1
|
Zhu Z, Xu H, Zhang T, Meng J, Tong Y, Wang K, Zhang B, Yang B. Probing ultraviolet-induced dissociation of hydrogen bond networks in tyrosine by terahertz spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 335:126004. [PMID: 40068319 DOI: 10.1016/j.saa.2025.126004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/09/2025] [Accepted: 03/04/2025] [Indexed: 03/24/2025]
Abstract
Tyrosine (Tyr) has gained significant attention as one of the most sensitive amino acids. Its oxidation is accompanied by changes in hydrogen bonds, so the oxidation process of Tyr is monitored and the dissociation sequence of different hydrogen bond network is elucidated based on the sensitivity of terahertz (THz) waves to intermolecular interactions. We find that the peak height of Tyr at 0.97 THz and 2.08 THz decreases with time, but the change behavior of the two is different. Combined with density functional theory (DFT), this phenomenon is attributed to the difference of factors that dominate THz vibration. The weakening of the peak height of Tyr at 0.97 THz is due to the ordered dissociation of hydrogen bonds with different intensities, while the peak at 2.08 THz mainly involves the lattice itself. This means that the peak at 0.97 THz is a more accurate parameter for characterizing the oxidation process. Our study reveals the hydrogen bond changes of Tyr when its structure is destroyed, and provides a spectral technique for monitoring and preventing harmful oxidation reactions using hydrogen bond network evolution.
Collapse
Affiliation(s)
- Zhenqi Zhu
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou 313000, PR China.
| | - Hui Xu
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou 313000, PR China
| | - Ting Zhang
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Jiafeng Meng
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou 313000, PR China
| | - Yanwei Tong
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou 313000, PR China
| | - Kun Wang
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou 313000, PR China
| | - Bing Zhang
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou 313000, PR China
| | - Bin Yang
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
2
|
Wu Y, Zhu Z, Yang J, Wang J, Ji T, Zhu H, Peng W, Chen M, Zhao H. Insights into the terahertz response of L-glutamic acid and its receptor. Analyst 2024; 149:4605-4614. [PMID: 39037577 DOI: 10.1039/d4an00697f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
L-Glutamic acid (L-Glu) is a basic unit of proteins and also serves as an important neurotransmitter in the central nervous system. Its structural properties are critical for biological functions and selective receptor recognition. Although this molecule has been extensively studied, the low frequency vibrational behavior that is closely related to conformational changes and the intermolecular interactions between L-Glu and its receptors are still unclear. In this study, we acquired the fingerprint spectrum of L-Glu by using air plasma terahertz (THz) time-domain spectroscopy in the 0.5-18 THz range. The low frequency vibrational characteristics of L-Glu were investigated through density functional theory (DFT) calculations. The THz responses of the ligand binding domain of the NMDAR-L-Glu complex were studied by the ONIOM method, with a focus on discussing the normal modes and interactions of ligand L-Glu and water molecules. The results illustrate that THz spectroscopy exhibits a sensitive response to the influence of L-Glu on the structure of the NMDAR. The water molecules in proteins have various strong vibration modes in the THz band, showing specificity, diversity and complexity of vibrational behavior. There is potential for influencing and regulating the structural stability of the NMDAR-L-Glu complex through water molecules.
Collapse
Affiliation(s)
- Yu Wu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongjie Zhu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Jinrong Yang
- East China Normal University, Shanghai 200241, China
| | - Jie Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Te Ji
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Huachun Zhu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Weiwei Peng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Min Chen
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Hongwei Zhao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| |
Collapse
|
3
|
Li Y, Zhang J, Jia H, Pan Y, Xu YQ, Wang Y, Deng WW. Metabolite analysis and sensory evaluation reveal the effect of roasting on the characteristic flavor of large-leaf yellow tea. Food Chem 2023; 427:136711. [PMID: 37390734 DOI: 10.1016/j.foodchem.2023.136711] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Roasting is essential for processing large-leaf yellow tea (LYT). However, the effect of the roasting on the metabolic and sensory profiles of LYT remains unknown. Herein, the metabolomics and sensory quality of LYT at five roasting degrees were evaluated by liquid/gas chromatography mass spectrometry and quantitative descriptive analysis. A higher degree of roasting resulted in a significantly stronger crispy rice, fried rice, and smoky-burnt aroma (p < 0.05), which is closely associated with heterocyclic compound accumulation (concentrations: 6.47 ± 0.27 - 1065.00 ± 5.58 µg/g). Amino acids, catechins, flavonoid glycosides and N-ethyl-2-pyrrolidone-substituted flavan-3-ol varied with roasting degree. The enhancement of crispy-rice and burnt flavor coupled with the reduction of bitterness and astringency. Correlations analysis revealed the essential compounds responsible for roasting degree, including 2,3-diethyl-5-methylpyrazine, hexanal, isoleucine, N-ethyl-2-pyrrolidone-substituted flavan-3-ol (EPSF), and others. These findings provide a theoretical basis for improving the specific flavors of LYT.
