1
|
Nasr MS, Kaddah MM, Morshedy S, Omran G, Talaat W. Determination of baloxavir marboxil in pharmaceutical preparations and spiked human plasma using its quenching action on acetoxymercuric fluorescein reagent: Assessment of greenness and whiteness. Heliyon 2024; 10:e32120. [PMID: 38912445 PMCID: PMC11190548 DOI: 10.1016/j.heliyon.2024.e32120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
A straightforward, reliable, and cost-effective spectrofluorimetric approach has been established for the analysis of baloxavir marboxil (BXM) in raw material, tablets, as well as spiked human plasma. The approach relies on BXM's quenching impact on acetoxymercuric fluorescein (AMF) fluorescence intensity. To improve the reaction, factors such as AMF's concentration, solution's pH, diluting solvents, and reaction time were examined and optimized. Linearity, range, accuracy, precision, LOD, and LOQ were all verified in compliance with ICH criteria. The concentration range was shown to be linear between 0.2 and 2 μg/mL. The technique was effectively utilized for BXM analysis in both its tablet as well as spiked human plasma, with mean % recoveries of 101 ± 0.36 and 98.77 ± 0.65, respectively. Two assessment models (AGREE and RGB-12) were used to compare the proposed process's greenness and sustainability to four previously published chromatographic techniques. Higher green and sustainability qualities were declared by the suggested approach than by earlier ones.
Collapse
Affiliation(s)
- Mohamed S. Nasr
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour, 22514, Egypt
| | - Mohamed M.Y. Kaddah
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications, New Borg El-Arab, 21934, Alexandria, Egypt
| | - Samir Morshedy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour, 22514, Egypt
| | - Gamal Omran
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour, 22514, Egypt
| | - Wael Talaat
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour, 22514, Egypt
| |
Collapse
|
2
|
Nasr MS, Talaat W, Morshedy S, Kaddah MMY, Omran G, Keshk RM. A new fluorescence probe for sofosbuvir analysis in dosage form and spiked human plasma. LUMINESCENCE 2024; 39:e4742. [PMID: 38637644 DOI: 10.1002/bio.4742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024]
Abstract
A simple, rapid, and low-cost technique was developed to allow reliable analysis of the anti-hepatitis C drug sofosbuvir in bulk, tablet form, and spiked human plasma. This method depends on the ability of sofosbuvir to quench the fluorescence of the newly synthesized 2-amino-3-cyano-4,6-dimethylpyridine (reagent 3). Elemental analysis and spectral data were used to validate the structure of the synthesized reagent. The newly synthesized reagent exhibited a satisfactory level of fluorescence emission at 365 nm after excitation at 247 nm. All experimental variables that might affect the quenching process were analyzed and optimized. Linearity, range, accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ) were all validated in accordance with the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) guidelines. The concentration range was shown to be linear between 0.1 and 1.5 μg/mL. The technique was effectively utilized for sofosbuvir analysis in both its tablet dosage form and spiked human plasma, with mean percentage recoveries of 100.13 ± 0.35 and 94.26 ± 1.69, respectively.
