1
|
Bosman R, Ortolani G, Ghosh S, James D, Norder P, Hammarin G, Úlfarsdóttir TB, Ostojić L, Weinert T, Dworkowski F, Tomizaki T, Standfuss J, Brändén G, Neutze R. Structural basis for the prolonged photocycle of sensory rhodopsin II revealed by serial synchrotron crystallography. Nat Commun 2025; 16:3460. [PMID: 40216733 PMCID: PMC11992208 DOI: 10.1038/s41467-025-58263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/15/2025] [Indexed: 04/14/2025] Open
Abstract
Microbial rhodopsins form a diverse family of light-sensitive seven-transmembrane helix retinal proteins that function as active proton or ion pumps, passive light-gated ion channels, and photosensors. To understand how light-sensing in archaea is initiated by sensory rhodopsins, we perform serial synchrotron X-ray crystallography (SSX) studies of light induced conformational changes in sensory rhodopsin II (NpSRII) from the archaea Natronomonas pharaonis, both collecting time-resolved SSX data and collecting SSX data during continuous illumination. Comparing light-induced electron density changes in NpSRII with those reported for bacteriorhodopsin (bR) reveals several common light-induced structural perturbations. Unlike bR, however, helix G of NpSRII does not unwind near the conserved lysine residue to which retinal is covalently bound and therefore transient water molecule binding sites do not arise immediately to the cytoplasmic side of retinal. These structural differences prolong the duration of the NpSRII photocycle relative to bR, allowing time for the light-initiated sensory signal to be amplified.
Collapse
Affiliation(s)
- Robert Bosman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Giorgia Ortolani
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Swagatha Ghosh
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Daniel James
- Laboratory of Biomolecular Research, Center for Life Sciences, Paul Scherrer Institut, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - Per Norder
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Greger Hammarin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | | | - Lucija Ostojić
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Tobias Weinert
- Laboratory of Biomolecular Research, Center for Life Sciences, Paul Scherrer Institut, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - Florian Dworkowski
- Laboratory of Femtochemistry, Center for Photon Science, Paul Scherrer Institut, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - Takashi Tomizaki
- Laboratory of Macromolecules and Bioimaging, Center for Photon Science, Paul Scherrer Institut, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - Jörg Standfuss
- Laboratory of Biomolecular Research, Center for Life Sciences, Paul Scherrer Institut, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden.
| |
Collapse
|
2
|
Dold S, Reichenbach T, Colombo A, Jordan J, Barke I, Behrens P, Bernhardt N, Correa J, Düsterer S, Erk B, Fennel T, Hecht L, Heilrath A, Irsig R, Iwe N, Kolb P, Kruse B, Langbehn B, Manschwetus B, Marienhagen P, Martinez F, Meiwes-Broer KH, Oldenburg K, Passow C, Peltz C, Sauppe M, Seel F, Tanyag RMP, Treusch R, Ulmer A, Walz S, Moseler M, Möller T, Rupp D, von Issendorff B. Melting, Bubblelike Expansion, and Explosion of Superheated Plasmonic Nanoparticles. PHYSICAL REVIEW LETTERS 2025; 134:136101. [PMID: 40250375 DOI: 10.1103/physrevlett.134.136101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/08/2024] [Accepted: 02/14/2025] [Indexed: 04/20/2025]
Abstract
We report on time-resolved coherent diffraction imaging of gas-phase silver nanoparticles, strongly heated via their plasmon resonance. The x-ray diffraction images reveal a broad range of phenomena for different excitation strengths, from simple melting over strong cavitation to explosive disintegration. Molecular dynamics simulations fully reproduce this behavior and show that the heating induces rather similar trajectories through the phase diagram in all cases, with the very different outcomes resulting solely from whether and where the stability limit of the metastable superheated liquid is crossed.
Collapse
Affiliation(s)
- Simon Dold
- University of Freiburg, Institute of Physics, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Thomas Reichenbach
- Fraunhofer IWM, MikroTribologie Centrum , μ, TC, Wöhlerstraße 11, 79108 Freiburg, Germany
| | - Alessandro Colombo
- ETH Zurich, Laboratory for Solid State Physics, 8093 Zurich, Switzerland
| | - Jakob Jordan
- Technische Universität Berlin, Institut für Optik und Atomare Physik, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Ingo Barke
- University of Rostock, Institute of Physics, Albert-Einstein-Straße 23-24, 18059 Rostock, Germany
- University of Rostock, Department Life, Light and Matter, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Patrick Behrens
- Technische Universität Berlin, Institut für Optik und Atomare Physik, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Nils Bernhardt
- Technische Universität Berlin, Institut für Optik und Atomare Physik, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Jonathan Correa
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Stefan Düsterer
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Benjamin Erk
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Thomas Fennel
- University of Rostock, Institute of Physics, Albert-Einstein-Straße 23-24, 18059 Rostock, Germany
- University of Rostock, Department Life, Light and Matter, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Linos Hecht
- ETH Zurich, Laboratory for Solid State Physics, 8093 Zurich, Switzerland
| | - Andrea Heilrath
- Technische Universität Berlin, Institut für Optik und Atomare Physik, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Robert Irsig
- University of Rostock, Institute of Physics, Albert-Einstein-Straße 23-24, 18059 Rostock, Germany
| | - Norman Iwe
- University of Rostock, Institute of Physics, Albert-Einstein-Straße 23-24, 18059 Rostock, Germany
| | - Patrice Kolb
- ETH Zurich, Laboratory for Solid State Physics, 8093 Zurich, Switzerland
| | - Björn Kruse
- University of Rostock, Institute of Physics, Albert-Einstein-Straße 23-24, 18059 Rostock, Germany
| | - Bruno Langbehn
- Technische Universität Berlin, Institut für Optik und Atomare Physik, Hardenbergstraße 36, 10623 Berlin, Germany
| | | | - Philipp Marienhagen
- University of Rostock, Institute of Chemistry, Albert-Einstein-Straße 3a, 18059 Rostock, Germany
| | - Franklin Martinez
- University of Rostock, Institute of Physics, Albert-Einstein-Straße 23-24, 18059 Rostock, Germany
| | - Karl-Heinz Meiwes-Broer
- University of Rostock, Institute of Physics, Albert-Einstein-Straße 23-24, 18059 Rostock, Germany
- University of Rostock, Department Life, Light and Matter, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Kevin Oldenburg
- University of Rostock, Institute of Physics, Albert-Einstein-Straße 23-24, 18059 Rostock, Germany
- University of Rostock, Department Life, Light and Matter, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Christopher Passow
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Christian Peltz
- University of Rostock, Institute of Physics, Albert-Einstein-Straße 23-24, 18059 Rostock, Germany
| | - Mario Sauppe
- ETH Zurich, Laboratory for Solid State Physics, 8093 Zurich, Switzerland
- Technische Universität Berlin, Institut für Optik und Atomare Physik, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Fabian Seel
- Technische Universität Berlin, Institut für Optik und Atomare Physik, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Rico Mayro P Tanyag
- Technische Universität Berlin, Institut für Optik und Atomare Physik, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Rolf Treusch
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Anatoli Ulmer
- Technische Universität Berlin, Institut für Optik und Atomare Physik, Hardenbergstraße 36, 10623 Berlin, Germany
- Universität Hamburg, Department of Physics, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Saida Walz
- Technische Universität Berlin, Institut für Optik und Atomare Physik, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Michael Moseler
- University of Freiburg, Institute of Physics, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
- Fraunhofer IWM, MikroTribologie Centrum , μ, TC, Wöhlerstraße 11, 79108 Freiburg, Germany
| | - Thomas Möller
- Technische Universität Berlin, Institut für Optik und Atomare Physik, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Daniela Rupp
- ETH Zurich, Laboratory for Solid State Physics, 8093 Zurich, Switzerland
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Bernd von Issendorff
- University of Freiburg, Institute of Physics, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
- Universität Freiburg, Freiburg Materials Research Center, Stefan-Meier-Straße 21, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Jin W, Bromberger H, He L, Johny M, Vinklárek IS, Długołęcki K, Samartsev A, Calegari F, Trippel S, Küpper J. A versatile and transportable endstation for controlled molecule experiments. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2025; 96:023305. [PMID: 40008952 DOI: 10.1063/5.0228913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/17/2025] [Indexed: 02/27/2025]
Abstract
We report on a new versatile transportable endstation for controlled molecule (eCOMO) experiments providing a combination of molecular beam purification by electrostatic deflection and simultaneous ion and electron detection using velocity-map imaging (VMI). The b-type electrostatic deflector provides spatial dispersion of species based on their effective-dipole-moment-to-mass ratio. This enables selective investigation of molecular rotational quantum states, conformers, and molecular clusters. Furthermore, the double-sided VMI spectrometer equipped with two high-temporal-resolution event-driven Timepix3 cameras provides detection of all generated ions independently of their mass-over-charge ratio and electrons. To demonstrate the potential of this novel apparatus, we present experimental results from our investigation of carbonyl sulfide (OCS) after ionization. In particular, we provide the characterization of the molecular beam, electrostatic deflector, and electron- and ion-VMI spectrometer. The eCOMO endstation delivers a platform for ultrafast dynamics studies using a wide range of light sources from table-top lasers to free-electron-laser and synchrotron-radiation facilities. This makes it suitable for research activities spanning from atomic, molecular, and cluster physics, over energy science and chemistry, to structural biology.
Collapse
Affiliation(s)
- Wuwei Jin
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Hubertus Bromberger
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Lanhai He
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Melby Johny
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Ivo S Vinklárek
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Karol Długołęcki
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Andrey Samartsev
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Francesca Calegari
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Sebastian Trippel
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
4
|
Orlans J, Rose SL, Ferguson G, Oscarsson M, Homs Puron A, Beteva A, Debionne S, Theveneau P, Coquelle N, Kieffer J, Busca P, Sinoir J, Armijo V, Lopez Marrero M, Felisaz F, Papp G, Gonzalez H, Caserotto H, Dobias F, Gigmes J, Lebon G, Basu S, de Sanctis D. Advancing macromolecular structure determination with microsecond X-ray pulses at a 4th generation synchrotron. Commun Chem 2025; 8:6. [PMID: 39775172 PMCID: PMC11707155 DOI: 10.1038/s42004-024-01404-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
Serial macromolecular crystallography has become a powerful method to reveal room temperature structures of biological macromolecules and perform time-resolved studies. ID29, a flagship beamline of the ESRF 4th generation synchrotron, is the first synchrotron beamline in the world capable of delivering high brilliance microsecond X-ray pulses at high repetition rate for the structure determination of biological macromolecules at room temperature. The cardinal combination of microsecond exposure times, innovative beam characteristics and adaptable sample environment provides high quality complete data, even from an exceptionally small amount of crystalline material, enabling what we collectively term serial microsecond crystallography (SµX). After validating the use of different sample delivery methods with various model systems, we applied SµX to an integral membrane receptor, where only a few thousands diffraction images were sufficient to obtain a fully interpretable electron density map for the antagonist istradefylline-bound A2A receptor conformation, providing access to the antagonist binding mode. SµX, as demonstrated at ID29, will quickly find its broad applicability at upcoming 4th generation synchrotron sources worldwide and opens a new frontier in time-resolved SµX.
