1
|
Liu W, Dong J, Ren Y, Zhou W, Han Q, Zhang C, Ren K, Wang Y, Gao W, Qi J. Fabrication of plasmonic Au-Ag alloy nanostars for ultrasensitive SERS detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 339:126208. [PMID: 40245452 DOI: 10.1016/j.saa.2025.126208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/30/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
In this paper, Au-Ag alloy nanostar (Au-Ag NSt) substrates were prepared by liquid-liquid three-phase self-assembly method, and the influence of preparation conditions on their Raman activity of the substrate was explored. By adjusting the gold-silver ratios of alloy seeds and the concentration of AgNO3 in the growth solution, it was found that the LSPR peak can be adjusted. Under the conditions of Au1-Ag3 nanoparticles as seeds and 200 μL AgNO3 solution (2 mM) as epitaxial growth solution, the prepared Au1-Ag3 NSt substrate exhibits excellent SERS activity. The substrate can detect R6G and CV probe molecules with detection limits as low as 10-11 M and 10-10 M, respectively. Experiments have confirmed that the substrate has the characteristics of high sensitivity, good uniformity and strong stability. In addition, the substrate can detect APM molecules far below the safety standard, which further proves that the structure has excellent practical application potential as a SERS substrate.
Collapse
Affiliation(s)
- Wen Liu
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Jun Dong
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China.
| | - Yuchong Ren
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Wanting Zhou
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Qingyan Han
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Chengyun Zhang
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Kaili Ren
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Yongkai Wang
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Wei Gao
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China.
| | - Jianxia Qi
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| |
Collapse
|
2
|
Peng J, Song Y, Lin Y, Huang Z. Introduction and Development of Surface-Enhanced Raman Scattering (SERS) Substrates: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1648. [PMID: 39452983 PMCID: PMC11510290 DOI: 10.3390/nano14201648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/03/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
Since its discovery, the phenomenon of Surface Enhanced Raman Scattering (SERS) has gradually become an important tool for analyzing the composition and structure of substances. As a trace technique that can efficiently and nondestructively detect single molecules, the application of SERS has expanded from environmental and materials science to biomedical fields. In the past decade or so, the explosive development of nanotechnology and nanomaterials has further boosted the research of SERS technology, as nanomaterial-based SERS substrates have shown good signal enhancement properties. So far, it is widely recognized that the morphology, size, composition, and stacking mode of nanomaterials have a very great influence on the strength of the substrate SERS effect. Herein, an overview of methods for the preparation of surface-enhanced Raman scattering (SERS) substrates is provided. Specifically, this review describes a variety of common SERS substrate preparation methods and explores the potential and promise of these methods for applications in chemical analysis and biomedical fields. By detailing the influence of different nanomaterials (e.g., metallic nanoparticles, nanowires, and nanostars) and their structural features on the SERS effect, this article aims to provide a comprehensive understanding of SERS substrate preparation techniques.
Collapse
Affiliation(s)
- Jianping Peng
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China; (Y.S.); (Y.L.)
| | - Yutao Song
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China; (Y.S.); (Y.L.)
| | - Yue Lin
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China; (Y.S.); (Y.L.)
| | - Zhenkai Huang
- School of Materials and Energy, Foshan University, Foshan 528000, China
| |
Collapse
|
3
|
Zhou JY, Zhu J, Weng GJ, Li JJ, Zhao JW. Fabrication of SERS composite substrates using Ag nanotriangles-modified SiO 2 photonic crystal and the application of malachite green detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124472. [PMID: 38761473 DOI: 10.1016/j.saa.2024.124472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
A novel surface-enhanced Raman scattering (SERS) composite substrates on the basis of Ag triangular nanoplates(Ag TNPs)-modified SiO2 photonic crystals (PC) is fabricated and applied to the SERS detection of malachite green (MG). It consists of uniformly arranged Ag TNP@SiO2, a new PC. Notably, Ag TNP are uniformly aligned on the SiO2 surface, forming a three-dimensional high-density hotspot nanostructure. With the tip "hot spots" of Ag TNPs, Bragg diffraction of SiO2 and coupling enhancement between Ag TNPs and SiO2, the SERS enhancement of this composite substrates was multiplied. The effect on the SERS of Ag TNP@SiO2 composite substrate was systematically optimized by tuning Ag TNP size, size of SiO2 microspheres, coverage of Ag TNPs on SiO2 and fabrication method of Ag TNPs and PC. Moreover, the uniform of SERS composite substrates and Raman signal was dramatically increased by the method of vertical deposition. Eventually, the SERS composite substrates were employed in MG detection. Its broad detection range of 1 pM-1 μM and low limit of detection (LOD) of 0.49 pM indicated acceptable sensitivity and repeatability. This work illustrates the promising applicability in food safety analysis based on SERS composite substrates composed by Ag TNP@SiO2 with numerous SERS enhancements and excellent stability.