Collapse
Affiliation(s)
- Mohamed S Nasr
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Wael Talaat
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Samir Morshedy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Mohamed M Y Kaddah
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications, New Borg El-Arab, Alexandria, Egypt
| | - Gamal Omran
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Reda M Keshk
- Department of Chemistry, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
3
|
Mohyeldin SM, Talaat W, Kamal MF, Daabees HG, El-Tahawy MMT, Keshk RM. In-lab synthesized turn-off fluorescence sensor for estimation of Gemigliptin and Rosuvastatin polypill appraised by Spider diagram, AGREE and whiteness metrics. Sci Rep 2024; 14:2927. [PMID: 38316908 PMCID: PMC10844310 DOI: 10.1038/s41598-024-53203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024] Open
Abstract
Gemigliptin-Rosuvastatin single-pill combination is a promising therapeutic tool in the effective control of hyperglycemia and hypercholesterolemia. Organic sensors with high quantum yields have profoundly significant applications in the pharmaceutical industry, such as routine quality control of marketed formulations. Herein, the fluorescence sensor, 2-Morpholino-4,6-dimethyl nicotinonitrile 3, (λex; 226 nm, λem; 406 nm), was synthesized with a fluorescence quantum yield of 56.86% and fully characterized in our laboratory. This sensor showed high efficiency for the determination of Gemigliptin (GEM) and Rosuvastatin (RSV) traces through their stoichiometric interactions and simultaneously fractionated by selective solvation. The interaction between the stated analytes and sensor 3 was a quenching effect. Various experimental parameters and the turn-off mechanism were addressed. The adopted approach fulfilled the ICH validation criteria and showed linear satisfactory ranges, 0.2-2 and 0.1-1 μg/mL for GEM and RSV, respectively with nano-limits of detection less than 30 ng/mL for both analytes. The synthesized sensor has been successfully applied for GEM and RSV co-assessment in their synthetic polypill with excellent % recoveries of 98.83 ± 0.86 and 100.19 ± 0.64, respectively. No statistically significant difference between the results of the proposed and reported spectrophotometric methods in terms of the F- and t-tests. Ecological and whiteness appraisals of the proposed study were conducted via three novel approaches: the Greenness Index via Spider Diagram, the Analytical Greenness Metric, and the Red-Green-Blue 12 model. The aforementioned metrics proved the superiority of the adopted approach over the previously published one regarding eco-friendliness and sustainability. Our devised fluorimetric turn-off sensing method showed high sensitivity, selectivity, feasibility, and rapidity with minimal cost and environmental burden over other sophisticated techniques, making it reliable in quality control labs.
Collapse
Affiliation(s)
- Sara M Mohyeldin
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt.
| | - Wael Talaat
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Miranda F Kamal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Hoda G Daabees
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Mohsen M T El-Tahawy
- Department of Chemistry, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Reda M Keshk
- Department of Chemistry, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
4
|
Xu X, Hou X, Xing Y, Feng T, Chai L, Guo Y, Chen L, Shi Y, Qin X. Dibazol-induced relaxation of ophthalmic artery in C57BL/6J mice is correlated with the potency to inhibit voltage-gated Ca 2+ channels. Exp Eye Res 2023; 231:109468. [PMID: 37031875 DOI: 10.1016/j.exer.2023.109468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
We aimed to explore the effect of dibazol on the ophthalmic artery (OA) and ophthalmic artery smooth muscle cells (OASMCs) of C57BL/6J mice as well as the underlying mechanisms. The OA of C57BL/6J mice was isolated under a dissecting microscope for primary OASMCs culture and myogenic tests. OASMCs were identified through morphological and immunofluorescence analyses. Morphology changes in the OASMCs were examined by staining using rhodamine-phalloidin. We performed a collagen gel contraction assay to measure the contractile and relaxant activities of the OASMCs. The molecular probe Fluo-4 AM was used to examine intracellular free Ca2+ levels ([Ca2+]in). The myogenic effects of OA were examined using wire myography. Additionally, the whole-cell patch-clamp technique was used to investigate the mechanisms underlying the relaxant effect of dibazol on L-type voltage-gated Ca2+ channels (LVGC) in isolated cells. 10-5 M dibazol significantly inhibited the contraction of OASMCs and increased the [Ca2+]in response to 30 mM KCl in a concentration-dependent manner. Dizabol had a more significant relaxant effect than 10-5 M isosorbide dinitrate (ISDN). Similarly, dibazol showed a significant dose-dependent relaxant effect on OA contraction induced by 60 mM KCl or 0.3 μM 9,11-Dideoxy-9α,11α-methanoepoxy prostaglandin F2α (U46619). The current-voltage (I-V) curve revealed that dibazol decreased Ca2+ currents in a concentration-dependent manner. In conclusion, dibazol exerted relaxant effects on the OA and OASMCs, which may involve the inhibition of the Ca2+ influx through LVGC in the cells.
