1
|
Simon S, Cherian AR, B SP. Transforming invasive weeds into energy solutions: water hyacinth-based hybrid electrodes for green supercapacitors. RSC Adv 2025; 15:17302-17316. [PMID: 40416637 PMCID: PMC12099493 DOI: 10.1039/d5ra02140e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 05/17/2025] [Indexed: 05/27/2025] Open
Abstract
The excessive proliferation of Eichhornia crassipes (water hyacinth) poses significant environmental challenges; however, its abundant biomass offers a sustainable solution for energy storage applications. This study presents an eco-friendly approach to fabricating high-performance supercapacitor electrodes using water hyacinth-derived activated carbon (WH), polypyrrole (PPy), and titanium dioxide (TiO2). The WH-TiO2/PPy hybrid electrode was synthesized via hydrothermal treatment and interfacial polymerization, ensuring a resource-efficient and environmentally responsible process. The composite exhibited a high gravimetric capacitance of 610 F g-1 at 0.5 A g-1 in 3 M KOH, with excellent cycling stability (94% retention after 5000 cycles). An asymmetric supercapacitor with WH-TiO2/PPy as the positive electrode and activated carbon as the negative electrode delivered an energy density of 98 W h kg-1 and a power density of 5606 W kg-1. This work highlights the potential of transforming invasive biomass into cost-effective, high-performance energy storage materials, advancing the principles of green chemistry through waste valorization and sustainable material design.
Collapse
Affiliation(s)
- Shilpa Simon
- Department of Chemistry, CHRIST University Bengaluru 560029 India
| | | | - Sreeja P B
- Department of Chemistry, CHRIST University Bengaluru 560029 India
| |
Collapse
|
2
|
H S, Bhat M R, Selvaraj R. Removal of an agricultural herbicide (2,4-Dichlorophenoxyacetic acid) using magnetic nanocomposite: A combined experimental and modeling studies. ENVIRONMENTAL RESEARCH 2023; 238:117124. [PMID: 37716397 DOI: 10.1016/j.envres.2023.117124] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
This study focused on modeling the removal of one of the widely used agricultural herbicides known as 2,4-Dichlorophenoxyacetic acid (2,4-D) using polypyrrole-coated Fe2O3 nanoparticles (Fe2O3@PPy). The Fe2O3@PPy nanocomposite was synthesized by surface-coating the Tabebuia aurea leaf extract synthesized Fe2O3 nanoparticles with polypyrrole. After characterization, the adsorptive potential of the nanocomposite for removing 2,4-D from aqueous solution was examined. Central composite design (CCD) was employed for optimizing the adsorption, revealing an adsorption efficiency of 90.65% at a 2,4-D concentration of 12 ppm, a dosage of 3.8 g/L, an agitation speed of 150 rpm, and 196 min. Adsorption dataset fitted satisfactorily to Langmuir isotherm (R2: 0.984 & χ2: 0.054) and pseudo-second-order kinetics (R2: 0.929 & χ2: 0.013) whereas the exothermic and spontaneous nature were confirmed via the thermodynamic study. The predictive models, including adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), and response surface methodology (RSM), demonstrated good precision for the prediction of 2,4-D adsorption, with respective R2 of 0.9719, 0.9604, and 0.9528. Nevertheless, statistical analysis supported ANFIS as the better forecasting tool, while RSM was the least effective. The maximum adsorption capacity of 2,4-D onto the Fe2O3@PPy nanocomposite was 7.29 mg/g, significantly higher than a few reported values. Therefore, the Fe2O3@PPy nanocomposite could serve as a competent adsorbent to remove 2,4-D herbicide from aqueous streams.