Collapse
Affiliation(s)
- Julien Orlans
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Samuel L Rose
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Gavin Ferguson
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Marcus Oscarsson
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | | | - Antonia Beteva
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Samuel Debionne
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Pascal Theveneau
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Nicolas Coquelle
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Jerome Kieffer
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Paolo Busca
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Jeremy Sinoir
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
| | - Victor Armijo
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
| | | | - Franck Felisaz
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
| | - Gergely Papp
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
| | - Herve Gonzalez
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Hugo Caserotto
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Fabien Dobias
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Jonathan Gigmes
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Guillaume Lebon
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Shibom Basu
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France.
| | - Daniele de Sanctis
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France.
| |
Collapse
|
5
|
Trujillo J, Fung R, Shankar MK, Schwander P, Hosseinizadeh A. Filling data analysis gaps in time-resolved crystallography by machine learning. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2025; 12:014101. [PMID: 39868355 PMCID: PMC11758283 DOI: 10.1063/4.0000280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025]
Abstract
There is a growing understanding of the structural dynamics of biological molecules fueled by x-ray crystallography experiments. Time-resolved serial femtosecond crystallography (TR-SFX) with x-ray Free Electron Lasers allows the measurement of ultrafast structural changes in proteins. Nevertheless, this technique comes with some limitations. One major challenge is the quality of data from TR-SFX measurements, which often faces issues like data sparsity, partial recording of Bragg reflections, timing errors, and pixel noise. To overcome these difficulties, conventionally, large volumes of data are collected and grouped into a few temporal bins. The data in each bin are then averaged and paired with the mean of their corresponding jittered timestamps. This procedure provides one structure per bin, resulting in a limited number of averaged structures for the entire time interval spanned by the experiment. Therefore, the information on ultrafast structural dynamics at high temporal resolution is lost. This has initiated research for advanced methods of analyzing experimental TR-SFX data beyond the standard binning and averaging method. To address this problem, we use a machine learning algorithm called Nonlinear Laplacian Spectral Analysis (NLSA), which has emerged as a promising technique for studying the dynamics of complex systems. In this work, we demonstrate the power of this algorithm using synthetic x-ray diffraction snapshots from a protein with significant data incompleteness, timing uncertainties, and noise. Our study confirms that NLSA is a suitable approach that effectively mitigates the effects of these artifacts in TR-SFX data and recovers accurate structural dynamics information hidden in such data.
Collapse
Affiliation(s)
- Justin Trujillo
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, USA
| | - Russell Fung
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, USA
| | - Madan Kumar Shankar
- Department of Chemistry-BMC Biochemistry, Uppsala University, Husargatan 3, Uppsala 75237, Sweden
| | - Peter Schwander
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, USA
| | - Ahmad Hosseinizadeh
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, USA
| |
Collapse
|
6
|
Srinivasa Raghavan S, Miyashita O. ResiDEM: Analytical Tool for Isomorphous Difference Electron Density Maps Utilizing Dynamic Residue Identification via Density Clustering. J Chem Inf Model 2024; 64:7565-7575. [PMID: 39299702 PMCID: PMC11483099 DOI: 10.1021/acs.jcim.4c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/25/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
Time-resolved serial femtosecond crystallography (TR-SFX) of biological molecules captures the time-evolved dynamics of the residual motions across crystal structures, enabling the visualization of structural changes in response to chemical and physical stimuli to elucidate the relationship between the structure and function of the system under study. However, interpretations of residual motions can be complex to deconvolute because of various factors such as the system's size, temporal and spatial complexity, and allosteric behavior away from active sites. Relying solely on electron density map visualization can also pose a challenge in differentiating between useful and irrelevant data. In order to accurately identify residues and determine their respective contributions to the reaction dynamics, new tools are needed. We developed a new tool, ResiDEM, which employs a clustering-based approach to group difference electron densities and associate them with proximal residues. It can identify and rank residues with significant motions. Network representation can be used to delineate the interrelations between the residues in motion. With these features, ResiDEM helps to interpret residual motions in TR-SFX data, identify key residues, and elucidate their roles in dynamic processes.
Collapse
Affiliation(s)
- Sriram Srinivasa Raghavan
- RIKEN Center for Computational
Science, 6-7-1 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Osamu Miyashita
- RIKEN Center for Computational
Science, 6-7-1 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
7
|
Grieco A, Quereda-Moraleda I, Martin-Garcia JM. Innovative Strategies in X-ray Crystallography for Exploring Structural Dynamics and Reaction Mechanisms in Metabolic Disorders. J Pers Med 2024; 14:909. [PMID: 39338163 PMCID: PMC11432794 DOI: 10.3390/jpm14090909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024] Open
Abstract
Enzymes are crucial in metabolic processes, and their dysfunction can lead to severe metabolic disorders. Structural biology, particularly X-ray crystallography, has advanced our understanding of these diseases by providing 3D structures of pathological enzymes. However, traditional X-ray crystallography faces limitations, such as difficulties in obtaining suitable protein crystals and studying protein dynamics. X-ray free-electron lasers (XFELs) have revolutionized this field with their bright and brief X-ray pulses, providing high-resolution structures of radiation-sensitive and hard-to-crystallize proteins. XFELs also enable the study of protein dynamics through room temperature structures and time-resolved serial femtosecond crystallography, offering comprehensive insights into the molecular mechanisms of metabolic diseases. Understanding these dynamics is vital for developing effective therapies. This review highlights the contributions of protein dynamics studies using XFELs and synchrotrons to metabolic disorder research and their application in designing better therapies. It also discusses G protein-coupled receptors (GPCRs), which, though not enzymes, play key roles in regulating physiological systems and are implicated in many metabolic disorders.
Collapse
Affiliation(s)
| | | | - Jose Manuel Martin-Garcia
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), 28006 Madrid, Spain; (A.G.); (I.Q.-M.)
| |
Collapse
|
8
|
Vallejos A, Katona G, Neutze R. Appraising protein conformational changes by resampling time-resolved serial x-ray crystallography data. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:044302. [PMID: 39056073 PMCID: PMC11272219 DOI: 10.1063/4.0000258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
With the development of serial crystallography at both x-ray free electron laser and synchrotron radiation sources, time-resolved x-ray crystallography is increasingly being applied to study conformational changes in macromolecules. A successful time-resolved serial crystallography study requires the growth of microcrystals, a mechanism for synchronized and homogeneous excitation of the reaction of interest within microcrystals, and tools for structural interpretation. Here, we utilize time-resolved serial femtosecond crystallography data collected from microcrystals of bacteriorhodopsin to compare results from partial occupancy structural refinement and refinement against extrapolated data. We illustrate the domain wherein the amplitude of refined conformational changes is inversely proportional to the activated state occupancy. We illustrate how resampling strategies allow coordinate uncertainty to be estimated and demonstrate that these two approaches to structural refinement agree within coordinate errors. We illustrate how singular value decomposition of a set of difference Fourier electron density maps calculated from resampled data can minimize phase bias in these maps, and we quantify residual densities for transient water molecules by analyzing difference Fourier and Polder omit maps from resampled data. We suggest that these tools may assist others in judging the confidence with which observed electron density differences may be interpreted as functionally important conformational changes.
Collapse
Affiliation(s)
- Adams Vallejos
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Gergely Katona
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| |
Collapse
|
9
|
Bjelčić M, Aurelius O, Nan J, Neutze R, Ursby T. Room-temperature serial synchrotron crystallography structure of Spinacia oleracea RuBisCO. Acta Crystallogr F Struct Biol Commun 2024; 80:117-124. [PMID: 38809540 PMCID: PMC11189101 DOI: 10.1107/s2053230x24004643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/18/2024] [Indexed: 05/30/2024] Open
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is the enzyme responsible for the first step of carbon dioxide (CO2) fixation in plants, which proceeds via the carboxylation of ribulose 1,5-biphosphate. Because of the enormous importance of this reaction in agriculture and the environment, there is considerable interest in the mechanism of fixation of CO2 by RuBisCO. Here, a serial synchrotron crystallography structure of spinach RuBisCO is reported at 2.3 Å resolution. This structure is consistent with earlier single-crystal X-ray structures of this enzyme and the results are a good starting point for a further push towards time-resolved serial synchrotron crystallography in order to better understand the mechanism of the reaction.
Collapse
Affiliation(s)
- Monika Bjelčić
- MAX IV Laboratory, Lund UniversityPO Box 118221 00LundSweden
| | - Oskar Aurelius
- MAX IV Laboratory, Lund UniversityPO Box 118221 00LundSweden
| | - Jie Nan
- MAX IV Laboratory, Lund UniversityPO Box 118221 00LundSweden
| | - Richard Neutze
- Department of Chemistry and Molecular BiologyUniversity of GothenburgMedicinaregatan 9C413 90GothenburgSweden
| | - Thomas Ursby
- MAX IV Laboratory, Lund UniversityPO Box 118221 00LundSweden
| |
Collapse
|
10
|
Smith N, Dasgupta M, Wych DC, Dolamore C, Sierra RG, Lisova S, Marchany-Rivera D, Cohen AE, Boutet S, Hunter MS, Kupitz C, Poitevin F, Moss FR, Mittan-Moreau DW, Brewster AS, Sauter NK, Young ID, Wolff AM, Tiwari VK, Kumar N, Berkowitz DB, Hadt RG, Thompson MC, Follmer AH, Wall ME, Wilson MA. Changes in an enzyme ensemble during catalysis observed by high-resolution XFEL crystallography. SCIENCE ADVANCES 2024; 10:eadk7201. [PMID: 38536910 PMCID: PMC10971408 DOI: 10.1126/sciadv.adk7201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/21/2024] [Indexed: 04/01/2024]
Abstract
Enzymes populate ensembles of structures necessary for catalysis that are difficult to experimentally characterize. We use time-resolved mix-and-inject serial crystallography at an x-ray free electron laser to observe catalysis in a designed mutant isocyanide hydratase (ICH) enzyme that enhances sampling of important minor conformations. The active site exists in a mixture of conformations, and formation of the thioimidate intermediate selects for catalytically competent substates. The influence of cysteine ionization on the ICH ensemble is validated by determining structures of the enzyme at multiple pH values. Large molecular dynamics simulations in crystallo and time-resolved electron density maps show that Asp17 ionizes during catalysis and causes conformational changes that propagate across the dimer, permitting water to enter the active site for intermediate hydrolysis. ICH exhibits a tight coupling between ionization of active site residues and catalysis-activated protein motions, exemplifying a mechanism of electrostatic control of enzyme dynamics.
