1
|
Chen J, Chen M, Yu X. Fluorescent probes in autoimmune disease research: current status and future prospects. J Transl Med 2025; 23:411. [PMID: 40205498 PMCID: PMC11984237 DOI: 10.1186/s12967-025-06430-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
Autoimmune diseases (AD) present substantial challenges for early diagnosis and precise treatment due to their intricate pathogenesis and varied clinical manifestations. While existing diagnostic methods and treatment strategies have advanced, their sensitivity, specificity, and real-time applicability in clinical settings continue to exhibit significant limitations. In recent years, fluorescent probes have emerged as highly sensitive and specific biological imaging tools, demonstrating substantial potential in AD research.This review examines the response mechanisms and historical evolution of various types of fluorescent probes, systematically summarizing the latest research advancements in their application to autoimmune diseases. It highlights key applications in biomarker detection, dynamic monitoring of immune cell functions, and assessment of drug treatment efficacy. Furthermore, this article analyzes the technical challenges currently encountered in probe development and proposes potential directions for future research. With ongoing advancements in materials science, nanotechnology, and bioengineering, fluorescent probes are anticipated to achieve higher sensitivity and enhanced functional integration, thereby facilitating early detection, dynamic monitoring, and innovative treatment strategies for autoimmune diseases. Overall, fluorescent probes possess substantial scientific significance and application value in both research and clinical settings related to autoimmune diseases, signaling a new era of personalized and precision medicine.
Collapse
Affiliation(s)
- Junli Chen
- Wujin Hospital Affiliated With Jiangsu University, Changzhou, Jiangsu, China
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mingkai Chen
- Wujin Hospital Affiliated With Jiangsu University, Changzhou, Jiangsu, China
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaolong Yu
- Wujin Hospital Affiliated With Jiangsu University, Changzhou, Jiangsu, China.
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
2
|
Fan J, Liu XM, Sun P, Su H, Sun Y, Li QZ, Xie CZ, Xu JY. A Novel Multi-Functional Fluorescence Probe for the Detection of Al 3+/Zn 2+/Cd 2+ and its Practical Applications. J Fluoresc 2025; 35:1025-1036. [PMID: 38252217 DOI: 10.1007/s10895-024-03589-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
A novel multi-functional fluorescence probe HMIC based on hydrazide Schiff base has been successfully synthesized and characterized. It can distinguish Al3+/Zn2+/Cd2+ in ethanol, in which fluorescence emission with different colors (blue for Al3+, orange for Zn2+, and green for Cd2+) were presented. The limits of detection of HMIC towards three ions were calculated from the titration curve as 7.70 × 10- 9 M, 4.64 × 10- 9 M, and 1.35 × 10- 8 M, respectively. The structures of HMIC and its complexes were investigated using UV-Vis spectra, Job's plot, infrared spectra, mass spectrometry, 1H-NMR and DFT calculations. Practical application studies have also demonstrated that HMIC can be applied to real samples with a low impact of potential interferents. Cytotoxicity and cellular imaging assays have shown that HMIC has good cellular permeability and potential antitumor effects. Interestingly, HMIC can image Al3+, Zn2+ and Cd2+ in the cells with different fluorescence signals.
Collapse
Affiliation(s)
- Jing Fan
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Xiao-Meng Liu
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Peng Sun
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Huan Su
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Yan Sun
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Qing-Zhong Li
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Cheng-Zhi Xie
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China.
| | - Jing-Yuan Xu
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China.
| |
Collapse
|
3
|
Melo-Hernández S, Ríos MC, Portilla J. Chemistry and properties of fluorescent pyrazole derivatives: an approach to bioimaging applications. RSC Adv 2024; 14:39230-39241. [PMID: 39664246 PMCID: PMC11632951 DOI: 10.1039/d4ra07485h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024] Open
Abstract
Fluorescent bioimaging is a crucial technique for in vivo studies in real cell samples, providing vital information about the metabolism of ions or molecules of biological and pharmaceutical significance. This technique typically uses probes based on organic small-molecule fluorophores, with N-heteroaromatic scaffolds playing an essential role due to their exceptional electronic properties and biocompatibility. Among these, pyrazole derivatives stand out as particularly promising due to their high synthetic versatility and structural diversity. This review highlights prominent examples from the period 2020-2024, focusing on the chemistry, properties, and bioimaging applications of fluorescent pyrazole derivatives. By highlighting the latest advancements in this field, this manuscript aims to inspire and motivate researchers, emphasizing the potential impact of this work on the future of bioimaging.