Collapse
Affiliation(s)
- Xinrong Xu
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi, 030001, China
| | - Xiaomin Hou
- Department of Pharmacology, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi, 030001, China; China Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Shanxi, 030001, China
| | - Ye Xing
- Sichuan Herbease Pharmaceutical Co., Ltd, Sichuan, 610000, China
| | | | - Lina Chai
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi, 030001, China
| | - Yunting Guo
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi, 030001, China
| | - Liangjing Chen
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi, 030001, China
| | - Yiwei Shi
- Shanxi Medical University Affiliated First Hospital, Taiyuan, Shanxi, 030001, China.
| | - Xiaojiang Qin
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi, 030001, China; China Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Shanxi, 030001, China.
| |
Collapse
|
5
|
Alnohy D, Morshedy S, Omran G, Mabrouk M, Talaat W. Determination of rivaroxaban by utilizing its quenching effect on acetoxymercuric fluorescein reagent in pharmaceutical preparations and in spiked biological matrices. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122125. [PMID: 36410174 DOI: 10.1016/j.saa.2022.122125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
A simple, precise and inexpensive spectrofluorimetric method has been developed for assay of rivaroxaban raw material and its tablets. The method depends on the quenching effect of rivaroxaban on the fluorescence intensity of acetoxymercuric fluorescein (AMF). Parameters that may affect the reaction such as pH, AMF solution concentration, reaction time and diluting solvents were studied and optimized. The proposed method was applied for determination of rivaroxaban in tablets with percentage recovery of 100.4 ± 0.28, and in organic extract of spiked plasma samples with percentage recovery of 98.40 ± 1.08. The developed method was validated according to ICH guidelines in terms of accuracy, precision, linearity, range, limit of detection (LOD) and limit of quantification (LOQ).
Collapse
Affiliation(s)
- Dina Alnohy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damnhour University, Damnhour, Egypt.
| | - Samir Morshedy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damnhour University, Damnhour, Egypt
| | - Gamal Omran
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damnhour University, Damnhour, Egypt
| | - Mokhtar Mabrouk
- Department of Pharmaceutical Analytical Chemistry Faculty of Pharmacy, Tanta University, Tanta , Egypt
| | - Wael Talaat
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damnhour University, Damnhour, Egypt
| |
Collapse
|
6
|
Talaat W, Farahat AA, Keshk RM. Selective Sensing of Darolutamide and Thalidomide in Pharmaceutical Preparations and in Spiked Biofluids. BIOSENSORS 2022; 12:1005. [PMID: 36421121 PMCID: PMC9688659 DOI: 10.3390/bios12111005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Selective spectrofluorometric sensing is introduced for the analysis of non-steroidal anti-androgens, darolutamide, and thalidomide in pharmaceutical preparations and biofluids. An organic fluorophore, 2,4,8,10-tetramethylpyrido[2',3':3,4]pyrazolo[1,5-a]pyrimidine 2 was synthesized in our laboratories by new simple methods to act as a fluorescent reagent for the analysis of the studied drugs. Elemental and spectral analyses were performed to approve the fluorophore structure. The fluorophore possesses a fluorescence at λem 422 nm when excited at 328 nm. The interaction between the studied drugs and the fluorophore was found to be quenching. The quenching mechanisms were studied and interpreted through the Stern-Volmer relationship. Moreover, the Stern-Volmer constants were calculated for the quenching interactions of both drugs. The introduced method was validated for the estimation of darolutamide and thalidomide in dosage forms, plasma, and urine, offering good percentage recoveries.
Collapse
Affiliation(s)
- Wael Talaat
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22514, Egypt
| | - Abdelbasset A. Farahat
- Master of Pharmaceutical Sciences Program, California Northstate University, Elk Grove, CA 95757, USA
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Reda Mohammed Keshk
- Department of Chemistry, Faculty of Science, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|