1
|
Sepali C, Gómez S, Grifoni E, Giovannini T, Cappelli C. Computational Spectroscopy of Aqueous Solutions: The Underlying Role of Conformational Sampling. J Phys Chem B 2024; 128:5083-5091. [PMID: 38733374 DOI: 10.1021/acs.jpcb.4c01443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Fully atomistic multiscale polarizable quantum mechanics (QM)/molecular mechanics (MM) approaches, combined with techniques to sample the solute-solvent phase space, constitute the most accurate method to compute spectral signals in aqueous solution. Conventional sampling strategies, such as classical molecular dynamics (MD), may encounter drawbacks when the conformational space is particularly complex, and transition barriers between conformers are high. This can lead to inaccurate sampling, which can potentially impact the accuracy of spectral calculations. For this reason, in this work, we compare classical MD with enhanced sampling techniques, i.e., replica exchange MD and metadynamics. In particular, we show how the different sampling techniques affect computed UV, electronic circular dichroism, nuclear magnetic resonance shielding, and optical rotatory dispersion of N-acetylproline-amide in aqueous solution. Such a system is a model peptide characterized by complex conformational variability. Calculated values suggest that spectral properties are influenced by solute conformers, relative population, and solvent effects; therefore, particular care needs to be paid for when choosing the sampling technique.
Collapse
Affiliation(s)
- Chiara Sepali
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Sara Gómez
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Emanuele Grifoni
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | | | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
2
|
Wieczorkiewicz PA, Zborowski KK, Krygowski TM, Szatylowicz H. Substituent Effect versus Aromaticity─A Curious Case of Fulvene Derivatives. J Org Chem 2023; 88:14775-14780. [PMID: 37773323 PMCID: PMC10594647 DOI: 10.1021/acs.joc.3c01539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Indexed: 10/01/2023]
Abstract
A computational study on amino- and nitro-substituted penta- and heptafulvenes reveals the interplay between the aromaticity and the substituent effect (SE). Ring substitution alone has little influence on the aromaticity, but in combination with an exo substituent of opposite properties, it substantially enhances the cyclic π-electron delocalization. Despite the SE being stronger for β substitution, only γ substitution leads to higher aromaticity. An explanation is provided by the electron density of delocalized bonds (EDDB) method, which proves to be a valuable tool in analyzing both cyclic delocalization and the SE.
Collapse
Affiliation(s)
- Pawel A. Wieczorkiewicz
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| | - Krzysztof K. Zborowski
- Faculty
of Chemistry, Jagiellonian University in
Kraków, Gronostajowa
2, Kraków 30-387, Poland
| | - Tadeusz M. Krygowski
- Department
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Halina Szatylowicz
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| |
Collapse
|
3
|
Chi W, Sun PP. Restriction of photoinduced electron transfer as a mechanism for the aggregation-induced emission of a trityl-functionalised maleimide fluorophore. Phys Chem Chem Phys 2023; 25:4193-4200. [PMID: 36655773 DOI: 10.1039/d2cp05194j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The restriction of intramolecular motion (RIM) and restricted access to a conical intersection (RACI) have been accepted as general working mechanisms for aggregation-induced emission (AIE) phenomena. However, as the family of AIE molecules grows, the RIM and RACl mechanisms cannot be used to fully understand some AIE phenomena. Herein, the restriction of the photoinduced electron transfer (RPET) state is proposed to rationalize the AIE phenomena of trityl-functionalised maleimide molecule based on density functional theory calculations. The "state-crossing from a locally excited to an electron transfer state" (SLEET) model was employed to predict the ON/OFF molecular PET in solution and solid states. According to the SLEET model, we showed that a non-emissive electron transfer excited state leads to the fluorescence quenching of trityl-functionalised maleimide in solution. However, due to the reduced polarity of the environment in aggregates, the electron transfer state is thermodynamically inaccessible, and a low-lying locally excited state exhibits intense emission. These findings provide a theoretical foundation to understand the working mechanisms of AIE molecules and the design of new AIEgens. We expect that the RPET mechanism can be used to screen potential AIEgens using the SLEET model.