Collapse
Affiliation(s)
- Sridevi H
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ramananda Bhat M
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
3
|
Tesnim D, Hedi BA, Simal-Gandara J. Sustainable and Green Synthesis of Iron Nanoparticles Supported on Natural Clays via Palm Waste Extract for Catalytic Oxidation of Crocein Orange G Mono Azoic Dye. ACS OMEGA 2023; 8:34364-34376. [PMID: 37780026 PMCID: PMC10534912 DOI: 10.1021/acsomega.3c01333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/05/2023] [Indexed: 10/03/2023]
Abstract
In this study, the removal of Crocein Orange G dye (COG) from aqueous solution was investigated using an innovative green catalyst to overcome problems with chemical techniques. Clay bentonite El Hamma (HB)-supported nanoscale zero-valent iron (NZVI) was used as a heterogeneous Fenton-like catalyst for the oxidation of harmful COG. Palm waste extract was herein used as a reducing and capping agent to synthesize NZVI, and HB clay was employed, which was obtained from the El Hamma bentonite deposit in the Gabes province of Tunisia. HB and HB-NZVI were characterized by various techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer, Emmett, and Teller (BET), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), X-ray diffraction (XRD), and zeta potential. Under optimal conditions, total degradation of COG was attained within 180 min. Kinetic studies showed that the dye degradation rate followed well the pseudo-second-order model. The apparent activation energy was 33.11 kJ/mol, which is typical of a physically controlled reaction. The degradation pathways and mineralization study revealed that the adsorption-Fenton-like reaction was the principal mechanism that demonstrated 100% degradation efficiency of COG even after three successive runs. Obtained results suggest that HB-NZVI is an affective heterogeneous catalyst for the degradation of COG by H2O2 and may constitute a sustainable green catalyst for azoic dye removal from industrial wastewaters.
Collapse
Affiliation(s)
- Dhiss Tesnim
- National
School of Engineers of Gabes, Laboratory of Research: Processes, Energy,
Environment & Electrical Systems PEESE (LR18ES34), University of Gabes, Rue Omar Ibn Alkhattab, 6029 Gabes, Tunisia
| | - Ben Amor Hedi
- National
School of Engineers of Gabes, Laboratory of Research: Processes, Energy,
Environment & Electrical Systems PEESE (LR18ES34), University of Gabes, Rue Omar Ibn Alkhattab, 6029 Gabes, Tunisia
| | - Jesus Simal-Gandara
- Nutrition
and Bromatology Group, Analytical Chemistry and Food Science Department,
Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
| |
Collapse
|
4
|
Wang FP, Zeng YN, Wang YT, Li JG, Zhang X, Ji AM, Kang LL, Ji R, Yu Q, Gao D, Wang XM, Fang Z. Highly efficient removal of hexavalent chromium by magnetic Fe-C composite from reed straw and electric furnace dust waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33737-33755. [PMID: 36495434 DOI: 10.1007/s11356-022-24491-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Reed straw and electric furnace dust (EFD) waste were used to prepare magnetic Fe-C composite (EFD&C) by co-precipitation and high-temperature activation method to remove Cr(VI) from water. The magnetic EFD&C owned a large specific surface (536.61 m2/g) and a porous structure (micropores and mesopores), and had an efficient removal capacity for Cr(VI). Under conditions of pH (2), the addition amount of EFD&C (1 g/L), the adsorption time (760 min), and the temperature (45 °C), the maximum adsorption capacity reached 111.94 mg/g. The adsorption mechanism mainly attributed to chemical adsorption (redox), Cr(VI) reduced to Cr(III) by Fe(II) and Fe(0) (from Fe3O4 and Fe components in EFD) and surface functional groups of -OH, C = C, C-C and O-C = O (from biochar), and secondary attributed to physical adsorption, Cr(VI) and Cr(III) (from reduced Cr(VI)) adsorbed into the porous structure of EFD&C. This study provided a feasible solution for the preparation of adsorbents for adsorbing heavy metals from iron-containing metallurgical solid waste and biomass waste, which contributed to reducing the environmental pollution and lowering the cost of adsorbent preparation.
Collapse
Affiliation(s)
- Fu-Ping Wang
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan, 063210, China
| | - Ya-Nan Zeng
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan, 063210, China
| | - Yi-Tong Wang
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan, 063210, China.
