chemistry, Gandhigram Rural Institute (Deemed to Be University), Gandhigram, 624302, India
| | - V Dharaniprabha
- Department of Chemistry, Gandhigram Rural Institute (Deemed to Be University), Gandhigram, 624302, India
| | - K N Vennila
- Department of Chemistry, Gandhigram Rural Institute (Deemed to Be University), Gandhigram, 624302, India
| | - Kuppanagounder P Elango
- Department of Chemistry, Gandhigram Rural Institute (Deemed to Be University), Gandhigram, 624302, India.
| |
Collapse
|
3
|
Acar M, Daştan A, Koçak R. Fluorometric and colorimetric sensor for selective detection of cyanide anion by dibenzosuberenone-based dihydropyridazine in aqueous solution. Talanta 2024; 277:126241. [PMID: 38820826 DOI: 10.1016/j.talanta.2024.126241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/02/2024]
Abstract
A new chemosensory based on deprotonation and intramolecular charge transfer (ICT) was developed to detect cyanide in food samples. Deprotonation was facilitated by increasing the acidity of the NH proton in the dibenzosuberenone-based dihydropyridazine chemosensor Pz3 with -CN substituents. Addition of cyanide to acetonitrile and aqueous acetonitrile solution (1/9) of Pz3 resulted in their significant color change from colorless to purple in visible light, accompanied by a strong red shift in the absorption spectrum. Meanwhile, the near-infrared (NIR) emission (ex. 525 nm, em. 670 nm) of Pz3- resulting from deprotonation showed fluorescence switching behavior to detect the cyanide anion. While the acidic NH protons interact with basic anions as F-, CN-, OAc- and H2PO4- in organic solution (MeCN), just CN ions interact with in aqueous organic solutions (H2O-MeCN 1/9 HEPES pH 7.4). The limit of detection of cyanide from the fluorescence spectrum is 80 nM, which is well below the value determined for drinking water by World Health Organization (WHO). The interference effect of cations and anions showed that Pz3 could play an important role in the determination of waste NaCN. In addition, Pz3 successfully carried out the selective detection of cyanide in food samples such as bitter almonds and sprouting potatoes.
Collapse
Affiliation(s)
- Murat Acar
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Turkey; Research Laboratory Practice and Research Centre (ALUM), Iğdır University, Iğdır 76000, Turkey.
| | - Arif Daştan
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Turkey
| | - Ramazan Koçak
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Turkey; Department of Chemistry, Faculty of Arts and Sciences, Amasya University, Amasya 05100, Turkey.
| |
Collapse
|
4
|
El-Reash YGA, El-Awady O, Algethami FK, Awad FS. Chemically modified graphitic carbon nitride nanosheets for the selective turn-off fluorescence detection of Al(III) ions in crabs (Brachyura). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5191-5201. [PMID: 38993152 DOI: 10.1039/d4ay00806e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The selective and sensitive detection of Al(III) is critically important for human health since the level of Al(III) is an indicator of many diseases in humans. Herein, we developed a simple and sensitive fluorescent sensor for the detection of Al(III) in an aqueous solution based on the fluorescence of hydroxyl-functionalized graphitic carbon nitride nanosheets (HO/g-CN). OH/g-CN nanosheets were synthesized via the thermal pyrolysis of 1,3,5-triazine-2,4,6-triamine (as raw material) at 550 °C for 2 hours, followed by thermal alkali treatment at 730 °C for 2 min. The fluorescence of HO/g-CN at 377 nm (at 290 nm excitation) can be quenched by Al(III) effectively and selectively, and the linear relationship between the concentration of Al(III) and fluorescence intensity is in the range of 1.85-14.82 μM with a detection limit of 0.272 μM. The fluorescence turn-off effect of the Al(III) ion on the prepared HO/g-CN nanosheets could be attributed to the presence of oxygen- and nitrogen-containing functional groups on the surface of HO/g-CN that have chelating interactions with Al(III), leading to quenching. The surface functional groups of OH/g-CN were confirmed using different characterization techniques (FTIR, EDX, and XPS). Moreover, the prepared HO/g-CN exhibited remarkable long-term fluorescence stability in water (>30 days) and minimal toxicity. Importantly, a prepared novel fluorescent sensor (HO/g-CN) was successfully applied for the detection and determination of Al(III) in commercially available crab (Brachyura) samples.
Collapse
Affiliation(s)
- Y G Abou El-Reash
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, P. O. Box, 90950, Riyadh 11623, Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University, 23768, Mansoura, Egypt.
| | - Osama El-Awady
- Chemistry Department, Faculty of Science, Mansoura University, 23768, Mansoura, Egypt.
| | - Faisal K Algethami
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, P. O. Box, 90950, Riyadh 11623, Saudi Arabia
| | - Fathi S Awad
- Chemistry Department, Faculty of Science, Mansoura University, 23768, Mansoura, Egypt.