Collapse
Affiliation(s)
- Yifan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China
| | - Huiyan Jia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China
| | - Yue Pan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China
| | - Yong-Quan Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, China
| | - Yujie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China.
| | - Wei-Wei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China.
| |
Collapse
|
4
|
Zhu Z, Bian Y, Zhang X, Zeng R, Yang B. Study on the crystallization behavior and conformation adjustment scale of poly(lactic acid) in the terahertz frequency range. Phys Chem Chem Phys 2023; 25:8472-8481. [PMID: 36883295 DOI: 10.1039/d3cp00208j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The observed properties of crystalline polymers are determined by their internal structure, which in turn is the result of their different crystallization behaviors. Here, we investigate the crystallization behavior of poly(lactic acid) (PLA) by terahertz time-domain spectroscopy (THz-TDS) at varied temperatures. We find that the changes in the chain packing and conformation of PLA are characterized by THz spectroscopy. Combining X-ray diffraction (XRD) and infrared spectroscopy (IR), we attributed the blue-shift of the THz peak to the tightness of the chain packing, while its absorption enhancement is caused by the conformation transition. The effects of chain packing and chain conformation on the characteristic peak are phased. Furthermore, absorption discontinuities of the characteristic peaks of PLA crystallized at different temperatures are observed, which originated from differences in the degree of conformational transition caused by different thermal energies. We find that the crystallization temperature at which the absorption mutation of PLA occurs corresponds to the temperature at which the motion of the segment and molecular chain is excited, respectively. At these two temperatures, PLA exhibits different scales of conformational transitions leading to stronger absorption and larger absorption changes at higher crystallization temperatures. The results demonstrate that the driving force of PLA crystallization is indeed from changes in chain packing and chain conformation, and the molecular motion scale can also be characterized by THz spectroscopy.
Collapse
Affiliation(s)
- Zhenqi Zhu
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Yujing Bian
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Xun Zhang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Ruonan Zeng
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Bin Yang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
5
|
Chen T, Tang Z, Liang D, Huang Y, Yin X. An investigation on 3-hydroxybenzaldehyde for exploring terahertz low-frequency vibration modes with quasi-harmonic approximation method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122046. [PMID: 36334415 DOI: 10.1016/j.saa.2022.122046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/04/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
3-Hydroxybenzaldehyde (3-HBA) was investigated in the range of 0.6-2.8 THz by terahertz time-domain spectroscopy (THz-TDS) and solid-state density functional theory (ss-DFT) with first-principles calculation. Four distinct peaks were found respectively, and among them, the intensity disparity between experiment and simulation spectra at 2.04 THz was recognized as the biggest inconsistency. Considering thermal behavior can be responsible for this, quasi-harmonic approximation (QHA) method was introduced to mimic the unit cell volume expansion. According to vibrational modes analysis, it was ascertained that the biggest vibrational modes discrepancy was also located at 2.04 THz. Molecules in 0% and 4% unit cell expansion exhibit an opposite rotational direction in a-b plane compared with 2% unit cell expansion. Noncovalent intermolecular interactions were investigated with independent gradient model (IGM), and the result indicates that hydrogen bonding is the dominating noncovalent interaction of 3-HBA. While calculating systematic potential energy to the displaced bonds stretching involving hydrogen atoms, it was found the anomalous potential energy variation to the bond stretching provides a possible explanation for the rotation direction divergence, that is, the rotation direction divergence can be related to some hydrogen atoms seeking lower overall potential energy around their equilibrium positions during bond stretching in response to the variational intermolecular van der Waals force. This research combined THz-TDS with the quasi-harmonic approximation method, elucidating the principle of vibrational characteristics in different volumes, which is beneficial to the investigation of the terahertz low-frequency vibration to thermal behavior as a reference in biochemistry and other fields.
Collapse
Affiliation(s)
- Tao Chen
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Zongqing Tang
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Dihan Liang
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Yueting Huang
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Xianhua Yin
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China.
| |
Collapse
|