Collapse
Affiliation(s)
- Nathan Smith
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Medhanjali Dasgupta
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - David C. Wych
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 875405, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Cole Dolamore
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Raymond G. Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Stella Lisova
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Darya Marchany-Rivera
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Mark S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Christopher Kupitz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Frédéric Poitevin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Frank R. Moss
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - David W. Mittan-Moreau
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Aaron S. Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nicholas K. Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Iris D. Young
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alexander M. Wolff
- Department of Chemistry and Biochemistry, University of California, Merced, CA 95340, USA
| | - Virendra K. Tiwari
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Nivesh Kumar
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - David B. Berkowitz
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Ryan G. Hadt
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael C. Thompson
- Department of Chemistry and Biochemistry, University of California, Merced, CA 95340, USA
| | - Alec H. Follmer
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697, USA
| | - Michael E. Wall
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 875405, USA
| | - Mark A. Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
11
|
Wolff AM, Nango E, Young ID, Brewster AS, Kubo M, Nomura T, Sugahara M, Owada S, Barad BA, Ito K, Bhowmick A, Carbajo S, Hino T, Holton JM, Im D, O'Riordan LJ, Tanaka T, Tanaka R, Sierra RG, Yumoto F, Tono K, Iwata S, Sauter NK, Fraser JS, Thompson MC. Mapping protein dynamics at high spatial resolution with temperature-jump X-ray crystallography. Nat Chem 2023; 15:1549-1558. [PMID: 37723259 PMCID: PMC10624634 DOI: 10.1038/s41557-023-01329-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/17/2023] [Indexed: 09/20/2023]
Abstract
Understanding and controlling protein motion at atomic resolution is a hallmark challenge for structural biologists and protein engineers because conformational dynamics are essential for complex functions such as enzyme catalysis and allosteric regulation. Time-resolved crystallography offers a window into protein motions, yet without a universal perturbation to initiate conformational changes the method has been limited in scope. Here we couple a solvent-based temperature jump with time-resolved crystallography to visualize structural motions in lysozyme, a dynamic enzyme. We observed widespread atomic vibrations on the nanosecond timescale, which evolve on the submillisecond timescale into localized structural fluctuations that are coupled to the active site. An orthogonal perturbation to the enzyme, inhibitor binding, altered these dynamics by blocking key motions that allow energy to dissipate from vibrations into functional movements linked to the catalytic cycle. Because temperature jump is a universal method for perturbing molecular motion, the method demonstrated here is broadly applicable for studying protein dynamics.
Collapse
Affiliation(s)
- Alexander M Wolff
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
| | - Eriko Nango
- RIKEN SPring-8 Center, Sayo-gun, Japan.
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Japan.
| | - Iris D Young
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aaron S Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Minoru Kubo
- RIKEN SPring-8 Center, Sayo-gun, Japan
- Department of Life Science, Graduate School of Science, University of Hyogo, Hyogo, Japan
| | - Takashi Nomura
- RIKEN SPring-8 Center, Sayo-gun, Japan
- Department of Life Science, Graduate School of Science, University of Hyogo, Hyogo, Japan
| | | | | | - Benjamin A Barad
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Integrative Structural and Computational Biology, Scripps Research, San Diego, CA, USA
| | - Kazutaka Ito
- Laboratory for Drug Discovery, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Izunokuni-shi, Japan
| | - Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sergio Carbajo
- SLAC National Accelerator Laboratory, Linac Coherent Light Source, Menlo Park, CA, USA
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tomoya Hino
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
- Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| | - James M Holton
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Dohyun Im
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Japan
| | - Lee J O'Riordan
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Tomoyuki Tanaka
- RIKEN SPring-8 Center, Sayo-gun, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Japan
| | - Rie Tanaka
- RIKEN SPring-8 Center, Sayo-gun, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Japan
| | - Raymond G Sierra
- SLAC National Accelerator Laboratory, Linac Coherent Light Source, Menlo Park, CA, USA
| | - Fumiaki Yumoto
- Structural Biology Research Center, Institute of Materials Structure Science, KEK/High Energy Accelerator Research Organization, Tsukuba, Japan
- Ginward Japan K.K., Tokyo, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, Sayo-gun, Japan
- Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - So Iwata
- RIKEN SPring-8 Center, Sayo-gun, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Japan
| | - Nicholas K Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Michael C Thompson
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA.
| |
Collapse
|
12
|
Zielinski KA, Sui S, Pabit SA, Rivera DA, Wang T, Hu Q, Kashipathy MM, Lisova S, Schaffer CB, Mariani V, Hunter MS, Kupitz C, Moss FR, Poitevin FP, Grant TD, Pollack L. RNA structures and dynamics with Å resolution revealed by x-ray free-electron lasers. SCIENCE ADVANCES 2023; 9:eadj3509. [PMID: 37756398 PMCID: PMC10530093 DOI: 10.1126/sciadv.adj3509] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
RNA macromolecules, like proteins, fold to assume shapes that are intimately connected to their broadly recognized biological functions; however, because of their high charge and dynamic nature, RNA structures are far more challenging to determine. We introduce an approach that exploits the high brilliance of x-ray free-electron laser sources to reveal the formation and ready identification of angstrom-scale features in structured and unstructured RNAs. Previously unrecognized structural signatures of RNA secondary and tertiary structures are identified through wide-angle solution scattering experiments. With millisecond time resolution, we observe an RNA fold from a dynamically varying single strand through a base-paired intermediate to assume a triple-helix conformation. While the backbone orchestrates the folding, the final structure is locked in by base stacking. This method may help to rapidly characterize and identify structural elements in nucleic acids in both equilibrium and time-resolved experiments.
Collapse
Affiliation(s)
- Kara A. Zielinski
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Shuo Sui
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Suzette A. Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Daniel A. Rivera
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Tong Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Qingyue Hu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Maithri M. Kashipathy
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Stella Lisova
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Chris B. Schaffer
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Valerio Mariani
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Mark S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Christopher Kupitz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Frank R. Moss
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Frédéric P. Poitevin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Thomas D. Grant
- Department of Structural Biology, Jacobs School of Medicine and Biological Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
13
|
Smith N, Dasgupta M, Wych DC, Dolamore C, Sierra RG, Lisova S, Marchany-Rivera D, Cohen AE, Boutet S, Hunter MS, Kupitz C, Poitevin F, Moss FR, Brewster AS, Sauter NK, Young ID, Wolff AM, Tiwari VK, Kumar N, Berkowitz DB, Hadt RG, Thompson MC, Follmer AH, Wall ME, Wilson MA. Changes in an Enzyme Ensemble During Catalysis Observed by High Resolution XFEL Crystallography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553460. [PMID: 37645800 PMCID: PMC10462001 DOI: 10.1101/2023.08.15.553460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Enzymes populate ensembles of structures with intrinsically different catalytic proficiencies that are difficult to experimentally characterize. We use time-resolved mix-and-inject serial crystallography (MISC) at an X-ray free electron laser (XFEL) to observe catalysis in a designed mutant (G150T) isocyanide hydratase (ICH) enzyme that enhances sampling of important minor conformations. The active site exists in a mixture of conformations and formation of the thioimidate catalytic intermediate selects for catalytically competent substates. A prior proposal for active site cysteine charge-coupled conformational changes in ICH is validated by determining structures of the enzyme over a range of pH values. A combination of large molecular dynamics simulations of the enzyme in crystallo and time-resolved electron density maps shows that ionization of the general acid Asp17 during catalysis causes additional conformational changes that propagate across the dimer interface, connecting the two active sites. These ionization-linked changes in the ICH conformational ensemble permit water to enter the active site in a location that is poised for intermediate hydrolysis. ICH exhibits a tight coupling between ionization of active site residues and catalysis-activated protein motions, exemplifying a mechanism of electrostatic control of enzyme dynamics.
Collapse
Affiliation(s)
- Nathan Smith
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588
| | - Medhanjali Dasgupta
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588
| | - David C. Wych
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 875405
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Cole Dolamore
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588
| | - Raymond G. Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| | - Stella Lisova
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| | - Darya Marchany-Rivera
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| | - Mark S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| | - Christopher Kupitz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| | - Frédéric Poitevin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| | - Frank R. Moss
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| | - Aaron S. Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Nicholas K. Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Iris D. Young
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Alexander M. Wolff
- Department of Chemistry and Biochemistry, University of California, Merced, CA, 93540
| | - Virendra K. Tiwari
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588
| | - Nivesh Kumar
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588
| | - David B. Berkowitz
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588
| | - Ryan G. Hadt
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA USA
| | - Michael C. Thompson
- Department of Chemistry and Biochemistry, University of California, Merced, CA, 93540
| | - Alec H. Follmer
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697
| | - Michael E. Wall
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 875405
| | - Mark A. Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588
| |
Collapse
|
14
|
Zielinski KA, Sui S, Pabit SA, Rivera DA, Wang T, Hu Q, Kashipathy MM, Lisova S, Schaffer CB, Mariani V, Hunter MS, Kupitz C, Moss FR, Poitevin FP, Grant TD, Pollack L. RNA structures and dynamics with Å resolution revealed by x-ray free electron lasers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.541763. [PMID: 37292849 PMCID: PMC10245879 DOI: 10.1101/2023.05.24.541763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
RNA macromolecules, like proteins, fold to assume shapes that are intimately connected to their broadly recognized biological functions; however, because of their high charge and dynamic nature, RNA structures are far more challenging to determine. We introduce an approach that exploits the high brilliance of x-ray free electron laser sources to reveal the formation and ready identification of Å scale features in structured and unstructured RNAs. New structural signatures of RNA secondary and tertiary structures are identified through wide angle solution scattering experiments. With millisecond time resolution, we observe an RNA fold from a dynamically varying single strand through a base paired intermediate to assume a triple helix conformation. While the backbone orchestrates the folding, the final structure is locked in by base stacking. In addition to understanding how RNA triplexes form and thereby function as dynamic signaling elements, this new method can vastly increase the rate of structure determination for these biologically essential, but mostly uncharacterized macromolecules.