Collapse
Affiliation(s)
- Weijie Chi
- Department of Chemistry, School of Science, Hainan University, Haikou 570228, China.
| | - Ping-Ping Sun
- Department of Chemistry, School of Science, Hainan University, Haikou 570228, China.
| |
Collapse
|
4
|
Franco LR, Toledo KCF, Matias TA, Benavides PA, Cezar HM, Araujo CM, Coutinho K, Araki K. Unraveling the acid-base characterization and solvent effects on the structural and electronic properties of a bis-bidentate bridging ligand. Phys Chem Chem Phys 2022; 24:10222-10240. [PMID: 35420602 DOI: 10.1039/d1cp03912a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the interactions and the solvent effects on the distribution of several species in equilibrium and how it can influence the 1H-NMR properties, spectroscopy (UV-vis absorption), and the acid-base equilibria can be especially challenging. This is the case of a bis-bidentate bridging ligand bis(2-pyridyl)-benzo-bis(imidazole), where the two pyridyl and four imidazolyl nitrogen atoms can be protonated in different ways, depending on the solvent, generating many isomeric/tautomeric species. Herein, we report a combined theoretical-experimental approach based on a sequential quantum mechanics/molecular mechanics procedure that was successfully applied to describe in detail the acid-base characterization and its effects on the electronic properties of such a molecule in solution. The calculated free-energies allowed the identification of the main species present in solution as a function of the solvent polarity, and its effects on the magnetic shielding of protons (1H-NMR chemical shifts), the UV-vis absorption spectra, and the acid-base equilibrium constants (pKas) in aqueous solution. Three acid-base equilibrium constants were experimentally/theoretically determined (pKa1 = 1.3/1.2, pKa2 = 2.1/2.2 and pKa5 = 10.1/11.3) involving mono-deprotonated and mono-protonated cis and trans species. Interestingly, other processes with pKa3 = 3.7 and pKa4 = 6.0 were also experimentally determined and assigned to the protonation and deprotonation of dimeric species. The dimerization of the most stable neutral species was investigated by Monte Carlo simulations and its electronic effects were considered for the elucidation of the UV-vis absorption bands, revealing transitions mainly with the charge-transfer characteristic and involving both the monomeric species and the dimeric species. The good matching of the theoretical and experimental results provides an atomistic insight into the solvent effects on the electronic properties of this bis-bidentate bridging ligand.
Collapse
Affiliation(s)
- Leandro Rezende Franco
- Instituto de Física, Universidade de São Paulo, Cidade Universitária, 05508-090 São Paulo, SP, Brazil. .,Department of Engineering and Physics, Karlstad University, 65188 Karlstad, Sweden
| | | | - Tiago Araujo Matias
- Instituto de Química, Universidade de São Paulo, Av. Lineu Prestes 748, Butantã, 05508-000 São Paulo, SP, Brazil.
| | - Paola Andrea Benavides
- Instituto de Química, Universidade de São Paulo, Av. Lineu Prestes 748, Butantã, 05508-000 São Paulo, SP, Brazil.
| | - Henrique Musseli Cezar
- Instituto de Física, Universidade de São Paulo, Cidade Universitária, 05508-090 São Paulo, SP, Brazil.
| | - C Moyses Araujo
- Department of Engineering and Physics, Karlstad University, 65188 Karlstad, Sweden.,Materials Theory Division, Department of Physics and Astronomy, Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - Kaline Coutinho
- Instituto de Física, Universidade de São Paulo, Cidade Universitária, 05508-090 São Paulo, SP, Brazil.
| | - Koiti Araki
- Instituto de Química, Universidade de São Paulo, Av. Lineu Prestes 748, Butantã, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
5
|
Rodrigues de Carvalho F, da Silva F, de Lima R, Correia Bellotto A, de Souza VR, Caetano W, Politi MJ, Hioka N, Coutinho K. Spectrophotometric studies of charge-transfer complexes formed with ions N,N'-alkyldiyl-bis(pyridinium) derivatives and iodide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120664. [PMID: 34876344 DOI: 10.1016/j.saa.2021.120664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
The charge-transfer complexes (CTC) between electron donor iodide and pyridinium dimers and monomers as acceptors have been studied spectrophotometrically in acetonitrile, DMSO and water. The dimers were: N,N'-alkyldiyl-bis(4-cyanopyridinium) and N,N'-alkyldiyl-bis(2-bromopyridinium), and the monomers were: N-alkyl-4-cyanopyridinium and N-alkyl-2-bromopyridinium, bridged by n methylene spacers. The formation constant (KCTC), molar absorptivity (εCTC), fluorescence-quenching constant (KSV) were determined. The results indicate that the stoichiometry of the CTC for dimers and monomers is 1:1 (equimolar ratio), and its formation is favored for dimers more than for monomers, especially dimers with short methylene spacers forming a "sandwiched type-complex" in which the iodide is close to the two pyridinium rings. Solvents with low polarity favored the complex, which was destroyed by the presence of water. The experimental studies were complemented with theoretical studies with quantum mechanics (QM) calculations using density functional theory (DFT) and molecular mechanics (MM) simulations with Molecular Dynamics for identify the most stable conformers in acetonitrile solution. The electronic excitations were calculated with sequential QM/MM hybrid method, showing a charge-transfer wavelength in agreement with the UV-Vis absorption spectra obtained experimentally. It confirms the "sandwiched type-complex" conformers favoring the interaction of the iodide with one pyridinium rings and simultaneously forming one, or two, hydrogen bonds with the alkyl chain and additionally, for the case of dimers, with the other pyridinium ring.
