1
|
Zhong WL, Yang JY. Fluorescent carbon quantum dots for heavy metal sensing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177473. [PMID: 39522783 DOI: 10.1016/j.scitotenv.2024.177473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/19/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Many heavy metals pose significant threats to the environment and human health. Traditional methods for detecting heavy metals are often limited by complex procedures, high costs, and challenges in field monitoring. Carbon quantum dots (CQDs), a novel class of fluorescent carbon nanomaterials, have garnered significant interest due to their excellent biocompatibility, low cost, and minimal toxicity. This paper reviews the primary synthesis methods, luminescence mechanisms, and fluorescence quenching mechanisms of CQDs, as well as their recent applications in detecting heavy metals. In heavy metal sensing applications, the simplest hydrothermal method is commonly employed for the one-step synthesis and surface modification of CQDs. Various green reagents and biomass materials, such as citric acid, glutathione, orange peel, and bagasse, can be used for CQDs' preparation. Quantum confinement effects and surface defects give CQDs their distinctive luminescence properties, enabling the detection of heavy metals through fluorescence quenching or enhancement. Additionally, CQDs can be applied in biological imaging and smart detection, and when combined with adsorption materials, they can offer multifunctional capabilities. This review also discusses the future development prospects of CQDs.
Collapse
Affiliation(s)
- Wen-Lin Zhong
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
do Nascimento WC, Ramo LB, da Silva FF, C U Araujo M, I E de Andrade S, Bichinho KM. One-step microwave-assisted synthesis of fluorescent carbon quantum dots for determination of ascorbic acid and riboflavin in vitamin supplements. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124669. [PMID: 38909560 DOI: 10.1016/j.saa.2024.124669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
The synthesis of carbon quantum dots (CQDs) using chemical precursors with different organic groups is a strategy to improve optical properties and expand applications in several fields of research such as Analytical Chemistry. Ascorbic acid and riboflavin are widely used in human food supplementation, making quality monitoring of these vitamin supplements relevant and necessary. In this work, disodium ethylenediaminetetraacetic, sodium thiosulfate and urea were applied to obtain CQDs through a single-step microwave-assisted synthesis. The CQDs were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray powder diffraction, infrared spectroscopy, zeta potential measurements, ultraviolet-visible spectroscopy and photoluminescence spectroscopy. The synthesized nanoparticles exhibited satisfactory and stable optical properties with luminescence at 430 nm, water solubility, and fluorescence quantum yield of 8.9 %. They were applied in the quantification of ascorbic acid and riboflavin in vitamin supplements. The fluorescence mechanisms observed were dynamic quenching for the CQDs/Cr(VI) sensor, followed by a return of fluorescence in the presence of ascorbic acid, and static quenching and inner filter effect in the interaction with riboflavin. Factorial designs 23 and 24 were used to optimize the analytical parameters. The CQDs/Cr(VI) sensor used in the determination of ascorbic acid, employing an on-off-on strategy, resulted in a linear range of 0.5 to 50 µg mL-1 and a limit of detection of 0.15 µg mL-1. The ratiometric fluorescence used in the determination of riboflavin resulted in a linear range of 0.1 to 7 µg mL-1 and a limit of detection of 0.09 µg mL-1. The analytical results for ascorbic acid were compared to the reference method of the Brazilian pharmacopeia, showing accuracy and precision according to the Brazilian Health Regulation Agency. Therefore, the synthesized CQDs were used to determine ascorbic acid and riboflavin in vitamin supplements, and the application of this nanomaterial can be expanded to different analytes and matrices, using simple and low-cost analysis techniques.
Collapse
Affiliation(s)
- Wallis C do Nascimento
- Universidade Federal Da Paraíba, Centro de Ciências Exatas e Da Natureza, Departamento de Química, 58051-900 João Pessoa, Paraíba, Brasil.
| | - Luciano B Ramo
- Universidade Federal Da Paraíba, Centro de Ciências Exatas e Da Natureza, Departamento de Química, 58051-900 João Pessoa, Paraíba, Brasil.
| | - Fausthon F da Silva
- Universidade Federal Da Paraíba, Centro de Ciências Exatas e Da Natureza, Departamento de Química, 58051-900 João Pessoa, Paraíba, Brasil.
| | - Mario C U Araujo
- Universidade Federal Da Paraíba, Centro de Ciências Exatas e Da Natureza, Departamento de Química, 58051-900 João Pessoa, Paraíba, Brasil.
| | - Stéfani I E de Andrade
- Universidade Federal Da Paraíba, Centro de Ciências Exatas e Da Natureza, Departamento de Química, 58051-900 João Pessoa, Paraíba, Brasil.
| | - Kátia M Bichinho
- Universidade Federal Da Paraíba, Centro de Ciências Exatas e Da Natureza, Departamento de Química, 58051-900 João Pessoa, Paraíba, Brasil.