Collapse
Affiliation(s)
- Kara A. Zielinski
- School of Applied and Engineering Physics, Cornell University; Ithaca NY 14853 USA
| | - Shuo Sui
- School of Applied and Engineering Physics, Cornell University; Ithaca NY 14853 USA
| | - Suzette A. Pabit
- School of Applied and Engineering Physics, Cornell University; Ithaca NY 14853 USA
| | - Daniel A. Rivera
- Meinig School of Biomedical Engineering, Cornell University; Ithaca NY 14853 USA
| | - Tong Wang
- School of Applied and Engineering Physics, Cornell University; Ithaca NY 14853 USA
| | - Qingyue Hu
- School of Applied and Engineering Physics, Cornell University; Ithaca NY 14853 USA
| | - Maithri M. Kashipathy
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Stella Lisova
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Chris B. Schaffer
- Meinig School of Biomedical Engineering, Cornell University; Ithaca NY 14853 USA
| | - Valerio Mariani
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Mark S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Christopher Kupitz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Frank R. Moss
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Frédéric P. Poitevin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Thomas D. Grant
- Department of Structural Biology, Jacobs School of Medicine and Biological Sciences; University at Buffalo, Buffalo, NY 14203 USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University; Ithaca NY 14853 USA
| |
Collapse
|
15
|
Oang KY, Park S, Moon J, Park E, Lee HK, Sato T, Nozawa S, Adachi SI, Kim J, Kim J, Sohn JH, Ihee H. Extracting Kinetics and Thermodynamics of Molecules without Heavy Atoms via Time-Resolved Solvent Scattering Signals. J Phys Chem Lett 2023; 14:3103-3110. [PMID: 36951437 DOI: 10.1021/acs.jpclett.3c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Time-resolved X-ray liquidography (TRXL) has emerged as a powerful technique for studying the structural dynamics of small molecules and macromolecules in liquid solutions. However, TRXL has limited sensitivity for small molecules containing light atoms only, whose signal has lower contrast compared with the signal from solvent molecules. Here, we present an alternative approach to bypass this limitation by detecting the change in solvent temperature resulting from a photoinduced reaction. Specifically, we analyzed the heat dynamics of TRXL data obtained from p-hydroxyphenacyl diethyl phosphate (HPDP). This analysis enabled us to experimentally determine the number of intermediates and their respective enthalpy changes, which can be compared to theoretical enthalpies to identify the intermediates. This work demonstrates that TRXL can be used to uncover the kinetics and reaction pathways for small molecules without heavy atoms even if the scattering signal from the solute molecules is buried under the strong solvent scattering signal.
Collapse
Affiliation(s)
- Key Young Oang
- Radiation Center for Ultrafast Science, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057, Republic of Korea
| | - Sungjun Park
- Department of Chemistry and KI for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Jiwon Moon
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Eunji Park
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hyun Kyung Lee
- Department of Chemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tokushi Sato
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Shin-Ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Joonghan Kim
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Jeongho Kim
- Department of Chemistry, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Jeong-Hun Sohn
- Department of Chemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry and KI for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| |
Collapse
|
16
|
Wranik M, Weinert T, Slavov C, Masini T, Furrer A, Gaillard N, Gioia D, Ferrarotti M, James D, Glover H, Carrillo M, Kekilli D, Stipp R, Skopintsev P, Brünle S, Mühlethaler T, Beale J, Gashi D, Nass K, Ozerov D, Johnson PJM, Cirelli C, Bacellar C, Braun M, Wang M, Dworkowski F, Milne C, Cavalli A, Wachtveitl J, Steinmetz MO, Standfuss J. Watching the release of a photopharmacological drug from tubulin using time-resolved serial crystallography. Nat Commun 2023; 14:903. [PMID: 36807348 PMCID: PMC9936131 DOI: 10.1038/s41467-023-36481-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
The binding and release of ligands from their protein targets is central to fundamental biological processes as well as to drug discovery. Photopharmacology introduces chemical triggers that allow the changing of ligand affinities and thus biological activity by light. Insight into the molecular mechanisms of photopharmacology is largely missing because the relevant transitions during the light-triggered reaction cannot be resolved by conventional structural biology. Using time-resolved serial crystallography at a synchrotron and X-ray free-electron laser, we capture the release of the anti-cancer compound azo-combretastatin A4 and the resulting conformational changes in tubulin. Nine structural snapshots from 1 ns to 100 ms complemented by simulations show how cis-to-trans isomerization of the azobenzene bond leads to a switch in ligand affinity, opening of an exit channel, and collapse of the binding pocket upon ligand release. The resulting global backbone rearrangements are related to the action mechanism of microtubule-destabilizing drugs.
Collapse
Affiliation(s)
- Maximilian Wranik
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Tobias Weinert
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Chavdar Slavov
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Tiziana Masini
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Antonia Furrer
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Natacha Gaillard
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Dario Gioia
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Marco Ferrarotti
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Daniel James
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Hannah Glover
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Melissa Carrillo
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Demet Kekilli
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Robin Stipp
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Petr Skopintsev
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Steffen Brünle
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Tobias Mühlethaler
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - John Beale
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Dardan Gashi
- Photon Science Division, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Karol Nass
- Photon Science Division, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Dmitry Ozerov
- Scientific Computing, Theory and Data, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Philip J M Johnson
- Photon Science Division, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Claudio Cirelli
- Photon Science Division, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Camila Bacellar
- Photon Science Division, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Markus Braun
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Meitian Wang
- Photon Science Division, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Florian Dworkowski
- Photon Science Division, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Chris Milne
- Photon Science Division, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Andrea Cavalli
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163, Genova, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Michel O Steinmetz
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland.
- Biozentrum, University of Basel, 4056, Basel, Switzerland.
| | - Jörg Standfuss
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland.
| |
Collapse
|
17
|
Kojima K, Sudo Y. Convergent evolution of animal and microbial rhodopsins. RSC Adv 2023; 13:5367-5381. [PMID: 36793294 PMCID: PMC9923458 DOI: 10.1039/d2ra07073a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/05/2023] [Indexed: 02/15/2023] Open
Abstract
Rhodopsins, a family of photoreceptive membrane proteins, contain retinal as a chromophore and were firstly identified as reddish pigments from frog retina in 1876. Since then, rhodopsin-like proteins have been identified mainly from animal eyes. In 1971, a rhodopsin-like pigment was discovered from the archaeon Halobacterium salinarum and named bacteriorhodopsin. While it was believed that rhodopsin- and bacteriorhodopsin-like proteins were expressed only in animal eyes and archaea, respectively, before the 1990s, a variety of rhodopsin-like proteins (called animal rhodopsins or opsins) and bacteriorhodopsin-like proteins (called microbial rhodopsins) have been progressively identified from various tissues of animals and microorganisms, respectively. Here, we comprehensively introduce the research conducted on animal and microbial rhodopsins. Recent analysis has revealed that the two rhodopsin families have common molecular properties, such as the protein structure (i.e., 7-transmembrane structure), retinal structure (i.e., binding ability to cis- and trans-retinal), color sensitivity (i.e., UV- and visible-light sensitivities), and photoreaction (i.e., triggering structural changes by light and heat), more than what was expected at the early stages of rhodopsin research. Contrastingly, their molecular functions are distinctively different (e.g., G protein-coupled receptors and photoisomerases for animal rhodopsins and ion transporters and phototaxis sensors for microbial rhodopsins). Therefore, based on their similarities and dissimilarities, we propose that animal and microbial rhodopsins have convergently evolved from their distinctive origins as multi-colored retinal-binding membrane proteins whose activities are regulated by light and heat but independently evolved for different molecular and physiological functions in the cognate organism.
Collapse
Affiliation(s)
- Keiichi Kojima
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Japan
| | - Yuki Sudo
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Japan
| |
Collapse
|
18
|
Mehrabi P, Schulz EC. Sample Preparation for Time-Resolved Serial Crystallography: Practical Considerations. Methods Mol Biol 2023; 2652:361-379. [PMID: 37093487 DOI: 10.1007/978-1-0716-3147-8_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Time-resolved serial crystallography is an emerging method to elucidate the structure-function relationship of biomolecular systems at up to atomic resolution. However, to make this demanding method a success, a number of experimental requirements have to be met. In this chapter, we summarize general guidelines and protocols towards performing time-resolved crystallography experiments, with a particular emphasis on sample requirements and preparation but also a brief excursion into reaction initiation.
Collapse
Affiliation(s)
- Pedram Mehrabi
- Institute for Nanostructure and Solid State Physics, Universität Hamburg, Hamburg, Germany.
- Max Planck Institute for Structure and Dynamics of Matter, Hamburg, Germany.
| | - Eike C Schulz
- Max Planck Institute for Structure and Dynamics of Matter, Hamburg, Germany.
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
19
|
Serial crystallography captures dynamic control of sequential electron and proton transfer events in a flavoenzyme. Nat Chem 2022; 14:677-685. [PMID: 35393554 DOI: 10.1038/s41557-022-00922-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/25/2022] [Indexed: 11/08/2022]
Abstract
Flavin coenzymes are universally found in biological redox reactions. DNA photolyases, with their flavin chromophore (FAD), utilize blue light for DNA repair and photoreduction. The latter process involves two single-electron transfers to FAD with an intermittent protonation step to prime the enzyme active for DNA repair. Here we use time-resolved serial femtosecond X-ray crystallography to describe how light-driven electron transfers trigger subsequent nanosecond-to-microsecond entanglement between FAD and its Asn/Arg-Asp redox sensor triad. We found that this key feature within the photolyase-cryptochrome family regulates FAD re-hybridization and protonation. After first electron transfer, the FAD•- isoalloxazine ring twists strongly when the arginine closes in to stabilize the negative charge. Subsequent breakage of the arginine-aspartate salt bridge allows proton transfer from arginine to FAD•-. Our molecular videos demonstrate how the protein environment of redox cofactors organizes multiple electron/proton transfer events in an ordered fashion, which could be applicable to other redox systems such as photosynthesis.