Collapse
Affiliation(s)
- Santiago Melo-Hernández
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de Los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| | - María-Camila Ríos
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de Los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| | - Jaime Portilla
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de Los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| |
Collapse
|
4
|
Gui R, Jin H. Organic fluorophores-based molecular probes with dual-fluorescence ratiometric responses to in-vitro/in-vivo pH for biosensing, bioimaging and biotherapeutics applications. Talanta 2024; 275:126171. [PMID: 38703479 DOI: 10.1016/j.talanta.2024.126171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
In recent years, organic fluorophores-based molecular probes with dual-fluorescence ratiometric responses to in-vitro/in-vivo pH (DFR-MPs-pH) have been attracting much interest in fundamental application research fields. More and more scientific publications have reported the exploration of various DFR-MPs-pH systems that have unique dual-fluorescence ratiometry as the signal output, in-built and signal self-calibration functions to improve precise detection of targets. DFR-MPs-pH systems possess high-performance applications in biosensing, bioimaging and biomedicine fields. This review has comprehensively summarized recent advances of DFR-MPs-pH for the first time. First of all, the compositions and types of DFR-MPs-pH are introduced by summarizing different organic fluorophores-based molecule systems. Then, construction strategies are analyzed based on specific components, structures, properties and functions of DFR-MPs-pH. Afterward, biosensing and bioimaging applications are discussed in detail, primarily referring to pH sensing and imaging detection at the levels of living cells and small animals. Finally, biomedicine applications are fully summarized, majorly involving bio-toxicity evaluation, bio-distribution, biomedical diagnosis and therapeutics. Meanwhile, the current status, challenges and perspectives are rationally commented after detailed discussions of representative and state-of-the-art studies. Overall, this present review is comprehensive, in-time and in-depth, and can facilitate the following further exploration of new and versatile DFR-MPs-pH systems toward rational design, facile preparation, superior properties, adjustable functions and highly efficient applications in promising fields.
Collapse
Affiliation(s)
- Rijun Gui
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong, 266071, PR China.
| | - Hui Jin
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong, 266071, PR China
| |
Collapse
|
5
|
Wang Y, Li M, Yu H, Chen Y, Cui M, Ji M, Yang F. A Near-Infrared Fluorescent Dye with Tunable Emission Wavelength and Stokes Shift as a High-Sensitivity Cysteine Nanoprobe for Monitoring Ischemic Stroke. ACS NANO 2024; 18:15978-15990. [PMID: 38847448 DOI: 10.1021/acsnano.4c04211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Sulfur-substituted dicyanomethylene-4H-chromene (DCM) derivatives based on the intramolecular charge transfer (ICT) mechanism were designed as near-infrared (NIR) fluorescent dyes. Using the Knoevenagel condensation method, the S-DCM-OH(835) fluorescence dye was synthesized, which had an emission wavelength exceeding 800 nm and 220 nm of a Stokes shift. Compared to commercial ICG, S-DCM-OH(835) was not only synchronized in emission wavelength but also far superior in Stokes shifts. These advantages made the design of S-DCM-NIR(835) based on this dye potentially valuable for biological applications. Based on this chemical structure, a fluorescent S-DCM-NIR(835) nanoprobe with a mean diameter of 17.69 nm was fabricated as the NIR imaging nanoprobe. Results showed that the nanoprobe maintained the high-specificity identification of cysteine (Cys) via the Michael addition reaction, with the detection limitation of 0.11 μM endogenous Cys. More importantly, in an ischemic stroke mouse model, the S-DCM-NIR(835) nanoprobe could monitor the Cys concentration change at stroke lesion due to the disruption of Cys metabolism under the ischemic stroke condition. Such a S-DCM-NIR(835) nanoprobe could not only differentiate the severity of the ischemic stroke using response time but also quantify the concentration of Cys in real-time in vivo.