| |
Collapse
|
3
|
Ni CS, Zhang WJ, Bi WZ, Wu MX, Feng SX, Chen XL, Qu LB. Facile synthesis of N-doped graphene quantum dots as a fluorescent sensor for Cr(vi) and folic acid detection. RSC Adv 2024; 14:26667-26673. [PMID: 39175673 PMCID: PMC11340008 DOI: 10.1039/d4ra05016a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024] Open
Abstract
The development of stable fluorescent sensors for toxic pollutants and drugs is meaningful to the environment and public health. In this work, nitrogen-doped graphene quantum dots (N-GQDs) were facially synthesized by a one-step hydrothermal method using soluble starch and l-arginine as carbon and nitrogen sources in pure water at 190 °C for 4 h. The as-synthesized N-GQDs were well characterized and displayed blue fluorescence emission at 445 nm with excellent pH stability, salt tolerance, thermostability, photobleaching resistance and reproducibility. Moreover, N-GQDs could serve as an "on-off" sensor for selective detection of Cr(vi) and folic acid with low detection limit (0.80 and 2.1 μM), good linear correlation over wide linear range (0-50 μM and 0-200 μM) as well as short response time (<10 s). The practical applications of N-GQDs for Cr(vi) and folic acid detection in actual samples were further investigated and showed acceptable recoveries (92-105%) with relative standard deviations less than 5%. These results indicated that this N-GQDs-based sensor could be a potential alternative for Cr(vi) and folic acid detection in the fields of environmental monitoring and drug analysis.
Collapse
Affiliation(s)
- Chu-Sen Ni
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou 450046 China
| | - Wen-Jie Zhang
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou 450046 China
| | - Wen-Zhu Bi
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou 450046 China
- Henan Engineering Research Center of Modern Chinese Medicine Research, Development and Application Zhengzhou 450046 China
| | - Ming-Xia Wu
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou 450046 China
- Henan Engineering Research Center of Modern Chinese Medicine Research, Development and Application Zhengzhou 450046 China
| | - Su-Xiang Feng
- Henan Engineering Research Center of Modern Chinese Medicine Research, Development and Application Zhengzhou 450046 China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine Zhengzhou 450046 China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan Province & Education Ministry of P. R. China Zhengzhou 450046 China
| | - Xiao-Lan Chen
- College of Chemistry, Zhengzhou University Zhengzhou 450001 China
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
4
|
Kaur G, Sharma S, Bhardwaj N, Nayak MK, Deep A. Simple fluorochromic detection of chromium with ascorbic acid functionalized luminescent Bio-MOF-1. NANOSCALE 2024; 16:12523-12533. [PMID: 38888214 DOI: 10.1039/d4nr00768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The bioaccumulation of various heavy metals in the environment and agriculture is posing serious hazards to human health. Hexavalent chromium is one of the most encountered heavy metal pollutants. The routine monitoring of Cr(VI) via simple methods assumes great analytical significance in sectors like environmental safety, food quality, etc. This study reports a novel biocompatible and luminescent metal-organic framework (ascorbic acid functionalized Bio-MOF-1) based "Turn-on" nanoprobe for rapid and sensitive optical detection of Cr(VI). Bio-MOF-1 has been synthesized, functionalized with ascorbic acid (AA), and then comprehensively characterized for its key material properties. The presence of Cr(VI) results in the photoluminescence recovery of Bio-MOF-1/AA. Using the above approach, Cr(VI) is detected over a wide concentration range of 0.02 to 20 ng mL-1, with the limit of detection being 0.01 ng mL-1. The nanoprobe is capable of detecting Cr(VI) in real water as well as in some spiked food samples. Hence, the ascorbic acid functionalized Bio-MOF-1 nanoprobe is established as a potential on-field detection tool for Cr(VI).
Collapse
Affiliation(s)
- Gurjeet Kaur
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India
- CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Sector 30C, Chandigarh-160030, India.
| | - Saloni Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India
- CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Sector 30C, Chandigarh-160030, India.
| | - Neha Bhardwaj
- Institute of Nano Science and Technology (INST), Sector 81, S.A.S. Nagar (Mohali), Punjab-140306, India.
| | - Manoj K Nayak
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India
- CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Sector 30C, Chandigarh-160030, India.
| | - Akash Deep
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India
- Institute of Nano Science and Technology (INST), Sector 81, S.A.S. Nagar (Mohali), Punjab-140306, India.
| |
Collapse
|
5
|
Xie J, Wu Z, Sun J, Lv C, Sun Q. Green Synthesis of Carbon Quantum dots Derived from Lycium barbarum for Effective Fluorescence Detection of Cr (VI) Sensing. J Fluoresc 2024; 34:571-578. [PMID: 37314534 DOI: 10.1007/s10895-023-03300-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
Green and economical self-doped nitrogen-containing fluorescent carbon quantum dots (N-CQDs) were synthesized using a one-pot hydrothermal treatment method. The optical and structural properties of the N-CQDs were investigated in detail by UV-vis and fluorescence spectroscopy, X-ray diffraction (XRD) techniques, transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) spectroscopy, and elemental analysis illustrate the surface function and composition of N-CQDs. N-CQDs emit a broad fluorescence between365 ̴ 465 nm and fluoresce most strongly at the excitation wavelength of 415 nm. Meanwhile, Cr (VI) could significantly burst the fluorescence intensity of N-CQDs. N-CQDs showed an excellent sensitivity and selectivity to Cr (VI), which exhibited good linearity in the range of 0 ̴ 40 µmol/L with a detection limit of 0.16 µmol/L. In addition, the mechanism of Fluorescence quenching of N-CQDs by Cr (VI) was investigated. This work well provides a research idea for the preparation of green carbon quantum dots from biomass and their use for the detection of metal ions.