Collapse
|
20
|
Ayan E, Yuksel B, Destan E, Ertem FB, Yildirim G, Eren M, Yefanov OM, Barty A, Tolstikova A, Ketawala GK, Botha S, Dao EH, Hayes B, Liang M, Seaberg MH, Hunter MS, Batyuk A, Mariani V, Su Z, Poitevin F, Yoon CH, Kupitz C, Cohen A, Doukov T, Sierra RG, Dağ Ç, DeMirci H. Cooperative allostery and structural dynamics of streptavidin at cryogenic- and ambient-temperature. Commun Biol 2022; 5:73. [PMID: 35058563 PMCID: PMC8776744 DOI: 10.1038/s42003-021-02903-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/28/2021] [Indexed: 11/11/2022] Open
Abstract
Multimeric protein assemblies are abundant in nature. Streptavidin is an attractive protein that provides a paradigm system to investigate the intra- and intermolecular interactions of multimeric protein complexes. Also, it offers a versatile tool for biotechnological applications. Here, we present two apo-streptavidin structures, the first one is an ambient temperature Serial Femtosecond X-ray crystal (Apo-SFX) structure at 1.7 Å resolution and the second one is a cryogenic crystal structure (Apo-Cryo) at 1.1 Å resolution. These structures are mostly in agreement with previous structural data. Combined with computational analysis, these structures provide invaluable information about structural dynamics of apo streptavidin. Collectively, these data further reveal a novel cooperative allostery of streptavidin which binds to substrate via water molecules that provide a polar interaction network and mimics the substrate biotin which displays one of the strongest affinities found in nature.
Collapse
Affiliation(s)
- Esra Ayan
- Department of Molecular Biology and Genetics, Koc University, 34450, Istanbul, Turkey
| | - Busra Yuksel
- Department of Molecular Biology and Genetics, Koc University, 34450, Istanbul, Turkey
| | - Ebru Destan
- Department of Molecular Biology and Genetics, Koc University, 34450, Istanbul, Turkey
| | - Fatma Betul Ertem
- Department of Molecular Biology and Genetics, Koc University, 34450, Istanbul, Turkey
| | - Gunseli Yildirim
- Department of Molecular Biology and Genetics, Koc University, 34450, Istanbul, Turkey
| | - Meryem Eren
- Department of Molecular Biology and Genetics, Koc University, 34450, Istanbul, Turkey
| | | | - Anton Barty
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | | | - Gihan K Ketawala
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287-5001, USA
| | - Sabine Botha
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287-5001, USA
| | - E Han Dao
- Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, CA, 94025, USA
| | - Brandon Hayes
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Mengning Liang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Matthew H Seaberg
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Alexander Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Valerio Mariani
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Zhen Su
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
| | - Frederic Poitevin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Chun Hong Yoon
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Christopher Kupitz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Aina Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Tzanko Doukov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Raymond G Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Çağdaş Dağ
- Department of Molecular Biology and Genetics, Koc University, 34450, Istanbul, Turkey
- Nanofabrication and Nanocharacterization Center for Scientific and Technological Advanced Research, Koc University, 34450, Istanbul, Turkey
- Koc University Isbank Center for Infectious Diseases (KUISCID), 34010, Istanbul, Turkey
| | - Hasan DeMirci
- Department of Molecular Biology and Genetics, Koc University, 34450, Istanbul, Turkey.
- Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, CA, 94025, USA.
- Koc University Isbank Center for Infectious Diseases (KUISCID), 34010, Istanbul, Turkey.
| |
Collapse
|
21
|
Appi E, Papadopoulou CC, Mapa JL, Jusko C, Mosel P, Schoenberg A, Stock J, Feigl T, Ališauskas S, Lang T, Heyl CM, Manschwetus B, Brachmanski M, Braune M, Lindenblatt H, Trost F, Meister S, Schoch P, Trabattoni A, Calegari F, Treusch R, Moshammer R, Hartl I, Morgner U, Kovacev M. Synchronized beamline at FLASH2 based on high-order harmonic generation for two-color dynamics studies. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:123004. [PMID: 34972439 DOI: 10.1063/5.0063225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
We present the design, integration, and operation of the novel vacuum ultraviolet (VUV) beamline installed at the free-electron laser (FEL) FLASH. The VUV source is based on high-order harmonic generation (HHG) in gas and is driven by an optical laser system synchronized with the timing structure of the FEL. Ultrashort pulses in the spectral range from 10 to 40 eV are coupled with the FEL in the beamline FL26, which features a reaction microscope (REMI) permanent endstation for time-resolved studies of ultrafast dynamics in atomic and molecular targets. The connection of the high-pressure gas HHG source to the ultra-high vacuum FEL beamline requires a compact and reliable system, able to encounter the challenging vacuum requirements and coupling conditions. First commissioning results show the successful operation of the beamline, reaching a VUV focused beam size of about 20 µm at the REMI endstation. Proof-of-principle photo-electron momentum measurements in argon indicate the source capabilities for future two-color pump-probe experiments.
Collapse
Affiliation(s)
- E Appi
- Institut für Quantenoptik, Leibniz Universität Hannover, Hannover 30167, Germany
| | | | - J L Mapa
- Institut für Quantenoptik, Leibniz Universität Hannover, Hannover 30167, Germany
| | - C Jusko
- Institut für Quantenoptik, Leibniz Universität Hannover, Hannover 30167, Germany
| | - P Mosel
- Institut für Quantenoptik, Leibniz Universität Hannover, Hannover 30167, Germany
| | | | - J Stock
- Carl Zeiss AG, Oberkochen 73446, Germany
| | - T Feigl
- optiX fab GmbH, Jena 07745, Germany
| | | | - T Lang
- DESY, Hamburg 22607, Germany
| | | | | | | | | | - H Lindenblatt
- Max-Planck-Institut für Kernphysik, Heidelberg 69117, Germany
| | - F Trost
- Max-Planck-Institut für Kernphysik, Heidelberg 69117, Germany
| | - S Meister
- Max-Planck-Institut für Kernphysik, Heidelberg 69117, Germany
| | - P Schoch
- Institut für Umweltphysik, Ruprecht-Karls-Universität Heidelberg, Heidelberg 69120, Germany
| | - A Trabattoni
- Center for Free-Electron Laser Science CFEL, DESY, Hamburg 22607, Germany
| | - F Calegari
- Center for Free-Electron Laser Science CFEL, DESY, Hamburg 22607, Germany
| | | | - R Moshammer
- Max-Planck-Institut für Kernphysik, Heidelberg 69117, Germany
| | - I Hartl
- DESY, Hamburg 22607, Germany
| | - U Morgner
- Institut für Quantenoptik, Leibniz Universität Hannover, Hannover 30167, Germany
| | - M Kovacev
- Institut für Quantenoptik, Leibniz Universität Hannover, Hannover 30167, Germany
| |
Collapse
|
22
|
Monteiro DCF, Amoah E, Rogers C, Pearson AR. Using photocaging for fast time-resolved structural biology studies. Acta Crystallogr D Struct Biol 2021; 77:1218-1232. [PMID: 34605426 PMCID: PMC8489231 DOI: 10.1107/s2059798321008809] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
Careful selection of photocaging approaches is critical to achieve fast and well synchronized reaction initiation and perform successful time-resolved structural biology experiments. This review summarizes the best characterized and most relevant photocaging groups previously described in the literature. It also provides a walkthrough of the essential factors to consider in designing a suitable photocaged molecule to address specific biological questions, focusing on photocaging groups with well characterized spectroscopic properties. The relationships between decay rates (k in s-1), quantum yields (ϕ) and molar extinction coefficients (ϵmax in M-1 cm-1) are highlighted for different groups. The effects of the nature of the photocaged group on these properties is also discussed. Four main photocaging scaffolds are presented in detail, o-nitrobenzyls, p-hydroxyphenyls, coumarinyls and nitrodibenzofuranyls, along with three examples of the use of this technology. Furthermore, a subset of specialty photocages are highlighted: photoacids, molecular photoswitches and metal-containing photocages. These extend the range of photocaging approaches by, for example, controlling pH or generating conformationally locked molecules.
Collapse
Affiliation(s)
- Diana C. F. Monteiro
- Hauptman–Woodward Medical Research Institute, 700 Ellicot Street, Buffalo, NY 14203, USA
| | - Emmanuel Amoah
- Hauptman–Woodward Medical Research Institute, 700 Ellicot Street, Buffalo, NY 14203, USA
| | - Cromarte Rogers
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Chemistry, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Arwen R. Pearson
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
23
|
Lee SJ, Kim Y, Kim TW, Yang C, Thamilselvan K, Jeong H, Hyun J, Ihee H. Reversible molecular motional switch based on circular photoactive protein oligomers exhibits unexpected photo-induced contraction. CELL REPORTS. PHYSICAL SCIENCE 2021; 2:100512. [PMID: 35509376 PMCID: PMC9062587 DOI: 10.1016/j.xcrp.2021.100512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Molecular switches alterable between two stable states by environmental stimuli, such as light and temperature, offer the potential for controlling biological functions. Here, we report a circular photoswitchable protein complex made of multiple protein molecules that can rapidly and reversibly switch with significant conformational changes. The structural and photochromic properties of photoactive yellow protein (PYP) are harnessed to construct circular oligomer PYPs (coPYPs) of desired sizes. Considering the light-induced N-terminal protrusion of monomer PYP, we expected coPYPs would expand upon irradiation, but time-resolved X-ray scattering data reveal that the late intermediate has a pronounced light-induced contraction motion. This work not only provides an approach to engineering a novel protein-based molecular switch based on circular oligomers of well-known protein units but also demonstrates the importance of characterizing the structural dynamics of designed molecular switches.
