1
|
Wang Y, Gao M, Yang J, Li H, Han X, Wang S, Pan M. Bimetallic Ag/Au nanoclusters encapsulated in ZIF-8 framework: A novel strategy for ratiometric fluorescence detection of doxycycline in food. Food Chem 2024; 445:138738. [PMID: 38364497 DOI: 10.1016/j.foodchem.2024.138738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
This study successfully encapsulated the Ag+-doped Au nanoclusters (Ag/AuNCs) within the ZIF-8 framework to construct a novel Ag/AuNCs@ZIF-8 ratiometric fluorescent probe for the antibiotic doxycycline (DOX) detection. The incorporation of Ag+ contributed to the fluorescence enhancement of the nanoclusters through the "silver effect", consequently improving the stability of the developed bimetallic Ag/AuNCs. Furthermore, the encapsulation of bimetallic Ag/AuNCs within the ZIF-8 framework restricted their intramolecular vibrations, resulting in further amplification of fluorescence intensity at 595 nm. The ZIF-8 also sensitized the restoration of DOX green fluorescence at 515 nm. Within the concentration range of 0.001-20 μg mL-1, the ratio of fluorescence intensity (F515/F595) exhibited a favorable linearity for DOX concentration, with a detection limit of 36.8 ng mL-1. This ratiometric fluorescence approach had the promising potential for accurate and efficient quantitative detection of DOX residue in food and served as a valuable reference for rapid monitoring of food contaminants.
Collapse
Affiliation(s)
- Yueyao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Mengmeng Gao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Huilin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Xintong Han
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China.
| | - Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China.
| |
Collapse
|
2
|
Dai X, Song C, Ma S, Cao F, Dong D. Rapid Determination of Cr 3+ and Mn 2+ in Water Using Laser-Induced Breakdown Spectroscopy Combined with Filter Paper Modified with Gold Nanoclusters. BIOSENSORS 2024; 14:267. [PMID: 38920571 PMCID: PMC11202032 DOI: 10.3390/bios14060267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Excessive emissions of heavy metals not only cause environmental pollution but also pose a direct threat to human health. Therefore, rapid and accurate detection of heavy metals in the environment is of great significance. Herein, we propose a method based on laser-induced breakdown spectroscopy (LIBS) combined with filter paper modified with bovine serum albumin-protected gold nanoclusters (LIBS-FP-AuNCs) for the rapid and sensitive detection of Cr3+ and Mn2+. The filter paper modified with AuNCs was used to selectively enrich Cr3+ and Mn2+. Combined with the multi-element detection capability of LIBS, this method achieved the simultaneous rapid detection of Cr3+ and Mn2+. Both elements showed linear ranges for concentrations of 10-1000 μg L-1, with limits of detection of 7.5 and 9.0 μg L-1 for Cr3+ and Mn2+, respectively. This method was successfully applied to the determination of Cr3+ and Mn2+ in real water samples, with satisfactory recoveries ranging from 94.6% to 105.1%. This method has potential application in the analysis of heavy metal pollution.
Collapse
Affiliation(s)
- Xuan Dai
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China; (X.D.); (D.D.)
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.S.); (S.M.)
| | - Changbo Song
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.S.); (S.M.)
| | - Shixiang Ma
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.S.); (S.M.)
| | - Fengjing Cao
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.S.); (S.M.)
| | - Daming Dong
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China; (X.D.); (D.D.)
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.S.); (S.M.)
| |
Collapse
|