Collapse
Affiliation(s)
- Yuesong Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Mingxi Li
- State Key Laboratory of Digital Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Haoli Yu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Yan Chen
- State Key Laboratory of Digital Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Mengyuan Cui
- State Key Laboratory of Digital Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Min Ji
- State Key Laboratory of Digital Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Fang Yang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| |
Collapse
|
6
|
Zhao H, Guo J, Huai J, Li R, Han H, Huang X, Jiang Y, Shuang S. A novel pH-sensitive hemi-cyanine containing tetrahydropyridine ring near-infrared fluorescence probe with lysosome-targeting ability. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124162. [PMID: 38522377 DOI: 10.1016/j.saa.2024.124162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/23/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
In recent years, hemi-cyanine dyes have been widely used as biological probes due to their red-light emission characteristics and high fluorescence quantum yield. In this study, we synthesized a novel hemi-cyanine dye containing a tetrahydropyridine ring. A lysosomal target was introduced into its structure to create a new pH-sensitive near-infrared fluorescent probe that successfully targeted lysosomes. The results showed that when the probe solution was excited at the absorption wavelength of 650 nm, its fluorescence emission wavelength was about 700 nm, and the peak intensity changed with different pH values in a wide range. Therefore, this probe enabled non-invasive detection of changes in the acidic environment of lysosomes in living organisms and showed good imaging capabilities. Moreover, the probe displays high sensitivity and good stability. The theoretical calculation of a probe structure has also been completed to discuss the relationship between structure and property.
Collapse
Affiliation(s)
- Hongwei Zhao
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China.
| | - Jingrong Guo
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Jiameng Huai
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Ruyue Li
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Hui Han
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Xiao Huang
- Shanxi Science and Technology Resources and Large-Scale Instrument Open-Sharing Center, Taiyuan, 03006, China
| | - Yuna Jiang
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
7
|
Fu Q, Yang X, Wang M, Zhu K, Wang Y, Song J. Activatable Probes for Ratiometric Imaging of Endogenous Biomarkers In Vivo. ACS NANO 2024; 18:3916-3968. [PMID: 38258800 DOI: 10.1021/acsnano.3c10659] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Dynamic variations in the concentration and abnormal distribution of endogenous biomarkers are strongly associated with multiple physiological and pathological states. Therefore, it is crucial to design imaging systems capable of real-time detection of dynamic changes in biomarkers for the accurate diagnosis and effective treatment of diseases. Recently, ratiometric imaging has emerged as a widely used technique for sensing and imaging of biomarkers due to its advantage of circumventing the limitations inherent to conventional intensity-dependent signal readout methods while also providing built-in self-calibration for signal correction. Here, the recent progress of ratiometric probes and their applications in sensing and imaging of biomarkers are outlined. Ratiometric probes are classified according to their imaging mechanisms, and ratiometric photoacoustic imaging, ratiometric optical imaging including photoluminescence imaging and self-luminescence imaging, ratiometric magnetic resonance imaging, and dual-modal ratiometric imaging are discussed. The applications of ratiometric probes in the sensing and imaging of biomarkers such as pH, reactive oxygen species (ROS), reactive nitrogen species (RNS), glutathione (GSH), gas molecules, enzymes, metal ions, and hypoxia are discussed in detail. Additionally, this Review presents an overview of challenges faced in this field along with future research directions.