Collapse
Affiliation(s)
- Sang Jin Lee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- These authors contributed equally
| | - Youngmin Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- These authors contributed equally
| | - Tae Wu Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Cheolhee Yang
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Kamatchi Thamilselvan
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Hyeongseop Jeong
- Center for Research Equipment, Korea Basic Science Institute (KBSI), Cheongju-si, Chungcheongbuk-do 28119, Republic of Korea
| | - Jaekyung Hyun
- Center for Research Equipment, Korea Basic Science Institute (KBSI), Cheongju-si, Chungcheongbuk-do 28119, Republic of Korea
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology (OIST), Okinawa 904-0495, Japan
| | - Hyotcherl Ihee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Lead contact
| |
Collapse
|
24
|
Protein Dynamics and Time Resolved Protein Crystallography at Synchrotron Radiation Sources: Past, Present and Future. CRYSTALS 2021. [DOI: 10.3390/cryst11050521] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The ultrabright and ultrashort pulses produced at X-ray free electron lasers (XFELs) has enabled studies of crystallized molecular machines at work under ‘native’ conditions at room temperature by the so-called time-resolved serial femtosecond crystallography (TR-SFX) technique. Since early TR-SFX experiments were conducted at XFELs, it has been largely reported in the literature that time-resolved X-ray experiments at synchrotrons are no longer feasible or are impractical due to the severe technical limitations of these radiation sources. The transfer of the serial crystallography approach to newest synchrotrons upgraded for higher flux density and with beamlines using sophisticated focusing optics, submicron beam diameters and fast low-noise photon-counting detectors offers a way to overcome these difficulties opening new and exciting possibilities. In fact, there is an increasing amount of publications reporting new findings in structural dynamics of protein macromolecules by using time resolved crystallography from microcrystals at synchrotron sources. This review gathers information to provide an overview of the recent work and the advances made in this filed in the past years, as well as outlines future perspectives at the next generation of synchrotron sources and the upcoming compact pulsed X-ray sources.
Collapse
|
25
|
Meisburger SP, Xu D, Ando N. REGALS: a general method to deconvolve X-ray scattering data from evolving mixtures. IUCRJ 2021; 8:225-237. [PMID: 33708400 PMCID: PMC7924237 DOI: 10.1107/s2052252521000555] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/14/2021] [Indexed: 06/10/2023]
Abstract
Mixtures of biological macromolecules are inherently difficult to study using structural methods, as increasing complexity presents new challenges for data analysis. Recently, there has been growing interest in studying evolving mixtures using small-angle X-ray scattering (SAXS) in conjunction with time-resolved, high-throughput or chromatography-coupled setups. Deconvolution and interpretation of the resulting datasets, however, are nontrivial when neither the scattering components nor the way in which they evolve are known a priori. To address this issue, the REGALS method (regularized alternating least squares) is introduced, which incorporates simple expectations about the data as prior knowledge, and utilizes parameterization and regularization to provide robust deconvolution solutions. The restraints used by REGALS are general properties such as smoothness of profiles and maximum dimensions of species, making it well suited for exploring datasets with unknown species. Here, REGALS is applied to the analysis of experimental data from four types of SAXS experiment: anion-exchange (AEX) coupled SAXS, ligand titration, time-resolved mixing and time-resolved temperature jump. Based on its performance with these challenging datasets, it is anticipated that REGALS will be a valuable addition to the SAXS analysis toolkit and enable new experiments. The software is implemented in both MATLAB and Python and is available freely as an open-source software package.
Collapse
Affiliation(s)
- Steve P. Meisburger
- Department of Chemistry and Chemical Biology, Cornell University, 259 East Avenue, Ithaca, NY 14853, USA
| | - Da Xu
- Department of Chemistry and Chemical Biology, Cornell University, 259 East Avenue, Ithaca, NY 14853, USA
| | - Nozomi Ando
- Department of Chemistry and Chemical Biology, Cornell University, 259 East Avenue, Ithaca, NY 14853, USA
| |
Collapse
|
26
|
Stohrer C, Horrell S, Meier S, Sans M, von Stetten D, Hough M, Goldman A, Monteiro DCF, Pearson AR. Homogeneous batch micro-crystallization of proteins from ammonium sulfate. Acta Crystallogr D Struct Biol 2021; 77:194-204. [PMID: 33559608 PMCID: PMC7869895 DOI: 10.1107/s2059798320015454] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/21/2020] [Indexed: 01/19/2023] Open
Abstract
The emergence of X-ray free-electron lasers has led to the development of serial macromolecular crystallography techniques, making it possible to study smaller and more challenging crystal systems and to perform time-resolved studies on fast time scales. For most of these studies the desired crystal size is limited to a few micrometres, and the generation of large amounts of nanocrystals or microcrystals of defined size has become a bottleneck for the wider implementation of these techniques. Despite this, methods to reliably generate microcrystals and fine-tune their size have been poorly explored. Working with three different enzymes, L-aspartate α-decarboxylase, copper nitrite reductase and copper amine oxidase, the precipitating properties of ammonium sulfate were exploited to quickly transition from known vapour-diffusion conditions to reproducible, large-scale batch crystallization, circumventing the tedious determination of phase diagrams. Furthermore, the specific ammonium sulfate concentration was used to fine-tune the crystal size and size distribution. Ammonium sulfate is a common precipitant in protein crystallography, making these findings applicable to many crystallization systems to facilitate the production of large amounts of microcrystals for serial macromolecular crystallography experiments.
Collapse
Affiliation(s)
- Claudia Stohrer
- Biomedical Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Sam Horrell
- Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, Universität Hamburg, CFEL, Building 99, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Susanne Meier
- Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, Universität Hamburg, CFEL, Building 99, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Marta Sans
- Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, Universität Hamburg, CFEL, Building 99, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - David von Stetten
- European Molecular Biology Laboratory (EMBL), Hamburg Unit c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Michael Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Adrian Goldman
- Biomedical Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
- Biological and Environmental Sciences, University of Helsinki, Viikinkaari 5, FIN-00014 Helsinki, Finland
| | - Diana C. F. Monteiro
- Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, Universität Hamburg, CFEL, Building 99, Luruper Chaussee 149, 22761 Hamburg, Germany
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - Arwen R. Pearson
- Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, Universität Hamburg, CFEL, Building 99, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
27
|
Glycoside hydrolase family 18 chitinases: The known and the unknown. Biotechnol Adv 2020; 43:107553. [DOI: 10.1016/j.biotechadv.2020.107553] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/09/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
|
28
|
Hsu DJ, Leshchev D, Kosheleva I, Kohlstedt KL, Chen LX. Integrating solvation shell structure in experimentally driven molecular dynamics using x-ray solution scattering data. J Chem Phys 2020; 152:204115. [PMID: 32486681 DOI: 10.1063/5.0007158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the past few decades, prediction of macromolecular structures beyond the native conformation has been aided by the development of molecular dynamics (MD) protocols aimed at exploration of the energetic landscape of proteins. Yet, the computed structures do not always agree with experimental observables, calling for further development of the MD strategies to bring the computations and experiments closer together. Here, we report a scalable, efficient MD simulation approach that incorporates an x-ray solution scattering signal as a driving force for the conformational search of stable structural configurations outside of the native basin. We further demonstrate the importance of inclusion of the hydration layer effect for a precise description of the processes involving large changes in the solvent exposed area, such as unfolding. Utilization of the graphics processing unit allows for an efficient all-atom calculation of scattering patterns on-the-fly, even for large biomolecules, resulting in a speed-up of the calculation of the associated driving force. The utility of the methodology is demonstrated on two model protein systems, the structural transition of lysine-, arginine-, ornithine-binding protein and the folding of deca-alanine. We discuss how the present approach will aid in the interpretation of dynamical scattering experiments on protein folding and association.
Collapse
Affiliation(s)
- Darren J Hsu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Denis Leshchev
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| | - Kevin L Kohlstedt
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Lin X Chen
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
29
|
Zhang J, Balsbaugh JL, Gao S, Ahn NG, Klinman JP. Hydrogen deuterium exchange defines catalytically linked regions of protein flexibility in the catechol O-methyltransferase reaction. Proc Natl Acad Sci U S A 2020; 117:10797-10805. [PMID: 32371482 PMCID: PMC7245127 DOI: 10.1073/pnas.1917219117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Human catechol O-methyltransferase (COMT) has emerged as a model for understanding enzyme-catalyzed methyl transfer from S-adenosylmethionine (AdoMet) to small-molecule catecholate acceptors. Mutation of a single residue (tyrosine 68) behind the methyl-bearing sulfonium of AdoMet was previously shown to impair COMT activity by interfering with methyl donor-acceptor compaction within the activated ground state of the wild type enzyme [J. Zhang, H. J. Kulik, T. J. Martinez, J. P. Klinman, Proc. Natl. Acad. Sci. U.S.A. 112, 7954-7959 (2015)]. This predicts the involvement of spatially defined protein dynamical effects that further tune the donor/acceptor distance and geometry as well as the electrostatics of the reactants. Here, we present a hydrogen/deuterium exchange (HDX)-mass spectrometric study of wild type and mutant COMT, comparing temperature dependences of HDX against corresponding kinetic and cofactor binding parameters. The data show that the impaired Tyr68Ala mutant displays similar breaks in Arrhenius plots of both kinetic and HDX properties that are absent in the wild type enzyme. The spatial resolution of HDX below a break point of 15-20 °C indicates changes in flexibility across ∼40% of the protein structure that is confined primarily to the periphery of the AdoMet binding site. Above 20 °C, Tyr68Ala behaves more like WT in HDX, but its rate and enthalpic barrier remain significantly altered. The impairment of catalysis by Tyr68Ala can be understood in the context of a mutationally induced alteration in protein motions that becomes manifest along and perpendicular to the primary group transfer coordinate.
Collapse
Affiliation(s)
- Jianyu Zhang
- Department of Chemistry, University of California, Berkeley, CA 94720
- The California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
| | - Jeremy L Balsbaugh
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309
| | - Shuaihua Gao
- Department of Chemistry, University of California, Berkeley, CA 94720
- The California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
| | - Natalie G Ahn
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309;
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309
| | - Judith P Klinman
- Department of Chemistry, University of California, Berkeley, CA 94720;
- The California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
30
|
Weinert T, Skopintsev P, James D, Dworkowski F, Panepucci E, Kekilli D, Furrer A, Brünle S, Mous S, Ozerov D, Nogly P, Wang M, Standfuss J. Proton uptake mechanism in bacteriorhodopsin captured by serial synchrotron crystallography. Science 2020; 365:61-65. [PMID: 31273117 DOI: 10.1126/science.aaw8634] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/11/2019] [Indexed: 11/02/2022]
Abstract
Conformational dynamics are essential for proteins to function. We adapted time-resolved serial crystallography developed at x-ray lasers to visualize protein motions using synchrotrons. We recorded the structural changes in the light-driven proton-pump bacteriorhodopsin over 200 milliseconds in time. The snapshot from the first 5 milliseconds after photoactivation shows structural changes associated with proton release at a quality comparable to that of previous x-ray laser experiments. From 10 to 15 milliseconds onwards, we observe large additional structural rearrangements up to 9 angstroms on the cytoplasmic side. Rotation of leucine-93 and phenylalanine-219 opens a hydrophobic barrier, leading to the formation of a water chain connecting the intracellular aspartic acid-96 with the retinal Schiff base. The formation of this proton wire recharges the membrane pump with a proton for the next cycle.