Collapse
Affiliation(s)
- Fernando Rodrigues de Carvalho
- Universidade Estadual de Maringá, Campus Regional de Umuarama, Departamento de Tecnologia, 87506-370 Umuarama, PR, Brazil.
| | - Fernando da Silva
- Universidade de São Paulo, Instituto de Física, 05508-090 São Paulo, SP, Brazil
| | - Ricardo de Lima
- Universidade de São Paulo, Instituto de Física, 05508-090 São Paulo, SP, Brazil
| | | | | | - Wilker Caetano
- Universidade Estadual de Maringá, Departamento de Química, 87.020-900 Maringá, PR, Brazil
| | - Mario José Politi
- Universidade de São Paulo, Instituto de Química, 05508-000 São Paulo, SP, Brazil
| | - Noboru Hioka
- Universidade Estadual de Maringá, Campus Regional de Umuarama, Departamento de Tecnologia, 87506-370 Umuarama, PR, Brazil
| | - Kaline Coutinho
- Universidade de São Paulo, Instituto de Física, 05508-090 São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Nikolaev DM, Manathunga M, Orozco-Gonzalez Y, Shtyrov AA, Guerrero Martínez YO, Gozem S, Ryazantsev MN, Coutinho K, Canuto S, Olivucci M. Free Energy Computation for an Isomerizing Chromophore in a Molecular Cavity via the Average Solvent Electrostatic Configuration Model: Applications in Rhodopsin and Rhodopsin-Mimicking Systems. J Chem Theory Comput 2021; 17:5885-5895. [PMID: 34379429 DOI: 10.1021/acs.jctc.1c00221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a novel technique for computing the free energy differences between two chromophore "isomers" hosted in a molecular environment (a generalized solvent). Such an environment may range from a relatively rigid protein cavity to a flexible solvent environment. The technique is characterized by the application of the previously reported "average electrostatic solvent configuration" method, and it is based on the idea of using the free energy perturbation theory along with a chromophore annihilation procedure in thermodynamic cycle calculations. The method is benchmarked by computing the ground-state room-temperature relative stabilities between (i) the cis and trans isomers of prototypal animal and microbial rhodopsins and (ii) the analogue isomers of a rhodopsin-like light-driven molecular switch in methanol. Furthermore, we show that the same technology can be used to estimate the activation free energy for the thermal isomerization of systems i-ii by replacing one isomer with a transition state. The results show that the computed relative stability and isomerization barrier magnitudes for the selected systems are in line with the available experimental observation in spite of their widely diverse complexity.
Collapse
Affiliation(s)
- Dmitrii M Nikolaev
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina Street, St. Petersburg 194021, Russia
| | - Madushanka Manathunga
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Yoelvis Orozco-Gonzalez
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States.,Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Andrey A Shtyrov
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina Street, St. Petersburg 194021, Russia
| | | | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Mikhail N Ryazantsev
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia.,Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Kaline Coutinho
- Instituto de Física, Universidade de São Paulo, Cidade Universitária, São Paulo 05508-090, Brazil
| | - Sylvio Canuto
- Instituto de Física, Universidade de São Paulo, Cidade Universitária, São Paulo 05508-090, Brazil
| | - Massimo Olivucci
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States.,Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro 2, I-53100 Siena, Italy.,Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg-CNRS, UMR 7504, F-67034 Strasbourg, France
| |
Collapse
|