- Chemistry Department, Faculty of Science, New Mansoura University, New Mansoura City, Egypt
| |
Collapse
|
5
|
Musikavanhu B, Huang Z, Ma Q, Liang Y, Xue Z, Feng L, Zhao L. A pyridine modified naphthol hydrazone Schiff base chemosensor for Al 3+ via intramolecular charge transfer process. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 301:122961. [PMID: 37290147 DOI: 10.1016/j.saa.2023.122961] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
A pyridine modified naphthol hydrazone Schiff base chemosensor, NaPy, was prepared in a two-step process to detect aluminum ion (Al3+) in different samples. The probe shows a turn-off emission response towards Al3+ at a 1:1 binding stoichiometry via intramolecular charge transfer (ICT) mechanism, as validated by density functional theory (DFT) calculations and a series of spectroscopic measurements. The response time is slightly over one minute with a limit of detection (LOD) value of 0.164 µM, demonstrating the great sensitivity of the probe. It is also found that NaPy exhibits high selectivity towards Al3+ and resists interference from seventeen other cations. Application investigations in paper strips, water samples and HeLa cells suggest that NaPy can be used as an efficient probe for sensing Al3+ in real environmental samples and biosystems.
Collapse
Affiliation(s)
- Brian Musikavanhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zeping Huang
- Monash Suzhou Research Institute, Monash University, Suzhou Industrial Park, Suzhou 215000, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Quanhong Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Yongdi Liang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhaoli Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Lei Feng
- Monash Suzhou Research Institute, Monash University, Suzhou Industrial Park, Suzhou 215000, China.
| | - Long Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
6
|
Sonkaya Ö, Ocakçı Ş, Toksoy A, Pamuk Algi M, Algi F. N-doped carbon nanomaterials as fluorescent pH and metal ion sensors for imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122412. [PMID: 36720189 DOI: 10.1016/j.saa.2023.122412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/04/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Herein we describe the facile synthesis of new N-doped carbon nanoparticles (CNPs) obtained from 1,10-phenanthroline by the solvothermal method. Characterization of CNPs were carried out with transmission electron microscope (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectra (FTIR), UV-vis absorption spectra, and luminescence spectra. CNPs were pH sensitive and exploited as fluorescent chemosensors and imaging agents for Al(III) and Zn(II) ions in real-life samples. Remarkably, we show that CNPs can be used for the detection of Al(III) and Zn(II) ions in water samples. Accordingly, the results indicate that CNPs are highly effective in detecting Zn(II) content of cosmetic creams. We also demonstrated that the CNPs could be used for in vitro imaging of Al(III) and Zn(II) in Human Larynx Squamous Cell Carcinoma (Hep-2). Finally, Al(III) imaging in Angelica Officinalis root tissue was also achieved successfully. The CNPs are promising as luminescent multianalyte (pH, Al(III) and Zn(II)) sensors.
Collapse
Affiliation(s)
- Ömer Sonkaya
- Department of Chemistry & ASUBTAM M. Bilmez BioNanoTech Lab, Aksaray University, TR-68100 Aksaray, Turkey
| | - Şeyma Ocakçı
- Department of Biotechnology & ASUBTAM M. Bilmez BioNanoTech Lab, Aksaray University, TR-68100 Aksaray, Turkey
| | - Alihan Toksoy
- Department of Biotechnology & ASUBTAM M. Bilmez BioNanoTech Lab, Aksaray University, TR-68100 Aksaray, Turkey
| | - Melek Pamuk Algi
- Department of Chemistry & ASUBTAM M. Bilmez BioNanoTech Lab, Aksaray University, TR-68100 Aksaray, Turkey.
| | - Fatih Algi
- Department of Biotechnology & ASUBTAM M. Bilmez BioNanoTech Lab, Aksaray University, TR-68100 Aksaray, Turkey.
| |
Collapse
|
7
|
Spectroscopic and DFT/TD-DFT studies on selective and sensitive fluorescent detection of Al(III) ion. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Shanmugapriya R, Saravanakumar P, Nandhini C, Satheeshkumar K, Vennila KN, Elango KP. A highly selective and sensitive ratiometric fluorescent probe for quantitative detection of Al(III) in different natural matrices. Methods Appl Fluoresc 2022; 10. [PMID: 35545092 DOI: 10.1088/2050-6120/ac6eca] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/11/2022] [Indexed: 11/12/2022]
Abstract
Highly selective and sensitive assay of Al(III) using ratiometric fluorescence enhancement is reported in an aqueous solution. The probe (named as RS5) exhibits a red-shift of 54 nm upon binding with Al(III) ion. The significant enhancement response of RS5 at 481 nm is attributed to the formation of a 1:1 complex between the probe and Al(III), wherein RS5 acts as a tridentate NNN-donor ligand. The complexation process is ascertained by 1H, 13C and 27Al NMR and HR-MS spectral techniques. The binding constant of the complex is determined to be 1.3x105 M-1. The ratiometric change in fluorescence upon complexation with Al(III) is ascribed to increase in intramolecular charge transfer (ICT) transition along with chelation enhanced fluorescence (CHEF) processes. The probe can be applied for monitoring Al(III) in a pH range of 6 - 8. The limit of detection (LOD) of RS5 for the examination of Al(III) is found to be 0.3 µM. With an aim to understand the sensing behaviour of RS5, the optical properties of the probe and its Al(III) complex are investigated using density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods. The probe is successfully employed for the determination of Al(III), with very high recovery percentages, in natural matrices like deep well water, tap water, drinking water, pond water, river water, bovine serum albumin (BSA) solution and blood serum.