Collapse
Affiliation(s)
- Tobias Weinert
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland.
| | - Petr Skopintsev
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Daniel James
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Florian Dworkowski
- Macromolecular Crystallography, Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Ezequiel Panepucci
- Macromolecular Crystallography, Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Demet Kekilli
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Antonia Furrer
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Steffen Brünle
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Sandra Mous
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zürich, Switzerland
| | - Dmitry Ozerov
- Science IT, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Przemyslaw Nogly
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zürich, Switzerland
| | - Meitian Wang
- Macromolecular Crystallography, Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Jörg Standfuss
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| |
Collapse
|
31
|
Abstract
The advent of the X-ray free electron laser (XFEL) in the last decade created the discipline of serial crystallography but also the challenge of how crystal samples are delivered to X-ray. Early sample delivery methods demonstrated the proof-of-concept for serial crystallography and XFEL but were beset with challenges of high sample consumption, jet clogging and low data collection efficiency. The potential of XFEL and serial crystallography as the next frontier of structural solution by X-ray for small and weakly diffracting crystals and provision of ultra-fast time-resolved structural data spawned a huge amount of scientific interest and innovation. To utilize the full potential of XFEL and broaden its applicability to a larger variety of biological samples, researchers are challenged to develop better sample delivery methods. Thus, sample delivery is one of the key areas of research and development in the serial crystallography scientific community. Sample delivery currently falls into three main systems: jet-based methods, fixed-target chips, and drop-on-demand. Huge strides have since been made in reducing sample consumption and improving data collection efficiency, thus enabling the use of XFEL for many biological systems to provide high-resolution, radiation damage-free structural data as well as time-resolved dynamics studies. This review summarizes the current main strategies in sample delivery and their respective pros and cons, as well as some future direction.
Collapse
|
32
|
Wickstrand C, Katona G, Nakane T, Nogly P, Standfuss J, Nango E, Neutze R. A tool for visualizing protein motions in time-resolved crystallography. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:024701. [PMID: 32266303 PMCID: PMC7113034 DOI: 10.1063/1.5126921] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/06/2020] [Indexed: 05/12/2023]
Abstract
Time-resolved serial femtosecond crystallography (TR-SFX) at an x-ray free electron laser enables protein structural changes to be imaged on time-scales from femtoseconds to seconds. It can, however, be difficult to grasp the nature and timescale of global protein motions when structural changes are not isolated near a single active site. New tools are, therefore, needed to represent the global nature of electron density changes and their correlation with modeled protein structural changes. Here, we use TR-SFX data from bacteriorhodopsin to develop and validate a method for quantifying time-dependent electron density changes and correlating them throughout the protein. We define a spherical volume of difference electron density about selected atoms, average separately the positive and negative electron difference densities within each volume, and walk this spherical volume through all atoms within the protein. By correlating the resulting difference electron density amplitudes with time, our approach facilitates an initial assessment of the number and timescale of structural intermediates and highlights quake-like motions on the sub-picosecond timescale. This tool also allows structural models to be compared with experimental data using theoretical difference electron density changes calculated from refined resting and photo-activated structures.
Collapse
Affiliation(s)
- Cecilia Wickstrand
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Gergely Katona
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | | | - Przemyslaw Nogly
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zürich, Switzerland
| | - Joerg Standfuss
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
- Author to whom correspondence should be addressed:
| |
Collapse
|
33
|
He H, Liu C, Liu H. Model Reconstruction from Small-Angle X-Ray Scattering Data Using Deep Learning Methods. iScience 2020; 23:100906. [PMID: 32092702 PMCID: PMC7037568 DOI: 10.1016/j.isci.2020.100906] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/18/2019] [Accepted: 02/07/2020] [Indexed: 02/03/2023] Open
Abstract
Small-angle X-ray scattering (SAXS) method is widely used in investigating protein structures in solution, but high-quality 3D model reconstructions are challenging. We present a new algorithm based on a deep learning method for model reconstruction from SAXS data. An auto-encoder for protein 3D models was trained to compress 3D shape information into vectors of a 200-dimensional latent space, and the vectors are optimized using genetic algorithms to build 3D models that are consistent with the scattering data. The program has been tested with experimental SAXS data, demonstrating the capacity and robustness of accurate model reconstruction. Furthermore, the model size information can be optimized using this algorithm, enhancing the automation in model reconstruction directly from SAXS data. The program was implemented using Python with the TensorFlow framework, with source code and webserver available from http://liulab.csrc.ac.cn/decodeSAXS. A convolutional neural network auto-encoder framework for 3D models is developed The auto-encoder compresses protein shape information to 200 parameters Accurate 3D models (both shape and radius) can be reconstructed from 1D SAXS data
Collapse
Affiliation(s)
- Hao He
- Complex Systems Division, Beijing Computational Science Research Center, 8 E Xibeiwang Road, Haidian, Beijing 100193, People's Republic of China; School of Software Engineering, University of Science and Technology China, Suzhou, Jiang Su 215123, People's Republic of China
| | - Can Liu
- Complex Systems Division, Beijing Computational Science Research Center, 8 E Xibeiwang Road, Haidian, Beijing 100193, People's Republic of China; School of Software Engineering, University of Science and Technology China, Suzhou, Jiang Su 215123, People's Republic of China
| | - Haiguang Liu
- Complex Systems Division, Beijing Computational Science Research Center, 8 E Xibeiwang Road, Haidian, Beijing 100193, People's Republic of China; Physics Department, Beijing Normal University, Haidian, Beijing 100875, People's Republic of China.
| |
Collapse
|
34
|
Thompson MC, Barad BA, Wolff AM, Sun Cho H, Schotte F, Schwarz DMC, Anfinrud P, Fraser JS. Temperature-jump solution X-ray scattering reveals distinct motions in a dynamic enzyme. Nat Chem 2019; 11:1058-1066. [PMID: 31527847 PMCID: PMC6815256 DOI: 10.1038/s41557-019-0329-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 08/09/2019] [Indexed: 12/21/2022]
Abstract
Correlated motions of proteins are critical to function, but these features are difficult to resolve using traditional structure determination techniques. Time-resolved X-ray methods hold promise for addressing this challenge, but have relied on the exploitation of exotic protein photoactivity, and are therefore not generalizable. Temperature jumps, through thermal excitation of the solvent, have been utilized to study protein dynamics using spectroscopic techniques, but their implementation in X-ray scattering experiments has been limited. Here, we perform temperature-jump small- and wide-angle X-ray scattering measurements on a dynamic enzyme, cyclophilin A, demonstrating that these experiments are able to capture functional intramolecular protein dynamics on the microsecond timescale. We show that cyclophilin A displays rich dynamics following a temperature jump, and use the resulting time-resolved signal to assess the kinetics of conformational changes. Two relaxation processes are resolved: a fast process is related to surface loop motions, and a slower process is related to motions in the core of the protein that are critical for catalytic turnover.
Collapse
Affiliation(s)
- Michael C Thompson
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Benjamin A Barad
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.,Biophysics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander M Wolff
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.,Biophysics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Hyun Sun Cho
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Friedrich Schotte
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel M C Schwarz
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.,Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Philip Anfinrud
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
35
|
van Thor JJ. Advances and opportunities in ultrafast X-ray crystallography and ultrafast structural optical crystallography of nuclear and electronic protein dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:050901. [PMID: 31559317 PMCID: PMC6759419 DOI: 10.1063/1.5110685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/29/2019] [Indexed: 05/02/2023]
Abstract
Both nuclear and electronic dynamics contribute to protein function and need multiple and complementary techniques to reveal their ultrafast structural dynamics response. Real-space information obtained from the measurement of electron density dynamics by X-ray crystallography provides aspects of both, while the molecular physics of coherence parameters and frequency-frequency correlation needs spectroscopy methods. Ultrafast pump-probe applications of protein dynamics in crystals provide real-space information through direct X-ray crystallographic structure analysis or through structural optical crystallographic analysis. A discussion of methods of analysis using ultrafast macromolecular X-ray crystallography and ultrafast nonlinear structural optical crystallography is presented. The current and future high repetition rate capabilities provided by X-ray free electron lasers for ultrafast diffraction studies provide opportunities for optical control and optical selection of nuclear coherence which may develop to access higher frequency dynamics through improvements of sensitivity and time resolution to reveal coherence directly. Specific selection of electronic coherence requires optical probes, which can provide real-space structural information through photoselection of oriented samples and specifically in birefringent crystals. Ultrafast structural optical crystallography of photosynthetic energy transfer has been demonstrated, and the theory of two-dimensional structural optical crystallography has shown a method for accessing the structural selection of electronic coherence.
Collapse
Affiliation(s)
- Jasper J. van Thor
- Molecular Biophysics, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
36
|
Liu H, Lee W. The XFEL Protein Crystallography: Developments and Perspectives. Int J Mol Sci 2019; 20:ijms20143421. [PMID: 31336822 PMCID: PMC6678726 DOI: 10.3390/ijms20143421] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/10/2019] [Indexed: 12/16/2022] Open
Abstract
In the past 10 years, the world has witnessed the revolutionary development of X-ray free electron lasers (XFELs) and their applications in many scientific disciplinaries [...].
Collapse
Affiliation(s)
- Haiguang Liu
- Complex Systems Division, Beijing Computational Science Research Center, Beijing 100193, China.