| | - Jun-Guo Li
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan, 063210, China
| | - Xi Zhang
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan, 063210, China
| | - Ai-Min Ji
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan, 063210, China
| | - Le-Le Kang
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan, 063210, China
| | - Rui Ji
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan, 063210, China
| | - Qing Yu
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan, 063210, China
| | - Di Gao
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan, 063210, China
| | - Xiao-Man Wang
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan, 063210, China
| | - Zhen Fang
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, 210031, China
| |
Collapse
|
5
|
Chigondo M, Nyamunda B, Maposa M, Chigondo F. Polypyrrole-based adsorbents for Cr(VI) ions remediation from aqueous solution: a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:1600-1619. [PMID: 35290234 DOI: 10.2166/wst.2022.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Anthropogenic activities are principally responsible for the manifestation of toxic and carcinogenic hexavalent chromium (Cr(VI)) triggering water pollution that threatens the environment and human health. The World Health Organisation (WHO) restricts Cr(VI) ion concentration to 0.1 and 0.05 mg/L in inland surface water and drinking water, respectively. The available technologies for Cr(VI) ion removal from water were highlighted with an emphasis on the adsorption technology. Furthermore, the characteristics of several polypyrrole-based adsorbents were scrutinized including amino-containing compounds, biosorbents, graphene/graphene oxide, clay materials and many other additives with reported effective Cr(VI) ion uptake. This efficiency in Cr(VI) ions adsorption is attributed to enhanced redox properties, increased number of functional groups as well as the synergistic behaviour of the materials making up the composites. The Langmuir isotherm best described the adsorption processes with maximum adsorption capacities ranging from 3.40-961.50 mg/g. The regeneration of Cr(VI) ion-laden adsorbents was studied. Ion exchange, electrostatic attractions, complexation, chelation reactions with protonated sites and reduction were the mechanisms of adsorption. Nevertheless, there are limited details on comprehensive adsorbent regeneration studies to prolong robustness in adsorption-desorption cycles and utilization of the Cr(VI) ion-laden adsorbent in other areas of research to limit the threat of secondary pollution.
Collapse
Affiliation(s)
- Marko Chigondo
- Department of Chemical and Processing Engineering, Manicaland State University of Applied Sciences, Fern Hill Campus, P. Bag 7001, Mutare, Zimbabwe E-mail: ,
| | - Benias Nyamunda
- Department of Chemical and Processing Engineering, Manicaland State University of Applied Sciences, Fern Hill Campus, P. Bag 7001, Mutare, Zimbabwe E-mail: ,
| | - Munashe Maposa
- Department of Chemical and Processing Engineering, Manicaland State University of Applied Sciences, Fern Hill Campus, P. Bag 7001, Mutare, Zimbabwe E-mail: ,
| | - Fidelis Chigondo
- Department of Chemical Sciences, Midlands State University, P. Bag 9055, Gweru, Zimbabwe
| |
Collapse
|
6
|
Khairiah K, Frida E, Sebayang K, Sinuhaji P, Humaidi S, Fudholi A. The development of a novel FM nanoadsorbent for heavy metal remediation in polluted water. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
7
|
Makhado E, Hato MJ. Preparation and Characterization of Sodium Alginate-Based Oxidized Multi-Walled Carbon Nanotubes Hydrogel Nanocomposite and its Adsorption Behaviour for Methylene Blue Dye. Front Chem 2021; 9:576913. [PMID: 33816432 PMCID: PMC8009996 DOI: 10.3389/fchem.2021.576913] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 02/02/2021] [Indexed: 12/03/2022] Open
Abstract
Herein, a sodium alginate/poly (acrylic acid)/oxidized-multi-walled carbon nanotubes hydrogel nanocomposite (SA/p(AAc)/o-MWCNTs HNC) was synthesized by in situ free-radical polymerization method. The synthesized SA/p(AAc)/o-MWCNTs HNC was used to remove methylene blue (MB) from aqueous solution. The synthesized HNC was confirmed by employing various characterization techniques. The SA/p(AAc)/o-MWCNTs HNC exhibited a maximum swelling capacity of 2265.4% at pH 8.0. The influence of vital parameters in the sorption process including the initial pH, adsorption dose, contact time and concentration were systematically examined on a batch mode. Subsequently, adsorption kinetics as well as isotherm models were applied to assess the nature and mechanism of the adsorption process. Adsorption kinetics were best described by pseudo-second-order model, while the Langmuir isotherm model governed the adsorption isotherm. The SA/p(AAc)/o-MWCNTs HNC exhibited a maximum adsorption capacity of 1596.0 mg/g at 25°C. This adsorbent showed excellent MB uptake and good regeneration ability.
Collapse
Affiliation(s)
- Edwin Makhado
- Nanotechnology Research Lab, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo, Polokwane, South Africa
| | - Mpitloane Joseph Hato
- Nanotechnology Research Lab, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo, Polokwane, South Africa
| |
Collapse
|