Collapse
Affiliation(s)
- R Shanmugapriya
- Chemistry, Gandhigram Rural Institute Deemed University, Gandhigram, Gandhigram, 624302, INDIA
| | - P Saravanakumar
- Gandhigram Rural Institute Deemed University, Gandhigram, Gandhigram, Tamil Nadu, 624302, INDIA
| | - C Nandhini
- Chemistry, Gandhigram Rural Institute Deemed University, Gandhigram, Gandhigram, 624302, INDIA
| | - K Satheeshkumar
- Chemistry, Gandhigram Rural Institute Deemed University, Gandhigram, Gandhigram, 624302, INDIA
| | - K N Vennila
- Chemistry, Gandhigram Rural Institute Deemed University, Gandhigram, Gandhigram, 624302, INDIA
| | - Kuppanagounder P Elango
- Chemistry, Gandhigram Rural Institute Deemed University, Gandhigram, Gandhigram, 624302, INDIA
| |
Collapse
|
9
|
Two Schiff-base fluorescent-colorimetric probes based on naphthaldehyde and aminobenzoic acid for selective detection of Al3+, Fe3+ and Cu2+ ions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Satheeshkumar K, Saravana Kumar P, Nandhini C, Shanmugapriya R, Vennila K, Elango KP. A simple metal ion displacement-type turn-on fluorescent probe for the detection of halide ions in 100% water – Spectroscopic and TD-DFT investigations. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Chen S, Li A, Sun M, Ma Z, Zhang Y, Wang W. Polyvinyl butyral/3‐Hydroxy‐2‐naphthoic hydrazide/Poly (methylhydrosiloxane) Composite Coatings for Improved Stainless Steel Anticorrosion in Salt, Acid, and Alkali Solution. ChemistrySelect 2022. [DOI: 10.1002/slct.202103453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sifan Chen
- School of Material Science and Engineering Ocean University of China Qingdao Shandong 266100 PR China
| | - Anhang Li
- School of Material Science and Engineering Ocean University of China Qingdao Shandong 266100 PR China
| | - Min Sun
- School of Material Science and Engineering Ocean University of China Qingdao Shandong 266100 PR China
| | - Zhidong Ma
- School of Material Science and Engineering Ocean University of China Qingdao Shandong 266100 PR China
| | - Yue Zhang
- School of Material Science and Engineering Ocean University of China Qingdao Shandong 266100 PR China
| | - Wei Wang
- School of Material Science and Engineering Ocean University of China Qingdao Shandong 266100 PR China
| |
Collapse
|
12
|
|
13
|
Xiu D, Shi J, Deng M, Song H, Hao Z, Feng Q, Yu H. A new fluorescent chemosensor for Al(III) detection with highly selective in aqueous solution and solid test paper. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Zhang K, Wang H, Cheng S, Zhang C, Zhai X, Lin X, Chen H, Gao R, Dong W. A benzaldehyde-indole fused chromophore-based fluorescent probe for double-response to cyanide and hypochlorite in living cells. Analyst 2021; 146:5658-5667. [PMID: 34382628 DOI: 10.1039/d1an01015h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
With the rapid development of various industries, cyanide (CN-) and hypochlorite (ClO-) have a tremendously adverse effect on the health of humans and animals. In this study, a fluorescent probe HHTB based on a benzaldehyde-indole fused chromophore was designed to detect cyanide and hypochlorite simultaneously. The synthesized probe was found to have strong anti-interference ability. In addition, the designed probe could respond rapidly to ClO- in just 80 s, while the color changed visibly from red to colorless. Moreover, the response time to CN- was longer (about 160 s), with the apparent color change from red to light red. The ratiometric and colorimetric absorbance variation of HHTB was due to the nucleophilic attack of CN- on the indole C[double bond, length as m-dash]N functional group and the strong oxidization of ClO- which destroyed the C[double bond, length as m-dash]C bonds and the conjugation systems. Furthermore, the probe HHTB responding to ClO- and CN- presented high sensitivity, as the calculated detection limits were 1.18 nM and 1.40 nM, respectively. The probe was also found to have low biological toxicity and was used in living cells successfully. Therefore, it has good application prospect in the field of cell imaging and biomedicine. The binding mechanism of HHTB-CN and the reaction mechanism of HHTB and ClO- were further elucidated by a series of experiments.
Collapse
Affiliation(s)
- Kexin Zhang
- Molecular Metabolism Center, Nanjing University of Science and Technology, Nanjing, 210094, China and School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Hao Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Siyao Cheng
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Cheng Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Xinrang Zhai
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Xiangpeng Lin
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Hao Chen
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Ruru Gao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Wei Dong
- Molecular Metabolism Center, Nanjing University of Science and Technology, Nanjing, 210094, China and School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|