1
|
Habiba UE, Anwer A, Hussain MU, Majeed MI, Alwadie N, Nawaz H, Akhtar N, Rashid N, Nadeem S, Naz M, Shahzadi A, Shehnaz H, Imran M. Surface enhanced Raman spectroscopy for the characterization of the metabolites of the biodesulfurization of dibenzothiophene carried out by Tsukamurella paurometabola. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124126. [PMID: 38490122 DOI: 10.1016/j.saa.2024.124126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Large amount of sulphur is released by the combustion of fossil fuels in the form of SoX which affects human health and leads to acid rain. To overcome this issue, it is essential to eliminate sulphur moieties from heterocyclic organo-sulphur compounds like Dibenzothiophene (DBT) present in the petrol. In this study Surface enhanced Raman scattering (SERS) spectroscopy is used to analyze the desulfurizing activity of Tsukamurella paurometabola bacterial strain. The most prominent SERS peaks observed at 791, 837, 944 and 1032 cm-1, associated to C-S stretching, are solely observed in dibenzothiophene and its metabolite-I (DBTS) but absent in 2-Hydroxybiphenyl (metabolite-II) and extraction sample of supernatant as a result of biodesulfurization. Moreover, the SERS peaks observed at 974 (characteristic peak of benzene ring) and 1015 cm-1 is associated to C-C ring breathing while 1642 and 1655 cm-1 assigned to CC bonds of aromatic ring. These peaks are only observed in 2-Hydroxybiphenyl (metabolite-II) and extraction sample of supernatant as a result of biodesulfurization. Notably, these peaks are absent in the Dibenzothiophene and its metabolite-I which indicate that aromatic ring is carrying sulfur in this fraction. Moreover, multivariate data analytical tools like principal component analysis (PCA) and PCA-loadings are applied to further differentiate between dibenzothiophene and its metabolites that are Dibenzothiophene sulphone (metabolite-I) and 2-Hydroxybiphenyl (metabolite-II).
Collapse
Affiliation(s)
- Umm E Habiba
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Ayesha Anwer
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Umar Hussain
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Muhammad Irfan Majeed
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
| | - Najah Alwadie
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Nasrin Akhtar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan.
| | - Nosheen Rashid
- Department of Chemistry, University of Education, Faisalabad Campus, Faisalabad 38000, Pakistan
| | - Sana Nadeem
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Maira Naz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Aqsa Shahzadi
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Hina Shehnaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
2
|
Son WK, Choi YS, Han YW, Shin DW, Min K, Shin J, Lee MJ, Son H, Jeong DH, Kwak SY. In vivo surface-enhanced Raman scattering nanosensor for the real-time monitoring of multiple stress signalling molecules in plants. NATURE NANOTECHNOLOGY 2023; 18:205-216. [PMID: 36522556 DOI: 10.1038/s41565-022-01274-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/21/2022] [Indexed: 06/17/2023]
Abstract
When under stress, plants release molecules to activate their defense system. Detecting these stress-related molecules offers the possibility to address stress conditions and prevent the development of diseases. However, detecting endogenous signalling molecules in living plants remains challenging due to low concentrations of these analytes and interference with other compounds; additionally, many methods currently used are invasive and labour-intensive. Here we show a non-destructive surface-enhanced Raman scattering (SERS)-based nanoprobe for the real-time detection of multiple stress-related endogenous molecules in living plants. The nanoprobe, which is placed in the intercellular space, is optically active in the near-infrared region (785 nm) to avoid interferences from plant autofluorescence. It consists of a Si nanosphere surrounded by a corrugated Ag shell modified by a water-soluble cationic polymer poly(diallyldimethylammonium chloride), which can interact with multiple plant signalling molecules. We measure a SERS enhancement factor of 2.9 × 107 and a signal-to-noise ratio of up to 64 with an acquisition time of ~100 ms. To show quantitative multiplex detection, we adopted a binding model to interpret the SERS intensities of two different analytes bound to the SERS hot spot of the nanoprobe. Under either abiotic or biotic stress, our optical nanosensors can successfully monitor salicylic acid, extracellular adenosine triphosphate, cruciferous phytoalexin and glutathione in Nasturtium officinale, Triticum aestivum L. and Hordeum vulgare L.-all stress-related molecules indicating the possible onset of a plant disease. We believe that plasmonic nanosensor platforms can enable the early diagnosis of stress, contributing to a timely disease management of plants.
Collapse
Affiliation(s)
- Won Ki Son
- Department of Chemistry Education, College of Education, Seoul National University, Seoul, Republic of Korea
| | - Yun Sik Choi
- Department of Chemistry Education, College of Education, Seoul National University, Seoul, Republic of Korea
| | - Young Woo Han
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dong Wook Shin
- Department of Chemistry Education, College of Education, Seoul National University, Seoul, Republic of Korea
| | - Kyunghun Min
- Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Jiyoung Shin
- Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Min Jeong Lee
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hokyoung Son
- Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dae Hong Jeong
- Department of Chemistry Education, College of Education, Seoul National University, Seoul, Republic of Korea.
- Center for Educational Research, Seoul National University, Seoul, Republic of Korea.
| | - Seon-Yeong Kwak
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
- Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|