Collapse
Affiliation(s)
- Jin-Yu Zhou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jun-Wu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| |
Collapse
|
4
|
Mou JY, Usman M, Tang JW, Yuan Q, Ma ZW, Wen XR, Liu Z, Wang L. Pseudo-Siamese network combined with label-free Raman spectroscopy for the quantification of mixed trace amounts of antibiotics in human milk: A feasibility study. Food Chem X 2024; 22:101507. [PMID: 38855098 PMCID: PMC11157215 DOI: 10.1016/j.fochx.2024.101507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024] Open
Abstract
The utilization of antibiotics is prevalent among lactating mothers. Hence, the rapid determination of trace amounts of antibiotics in human milk is crucial for ensuring the healthy development of infants. In this study, we constructed a human milk system containing residual doxycycline (DXC) and/or tetracycline (TC). Machine learning models and clustering algorithms were applied to classify and predict deficient concentrations of single and mixed antibiotics via label-free SERS spectra. The experimental results demonstrate that the CNN model has a recognition accuracy of 98.85% across optimal hyperparameter combinations. Furthermore, we employed Independent Component Analysis (ICA) and the pseudo-Siamese Convolutional Neural Network (pSCNN) to quantify the ratios of individual antibiotics in mixed human milk samples. Integrating the SERS technique with machine learning algorithms shows significant potential for rapid discrimination and precise quantification of single and mixed antibiotics at deficient concentrations in human milk.
Collapse
Affiliation(s)
- Jing-Yi Mou
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Department of Clinical Medicine, School of the 1 Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Muhammad Usman
- School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jia-Wei Tang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Quan Yuan
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zhang-Wen Ma
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xin-Ru Wen
- School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zhao Liu
- Department of Clinical Medicine, School of the 1 Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Division of Microbiology and Immunology, School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- School of Agriculture and Food Sustainability, University of Queensland, Brisbane, Queensland, Australia
- Center for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| |
Collapse
|
5
|
Xu D, Su W, Luo Y, Wang Z, Yin C, Chen B, Zhang Y. Cellulose Nanofiber Films with Gold Nanoparticles Electrostatically Adsorbed for Facile Surface-Enhanced Raman Scattering Detection. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38657211 DOI: 10.1021/acsami.4c03255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Cellulose nanofiber (CNF) holds great promise in applications such as surface-enhanced Raman scattering (SERS), catalysis, esthesia, and detection. This study aimed to build novel CNF-based SERS substrates through a facile synthetic method. Citrate-reduced gold nanoparticles (AuNPs) were adsorbed on the cationized CNF surface due to electrostatic interactions, and uniform AuNPs@(2,3-epoxypropyl trimethylammonium chloride)EPTMAC@CNF flexible SERS substrates were prepared by a simple vacuum-assisted filtration method. The probe molecule methylene blue was chosen to assess the performance of the CNF-based SERS substrate with a sensitivity up to 10-9 M, superior signal reproducibility (relative standard deviation (RSD) = 4.67%), and storage stability (more than 30 days). Tensile strength tests indicated that the CNF-based films had good mechanical properties. In addition, CNF-based substrates can easily capture and visually identify microplastics in water. These results demonstrate the potential application of the flexible, self-assembled AuNPs@EPTMAC@CNF flexible SERS substrate for prompt and sensitive detection of trace substances.
Collapse
Affiliation(s)
- Dewen Xu
- College of Mechanics and Engineering Science, Hohai University, Changzhou 213022, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Wei Su
- College of Mechanics and Engineering Science, Hohai University, Changzhou 213022, China
| | - Yinlong Luo
- College of Mechanics and Engineering Science, Hohai University, Changzhou 213022, China
| | - Zhenfeng Wang
- College of Mechanics and Engineering Science, Hohai University, Changzhou 213022, China
| | - Cheng Yin
- College of Mechanics and Engineering Science, Hohai University, Changzhou 213022, China
| | - Bingyan Chen
- College of Mechanics and Engineering Science, Hohai University, Changzhou 213022, China
| | - Yunhai Zhang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| |
Collapse
|