Collapse
Affiliation(s)
- Jierong Xie
- Xinjiang Key Laboratory of Solid-State Physics and Devices, Urumqi, Xinjiang, 830046, China
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China
| | - Zhaofeng Wu
- Xinjiang Key Laboratory of Solid-State Physics and Devices, Urumqi, Xinjiang, 830046, China.
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China.
| | - Jun Sun
- Xinjiang Key Laboratory of Solid-State Physics and Devices, Urumqi, Xinjiang, 830046, China
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China
| | - Changwu Lv
- Xinjiang Key Laboratory of Solid-State Physics and Devices, Urumqi, Xinjiang, 830046, China.
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China.
| | - Qihua Sun
- Xinjiang Key Laboratory of Solid-State Physics and Devices, Urumqi, Xinjiang, 830046, China
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China
| |
Collapse
|
6
|
Gan M, Wang Y, Wang F, Tan J, Pei Y, Wang J, Choi MMF, Bian W. Fluorescent sensing platform based on polyethyleneimine-protected copper nanoclusters for detection of chromium(VI) in real samples. LUMINESCENCE 2024; 39:e4689. [PMID: 38361140 DOI: 10.1002/bio.4689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/27/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
A new type of polyethyleneimine-protected copper nanoclusters (PEI-CuNCs) is favorably developed by a one-pot method under mild conditions. The obtained PEI-CuNCs is characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, Fourier-transform infrared (FTIR) spectroscopy and other techniques. It is worth noting that the proposed PEI-CuNCs demonstrate a selective response to chromium(VI) over other competitive species. Fluorescence quenching of PEI-CuNCs is determined to be chromium(VI) concentrations dependence with a low limit of detection of 8.9 nM. What is more, the as-developed PEI-CuNCs is further employed in building a detection platform for portable recognition of chromium(VI) in real samples with good accuracy. These findings may offer a distinctive strategy for the development of methods for analyzing and monitoring chromium(VI) and expand their application in real sample monitoring.
Collapse
Affiliation(s)
- Mingyu Gan
- Department of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Yingqi Wang
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Fei Wang
- Gastroenterology, Lvliang People's Hospital, Lvliang, China
| | - Jie Tan
- Department of Traditional Chinese Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuheng Pei
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianhua Wang
- Department of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Martin M F Choi
- Bristol Chinese Christian Church, c/o Tyndale Baptist Church, Bristol, UK
| | - Wei Bian
- Department of Basic Medicine, Shanxi Medical University, Taiyuan, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| |
Collapse
|
7
|
Hao Y, Yu L, Li T, Chen L, Han X, Chai F. The synthesis of carbon dots by folic acid and utilized as sustainable probe and paper sensor for Hg 2+ sensing and cellular imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121865. [PMID: 36155928 DOI: 10.1016/j.saa.2022.121865] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
In this work, the blue emission carbon dots (FA-CDs) are synthesized by one-pot solvothermal method by using folic acid as precursor. The FA-CDs emitted bright emission at 445 nm when excited at 360 nm with the QY of 31.2 %. The FA-CDs exhibit sensitive quenching response to Hg2+ with variable concentrations systematically, which determined FA-CDs can be employed as fluorescent probe, with a reliable linear relationship between fluorescence intensity and Hg2+ concentration, and a limit of detection (LOD) of 1.29 nM. Notably, the quenched FA-CDs can be recovered by using EDTA saturated solution with the emission comparable to initial in succession. The FA-CDs based paper sensor can be explored with similar detection performance, and it can also be restored by EDTA saturated solution. Both the restored CDs and paper sensor can be reused in the next turn for detecting Hg2+, which allowed the FA-CDs and their paper sensor can be serviced as sustainable probe for Hg2+ detection. The visual LOD of paper sensor can be determined at 0.1 μM, notably, the paper sensor can be reused at least 3 times with good performance, which is beneficial to environmental protection and saving resources. Possess excellent water solubility and non-toxic properties, the cellular imaging of FA-CDs was evaluated with excellent quality fluorescent image results. The FA-CDs provide a promising convenient fluorescent probe for multi-application in detection and imaging.
Collapse
Affiliation(s)
- Yunqi Hao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China
| | - Liying Yu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China
| | - Tingting Li
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China
| | - Lihua Chen
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong Province, China.
| | - Xu Han
- College of Computer Science and Information Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China.
| | - Fang Chai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China.
| |
Collapse
|
8
|
Jia H, Li Z, Wang F, Lu R, Zhang S, Zhang Z. Facile synthesis of NH2-MIL-53(Al)@RhB as a dual-emitting “on-off-on” probe for the detection of Fe3+ and ascorbic acid. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|