Collapse
Affiliation(s)
- Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Mengzhen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
8
|
Huang Y, Cao X, Deng Y, Ji X, Sun W, Xia S, Wan S, Zhang H, Xing R, Ding J, Ren C. An overview on recent advances of reversible fluorescent probes and their biological applications. Talanta 2024; 268:125275. [PMID: 37839322 DOI: 10.1016/j.talanta.2023.125275] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/03/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
Due to the simplicity and low detection limit, fluorescent probes are widely used in both analytical sensing and optical imaging. Compared to conventional fluorescent probes, reversibility endows the reversible fluorescent probe outstanding advantages and special properties, making reversible fluorescent probes with capable of quantitative, repetitive or circulatory. Reversible fluorescent probes can also monitor the concentration dynamics of target analytes in real time, such as metal ions, proteins and enzymes, as well as intracellular redox processes, which have been widely applied in various fields. This review summarized the types and excellent properties of reversible fluorescent probes designed and developed in recent years. It also summarized the applications of reversible fluorescent probe in fluorescence imaging, biological testing, monitoring redox cycles, and proposed the remaining challenges and future development directions of the reversible fluorescent probe. This review provided comprehensive overview of reversible fluorescent probe, which may provide valuable references for the design and fabrication of the reversible fluorescent probe.
Collapse
Affiliation(s)
- Yanan Huang
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Xuebin Cao
- China State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo315832, Zhejiang, China; Yantai Jinghai Marine Fisheries Co., LTD, Yantai, 264000, Shandong, China
| | - Yawen Deng
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Xingyu Ji
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Weina Sun
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Shiyu Xia
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Shuo Wan
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Hongxia Zhang
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Ronglian Xing
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China.
| | - Jun Ding
- Dalian Ocean University, Dalian, 116000, Liaoning, China
| | - Chunguang Ren
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China.
| |
Collapse
|
9
|
Zhou W, Pan Y, Liu Y, Liang Q, Zhou D, Wu A, Shu W, Yu W. A novel turn-on fluorescent probe for detection of pH in extremely acidic environment and its application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123203. [PMID: 37523848 DOI: 10.1016/j.saa.2023.123203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
A water-soluble turn-on fluorescent probe PNAP for pH has been designed and synthesized. PNAP was consist of pyrene as fluorophore and morpholine as receptor. Owing to the photoinduced electron transfer (PET) effect, the fluorescence of PNAP was quenched, while PNAP exhibited a remarkable "turn-on" fluorescence with the increase of acidity. Notably for its pKa of 2.15, PNAP was one of the pH fluorescent probes used in extremely acidic environments. Furthermore, PNAP also displayed good repeatability, strong anti-ion interference ability, high sensitivity and selectivity toward pH. In addition, PNAP has been successfully applied to the test strips and monitor the pH of environment water samples and realistic samples, showing its good promising prospect.
Collapse
Affiliation(s)
- Wu Zhou
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, Jingzhou 434023, PR China
| | - Yuanjiang Pan
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, Jingzhou 434023, PR China
| | - Yuxuan Liu
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, Jingzhou 434023, PR China
| | - Qingxiang Liang
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, Jingzhou 434023, PR China
| | - Dongkui Zhou
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, Jingzhou 434023, PR China
| | - Aibin Wu
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, Jingzhou 434023, PR China; Unconventional Oil and Gas Collaborative Innovation Center, Yangtze University, Hubei, Jingzhou 434023, PR China; Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Yangtze University, Hubei, Jingzhou 434023, PR China.
| | - Wenming Shu
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, Jingzhou 434023, PR China
| | - Weichu Yu
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, Jingzhou 434023, PR China; Unconventional Oil and Gas Collaborative Innovation Center, Yangtze University, Hubei, Jingzhou 434023, PR China; Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Yangtze University, Hubei, Jingzhou 434023, PR China.
| |
Collapse
|
10
|
Liu J, Meng F, Lv J, Yang M, Wu Y, Gao J, Luo J, Li X, Wei G, Yuan Z, Li H. Comprehensive monitoring of mitochondrial viscosity variation during different cell death processes by a NIR mitochondria-targeting fluorescence probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122602. [PMID: 36934595 DOI: 10.1016/j.saa.2023.122602] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Cell death is a fundamental feature of multicellular organisms, in which mitochondria play crucial roles. Therefore, revealing and monitoring the microenvironment of mitochondria are significant to investigate cell death process. Herein, the mitochondrial viscosity variation behaviors of a series of different cell death processes were monitored with a NIR mitochondria-targeting fluorescence probe FLV. FLV was designed based on a rotatable flavylocyanine fluorophore that presented selective and sensitive NIR fluorescence enhancement response with the increase of environmental viscosity. Fluorescence imaging experiments of living cells incubated with nystatin or under different temperature indicated that FLV was capable of imaging the change of mitochondrial viscosity. Finally, FLV was applied for monitoring the mitochondrial viscosity variation during different cell death processes. It was found that there were obvious mitochondrial viscosity increases during apoptosis, necrosis and autophagy; however, no detectable mitochondrial viscosity variation was observed in ferroptosis process incubated with ferroptosis inducer erastin or RSL3 for 6 h. These results demonstrated that FLV is a viable tool for monitoring the mitochondrial viscosity variation and is likely to be used in the diagnosis of the mitochondrial viscosity-associated cell processes and diseases.
