1
|
Günbatan T, Dilmaç E, Gökbulut A, Sucu M, Gürbüz İ. Screening Study on Serine Protease Inhibitory Activity of 10 Plant Species. Chem Biodivers 2024:e202402776. [PMID: 39648840 DOI: 10.1002/cbdv.202402776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 12/10/2024]
Abstract
In this research, in vitro serine protease inhibitory activity of 10 plant species was evaluated, and extracts that showed strong activity were analyzed through high-performance liquid chromatography (HPLC). Rhododendron caucasicum Pall. (leaf) and Potentilla reptans L. were found to have the highest chymotrypsin inhibitory activities (83.77% and 82.01% inhibition). The highest trypsin inhibitory activity was observed in R. caucasicum (flower) (82.86% inhibition), followed by Cruciata laevipes Opiz (82.22% inhibition). Extracts showing potent enzyme inhibition were fractioned and subjected to activity tests. The highest chymotrypsin inhibitory activity was observed in the n-hexane fraction of P. reptans (92.90% inhibition). In comparison, the highest trypsin inhibitory activity was found in the ethyl acetate fraction of Lythrum salicaria L. (89.81% inhibition). HPLC studies determined that the 80% ethanol extract of P. reptans contained chlorogenic acid. The screened plants were generally rich in phenol and flavonoid content and showed strong antioxidant activity.
Collapse
Affiliation(s)
- Tuğba Günbatan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Elif Dilmaç
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Alper Gökbulut
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, Ankara, Türkiye
| | - Melike Sucu
- Department of Pharmacognosy, Faculty of Pharmacy, Baskent University, Ankara, Türkiye
| | - İlhan Gürbüz
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| |
Collapse
|
2
|
Yuan L, Liu T, Qi X, Zhang Y, Wang Q, Wang Q, Liu M. Multi-spectroscopic and molecular docking studies for the pH-dependent interaction of β-lactoglobulin with (-)-epicatechin gallate and/or piceatannol: Influence on antioxidant activity and stability. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124090. [PMID: 38428163 DOI: 10.1016/j.saa.2024.124090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
(-)-Epicatechin gallate (ECG) and piceatannol (PIC) are commonly polyphenols with excellent biological activities. β-Lactoglobulin (BLG) is a food-grade globule protein and its morphologies are sensitive to pH. This study used experimental and computational methods to determine the interaction of single or combined ECG and PIC with BLG at different pHs. The static quenching process was determined through fluorescence and ultraviolet-visible spectroscopy. Compared with ECG, PIC could significantly bind to BLG with higher affinity. Their binding affinity for BLG with different morphologies followed the tendency of monomer > dimer > tetramer. The negative contribution of van der Waals forces, electrostatic interactions, and hydrogen bonds to ΔHo exceeded the positive contribution of hydrophobic interactions in the spontaneous and exothermic process. The reduced binding affinity in the ternary systems demonstrated the competitive binding between ECG and PIC on BLG, and the hinder effect of ECG or PIC was enhanced with increasing pH. Molecular docking studies revealed the same binding sites of ECG and PIC on various conformations of BLG and identical driven forces as thermodynamic results. Tryptophan and tyrosine were the main participators in the BLG + ECG and BLG + PIC systems, respectively. The conformational changes in the binary and ternary systems could be ascertained through synchronous fluorescence, circular dichroism, and dynamic light scattering. Furthermore, the effects of pH and BLG encapsulation on the antioxidant capacity and stability of ECG or PIC were also implemented. ECG or PIC was the most stable in the (BLG + PIC) + ECG system at pH 6.0. This study could clarify the interaction mechanism between ECG/PIC and BLG and elucidate the pH effect on their binding information. The results will provide basic support for their usage in food processing and applications.
Collapse
Affiliation(s)
- Lixia Yuan
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Tingting Liu
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - Xin Qi
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Yanqing Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Qiulu Wang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Qingpeng Wang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Min Liu
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, People's Republic of China; School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China.
| |
Collapse
|
3
|
Doharey PK, Verma P, Dubey A, Singh SK, Kumar M, Tripathi T, Alonazi M, Siddiqi NJ, Sharma B. Biophysical and in-silico studies on the structure-function relationship of Brugia malayi protein disulfide isomerase. J Biomol Struct Dyn 2024; 42:1533-1543. [PMID: 37079006 DOI: 10.1080/07391102.2023.2201849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/03/2023] [Indexed: 04/21/2023]
Abstract
Human Lymphatic filariasis is caused by parasitic nematodes Wuchereria bancrofti, Brugia malayi, and Brugia timori. Protein disulfide isomerase (PDI), a redox-active enzyme, helps to form and isomerize the disulfide bonds, thereby acting as a chaperone. Such activity is essential for activating many essential enzymes and functional proteins. Brugia malayi protein disulfide isomerase (BmPDI) is crucial for parasite survival and an important drug target. Here, we used a combination of spectroscopic and computational analysis to study the structural and functional changes in the BmPDI during unfolding. Tryptophan fluorescence data revealed two well-separated transitions during the unfolding process, suggesting that the unfolding of the BmPDI is non-cooperative. The binding of the fluorescence probe 8-anilino-1-naphthalene sulfonic acid dye (ANS) validated the results obtained by the pH unfolding. The dynamics of molecular simulation performed at different pH conditions revealed the structural basis of BmPDI unfolding. Detailed analysis suggested that under different pH, both the global structure and the conformational dynamics of the active site residues were differentially altered. Our multiparametric study reveals the differential dynamics and collective motions of BmPDI unfolding, providing insights into its structure-function relationship.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Pravesh Verma
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Amit Dubey
- Computational Chemistry and Drug discovery Division, Quanta calculus Pvt. Ltd, Kushinagar, India
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Sudhir Kumar Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Manish Kumar
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | - Timir Tripathi
- Department of Biochemistry, North-Eastern Hill University, Umshing, India
| | - Mona Alonazi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nikhat Jamal Siddiqi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Allahabad, India
| |
Collapse
|
4
|
Habibi A, Farhadian S, Shareghi B, Hashemi-Shahraki F. Structural change study of pepsin in the presence of spermidine trihydrochloride: Insights from spectroscopic to molecular dynamics methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122264. [PMID: 36652806 DOI: 10.1016/j.saa.2022.122264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Spermidine is an aliphatic polyamine that directs a set of biological processes. This work aimed to use UV-Vis spectroscopy, fluorescence spectroscopy, thermal stability, kinetic methods, docking, and molecular dynamic simulations to examine the influence of spermidine trihydrochloride (SP) on the structure and function of pepsin. The results of the fluorescence emission spectra indicated that spermidine could quench pepsin's intrinsic emission in a static quenching process, resulting in the formation of the pepsin-spermidine complex. The results discovered that spermidine had a strong affinity to the pepsin structure because of its high binding constant. The obtained results from spectroscopy and molecular dynamic approaches showed the binding interaction between spermidine and pepsin, induced micro-environmental modifications around tryptophan residues that caused a change in the tertiary and secondary structure of the enzyme. FTIR analysis showed hypochromic effects in the spectra of amide I and II and redistribution of the helical structure. Moreover, the molecular dynamic (MD) and docking studies confirmed the experimental data. Both experimental and molecular dynamics simulation results clarified that electrostatic bond interactions were dominant forces.
Collapse
Affiliation(s)
- Atefeh Habibi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P.O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P.O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P.O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Fatemeh Hashemi-Shahraki
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P.O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| |
Collapse
|