Collapse
Affiliation(s)
- Jiaojiao Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
| | - Fancheng Meng
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
| | - Jiajia Lv
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
| | - Mingyan Yang
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
| | - Yumei Wu
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
| | - Jie Gao
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
| | - Junjun Luo
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
| | - Xinmin Li
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
| | - Gang Wei
- Commonwealth Scientific and Industrial Research Organization Manufacturing, Lindfield, New South Wales 2070, Australia.
| | - Zeli Yuan
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China.
| | - Hongyu Li
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China.
| |
Collapse
|
11
|
Shrivastava N, Guffie J, Moore TL, Guzelturk B, Kumbhar AS, Wen J, Luo Z. Surface-Doped Zinc Gallate Colloidal Nanoparticles Exhibit pH-Dependent Radioluminescence with Enhancement in Acidic Media. NANO LETTERS 2023. [PMID: 37399282 PMCID: PMC10375584 DOI: 10.1021/acs.nanolett.3c01363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
As abnormal acidic pH symbolizes dysfunctions of cells, it is highly desirable to develop pH-sensitive luminescent materials for diagnosing disease and imaging-guided therapy using high-energy radiation. Herein, we explored near-infrared-emitting Cr-doped zinc gallate ZnGa2O4 nanoparticles (NPs) in colloidal solutions with different pH levels under X-ray excitation. Ultrasmall NPs were synthesized via a facile hydrothermal method by controlling the addition of ammonium hydroxide precursor and reaction time, and structural characterization revealed Cr dopants on the surface of NPs. The synthesized NPs exhibited different photoluminescence and radioluminescence mechanisms, confirming the surface distribution of activators. It was observed that the colloidal NPs emit pH-dependent radioluminescence in a linear relationship, and the enhancement reached 4.6-fold when pH = 4 compared with the colloidal NPs in the neutral solution. This observation provides a strategy for developing new biomaterials by engineering activators on the nanoparticle surfaces for potential pH-sensitive imaging and imaging-guided therapy using high-energy radiation.
Collapse
Affiliation(s)
- Navadeep Shrivastava
- Department of Chemistry, Physics and Materials Science, Fayetteville State University, Fayetteville, North Carolina 28301, United States
| | - Jessa Guffie
- Department of Chemistry, Physics and Materials Science, Fayetteville State University, Fayetteville, North Carolina 28301, United States
| | - Tamela L Moore
- Department of Chemistry, Physics and Materials Science, Fayetteville State University, Fayetteville, North Carolina 28301, United States
| | - Burak Guzelturk
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Amar S Kumbhar
- Chapel Hill Analytical and Nanofabrication Laboratory, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jianguo Wen
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Zhiping Luo
- Department of Chemistry, Physics and Materials Science, Fayetteville State University, Fayetteville, North Carolina 28301, United States
| |
Collapse
|
12
|
Yu GH, Hu HR, Liu RB, Sheng GZ, Niu JJ, Fang Y, Wang KP, Hu ZQ. A triphenylamine-based fluorescence probe for detection of hypochlorite in mitochondria. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122830. [PMID: 37178586 DOI: 10.1016/j.saa.2023.122830] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/31/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
The level of HClO/ClO- in mitochondria is essential to keep the normal function of mitochondria. Therefore, it is meaningful to accurately and quickly monitor ClO- in mitochondria. In this work, a new triphenylamine-based fluorescence probe PDTPA was designed and synthesized, in which pyridinium salt and dicyano-vinyl group were introduced as mitochondria targeting site and reaction site for ClO-. The probe showed high sensitivity and fast fluorescence response (<10 s) in the detection of ClO-. Moreover, the probe PDTPA had good linearity in a wide concentration range of ClO- and its detection limit was calculated as 10.5 μM. Confocal fluorescence images demonstrated that the probe could target mitochondria and track the fluctuations of endogenous/exogenous ClO- levels in the mitochondria of living cells.
Collapse
Affiliation(s)
- Guan-Hua Yu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hao-Ran Hu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Rui-Bin Liu
- Shandong Kangqiao Biotechnology Co. Ltd, Binzhou 256500, China
| | - Guo-Zhu Sheng
- Shandong Kangqiao Biotechnology Co. Ltd, Binzhou 256500, China
| | - Jia-Jie Niu
- Shandong Kangqiao Biotechnology Co. Ltd, Binzhou 256500, China
| | - Ying Fang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Kun-Peng Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Zhi-Qiang Hu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
13
|
Zhou Y, Dai J, Qi J, Wu J, Huang Y, Shen B, Zhi X, Fu Y. Construction of a red emission fluorescent probe for selectively detection of cysteine in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121946. [PMID: 36242837 DOI: 10.1016/j.saa.2022.121946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/08/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Cysteine (Cys) is a vital amino acid in the body, and its abnormal expression level is associated with many diseases. In this study, a novel fluorescent probe ACHB was synthesized, showing high selectivity, anti-interference ability and achieving accurate detection of cysteine. Different from most previous off-on probes, ACHB showed an on-off fluorescence response to Cys. Acrylic ester was used as a recognizer while green fluorescence protein (GFP) chromophore derivative 4-hydroxybenzylidene-imidazolinone (HBI) was used as the fluorophore. The addition of Cys leads to the hydrolysis of the red-emitting probe (613 nm), releasing a precursor with a lower fluorescent signal and showing an on-off spectral signal, which was ideal for obtaining sensitive detection with high specificity. Furthermore, the probe was successfully applied for simultaneous determination of cysteine (Cys) in living cells and biological sample (mouse serum). In conclusion, probe ACHB is a promising tool to display the intracellular cysteine concentration level, providing a good visualization method for clinical diagnosis and scientific basic research.
Collapse
Affiliation(s)
- Yufeng Zhou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jianan Dai
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jinzhi Qi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jichun Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Yubo Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Baoxing Shen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Xu Zhi
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yongqian Fu
- School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, China.
| |
Collapse
|
14
|
Shi GJ, Wang YD, Yu ZX, Zhang Q, Chen S, Xu LZ, Wang KP, Hu ZQ. The coumarin-pyrazole dye for detection of hydrogen sulfide in cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121898. [PMID: 36150259 DOI: 10.1016/j.saa.2022.121898] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/27/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Fluorescent probes for H2S are often interfered by other thiols. In this work, a coumarin-pyrazole dye with 2,4-dinitrosulfonyl group was designed for the detection of H2S. The probe exhibits weak fluorescence in water due to the photo induced electron transfer (PET) by 2,4-dinitrosulfonyl. After the sulfonyl group is cleaved off by H2S, strong fluorescence appears. The probe can specifically detect H2S without being interfered by other biological thiols, and shows a wide applicable pH range, low detection and wide detection range. The excellent detection properties of the probe can also be used to detect endogenous and exogenous H2S in cells. In addition, the probes can be made into portable test paper for the detection of H2S in solutions and can detect H2S in different water samples.
Collapse
Affiliation(s)
- Guang-Jin Shi
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yue-Dong Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhen-Xing Yu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qi Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaojin Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Liang-Zhong Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kun-Peng Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhi-Qiang Hu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
15
|
Szymaszek P, Środa P, Tyszka-Czochara M, Chachaj-Brekiesz A, Świergosz T, Ortyl J. Development of novel fluorescent probes to detect and quantify specific reactive oxygen species. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|