- Physics Department, Beijing Normal University, 19 Xinjiekouwai St, Haidian, Beijing 100875, China.
| | - Weontae Lee
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
37
|
Wickstrand C, Nogly P, Nango E, Iwata S, Standfuss J, Neutze R. Bacteriorhodopsin: Structural Insights Revealed Using X-Ray Lasers and Synchrotron Radiation. Annu Rev Biochem 2019; 88:59-83. [DOI: 10.1146/annurev-biochem-013118-111327] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Directional transport of protons across an energy transducing membrane—proton pumping—is ubiquitous in biology. Bacteriorhodopsin (bR) is a light-driven proton pump that is activated by a buried all- trans retinal chromophore being photoisomerized to a 13- cis conformation. The mechanism by which photoisomerization initiates directional proton transport against a proton concentration gradient has been studied by a myriad of biochemical, biophysical, and structural techniques. X-ray free electron lasers (XFELs) have created new opportunities to probe the structural dynamics of bR at room temperature on timescales from femtoseconds to milliseconds using time-resolved serial femtosecond crystallography (TR-SFX). Wereview these recent developments and highlight where XFEL studies reveal new details concerning the structural mechanism of retinal photoisomerization and proton pumping. We also discuss the extent to which these insights were anticipated by earlier intermediate trapping studies using synchrotron radiation. TR-SFX will open up the field for dynamical studies of other proteins that are not naturally light-sensitive.
Collapse
Affiliation(s)
- Cecilia Wickstrand
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Przemyslaw Nogly
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Eriko Nango
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - So Iwata
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Jörg Standfuss
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530 Gothenburg, Sweden
| |
Collapse
|
38
|
Martin-Garcia JM, Zhu L, Mendez D, Lee MY, Chun E, Li C, Hu H, Subramanian G, Kissick D, Ogata C, Henning R, Ishchenko A, Dobson Z, Zhang S, Weierstall U, Spence JCH, Fromme P, Zatsepin NA, Fischetti RF, Cherezov V, Liu W. High-viscosity injector-based pink-beam serial crystallography of microcrystals at a synchrotron radiation source. IUCRJ 2019; 6:412-425. [PMID: 31098022 PMCID: PMC6503920 DOI: 10.1107/s205225251900263x] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/20/2019] [Indexed: 05/29/2023]
Abstract
Since the first successful serial crystallography (SX) experiment at a synchrotron radiation source, the popularity of this approach has continued to grow showing that third-generation synchrotrons can be viable alternatives to scarce X-ray free-electron laser sources. Synchrotron radiation flux may be increased ∼100 times by a moderate increase in the bandwidth ('pink beam' conditions) at some cost to data analysis complexity. Here, we report the first high-viscosity injector-based pink-beam SX experiments. The structures of proteinase K (PK) and A2A adenosine receptor (A2AAR) were determined to resolutions of 1.8 and 4.2 Å using 4 and 24 consecutive 100 ps X-ray pulse exposures, respectively. Strong PK data were processed using existing Laue approaches, while weaker A2AAR data required an alternative data-processing strategy. This demonstration of the feasibility presents new opportunities for time-resolved experiments with microcrystals to study structural changes in real time at pink-beam synchrotron beamlines worldwide.
Collapse
Affiliation(s)
- Jose M. Martin-Garcia
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA
- School of Molecular Sciences, Arizona State University, 551 East University Drive, Tempe, AZ 85287, USA
| | - Lan Zhu
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA
- School of Molecular Sciences, Arizona State University, 551 East University Drive, Tempe, AZ 85287, USA
| | - Derek Mendez
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA
- Department of Physics, Arizona State University, 550 East Tyler Drive, Tempe, AZ 85287, USA
| | - Ming-Yue Lee
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA
- School of Molecular Sciences, Arizona State University, 551 East University Drive, Tempe, AZ 85287, USA
| | - Eugene Chun
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA
- School of Molecular Sciences, Arizona State University, 551 East University Drive, Tempe, AZ 85287, USA
| | - Chufeng Li
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA
- Department of Physics, Arizona State University, 550 East Tyler Drive, Tempe, AZ 85287, USA
| | - Hao Hu
- Department of Physics, Arizona State University, 550 East Tyler Drive, Tempe, AZ 85287, USA
| | - Ganesh Subramanian
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA
- Department of Physics, Arizona State University, 550 East Tyler Drive, Tempe, AZ 85287, USA
| | - David Kissick
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Ave, Lemont, IL 90439, USA
| | - Craig Ogata
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Ave, Lemont, IL 90439, USA
| | - Robert Henning
- Center for Advanced Radiation Sources, The University of Chicago, Argonne National Laboratory, 9700 South Cass Ave, Lemont, IL 90439, USA
| | - Andrii Ishchenko
- Department of Chemistry, Bridge Institute, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| | - Zachary Dobson
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA
- School of Molecular Sciences, Arizona State University, 551 East University Drive, Tempe, AZ 85287, USA
| | - Shangji Zhang
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA
- School of Molecular Sciences, Arizona State University, 551 East University Drive, Tempe, AZ 85287, USA
| | - Uwe Weierstall
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA
- Department of Physics, Arizona State University, 550 East Tyler Drive, Tempe, AZ 85287, USA
| | - John C. H. Spence
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA
- Department of Physics, Arizona State University, 550 East Tyler Drive, Tempe, AZ 85287, USA
| | - Petra Fromme
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA
- School of Molecular Sciences, Arizona State University, 551 East University Drive, Tempe, AZ 85287, USA
| | - Nadia A. Zatsepin
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA
- Department of Physics, Arizona State University, 550 East Tyler Drive, Tempe, AZ 85287, USA
| | - Robert F. Fischetti
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Ave, Lemont, IL 90439, USA
| | - Vadim Cherezov
- Department of Chemistry, Bridge Institute, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| | - Wei Liu
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA
- School of Molecular Sciences, Arizona State University, 551 East University Drive, Tempe, AZ 85287, USA
| |
Collapse
|
39
|
Hatcher LE, Skelton JM, Warren MR, Raithby PR. Photocrystallographic Studies on Transition Metal Nitrito Metastable Linkage Isomers: Manipulating the Metastable State. Acc Chem Res 2019; 52:1079-1088. [PMID: 30916544 PMCID: PMC7005940 DOI: 10.1021/acs.accounts.9b00018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The design of solid-state materials whose properties and functions
can be manipulated in a controlled manner by the application of light
is an important objective in modern materials chemistry. When the
material changes property or function, it is helpful if a simple measurable
response, such as a change in color, can be detected. Potential applications
for such materials are wide ranging, from data storage to smart windows.
With the growing emphasis on solid-state materials that have two or
more accessible energy states and which exhibit bistability, attention
has turned to transition metal complexes that contain ambidentate
ligands that can switch between linkage isomeric forms when activated
by light. Suitable ligands that show promise in this area include
nitrosyls, nitro groups, and coordinated sulfur dioxide molecules,
each of which can coordinate to a metal center in more than one bonding
mode. A nitrosyl normally coordinates through its N atom (η1-NO) but when photoactivated can undergo isomerism and coordinate
through its O atom (η1-ON). At a molecular level,
converting between these two configurations can act as an “on/off”
switch. The analysis of such materials has been aided by the development
of photocrystallographic techniques, which allow the full three-dimensional
structure of a single crystal of a complex, under photoactivation,
to be determined, when it is in either a metastable or short-lived
excited state. The technique effectively brings the dimension of “time”
to the crystallographic experiment and brings us closer to being able
to watch solid-state processes occur in real time. In this Account,
we highlight the advances made in photocrystallography
for studying solid-state, photoactivated linkage isomerism and describe
the factors that favor the switching process and which allow complete
switching between isomers. We demonstrate that control of temperature
is key to achieving either a metastable state or an excited state
with a specific lifetime. We draw our conclusions from published work
on the formation of photoactivated metastable states for nitrosyl
and sulfur dioxide complexes and from our own work on photoactivated
switching between nitro and nitrito groups. We show that efficient
switching between isomers is dependent on the wavelength of light
used, on the temperature at which the experiment is carried out, on
the flexibility of the crystal lattice, and on both the electronic
and steric environment of the ambidentate ligand undergoing isomerism.
We have designed and prepared a number of nitro/nitrito isomeric metal
complexes that undergo reversible 100% conversion between the two
forms at temperatures close to room temperature. Through our fine
control over the generation of the metastable states, it should be
possible to effectively “dial up” a suitable temperature
to give a metastable or an excited state with a desired lifetime.
Collapse
Affiliation(s)
| | - Jonathan M. Skelton
- School of Chemistry, University of Manchester, Oxford Road, Manchester M19 3PL, U.K
| | - Mark R Warren
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0FA, U.K
| | - Paul R. Raithby
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| |
Collapse
|
40
|
Sharma A, Berntsen P, Harimoorthy R, Appio R, Sjöhamn J, Järvå M, Björling A, Hammarin G, Westenhoff S, Brändén G, Neutze R. A simple adaptation to a protein crystallography station to facilitate difference X-ray scattering studies. J Appl Crystallogr 2019; 52:378-386. [PMID: 30996717 PMCID: PMC6448683 DOI: 10.1107/s1600576719001900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/01/2019] [Indexed: 11/10/2022] Open
Abstract
The X-ray crystallography station I911-2 at MAXLab II (Lund, Sweden) has been adapted to enable difference small- and wide-angle X-ray scattering (SAXS/WAXS) data to be recorded. Modifications to the beamline included a customized flow cell, a motorized flow cell holder, a helium cone, a beam stop, a sample stage and a sample delivery system. This setup incorporated external devices such as infrared lasers, LEDs and reaction mixers to induce conformational changes in macromolecules. This platform was evaluated through proof-of-principle experiments capturing light-induced conformational changes in phytochromes. A difference WAXS signature of conformational changes in a plant aqua-porin was also demonstrated using caged calcium.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi 110025, India
| | - Peter Berntsen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
- ARC Centre of Exellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia
| | - Rajiv Harimoorthy
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | | | - Jennie Sjöhamn
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Michael Järvå
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Alexander Björling
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
- MAX IV Laboratory, Box 118, 221 00 Lund, Sweden
| | - Greger Hammarin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| |
Collapse
|
41
|
Ehrenberg D, Varma N, Deupi X, Koyanagi M, Terakita A, Schertler GFX, Heberle J, Lesca E. The Two-Photon Reversible Reaction of the Bistable Jumping Spider Rhodopsin-1. Biophys J 2019; 116:1248-1258. [PMID: 30902364 PMCID: PMC6451042 DOI: 10.1016/j.bpj.2019.02.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/16/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022] Open
Abstract
Bistable opsins are photopigments expressed in both invertebrates and vertebrates. These light-sensitive G-protein-coupled receptors undergo a reversible reaction upon illumination. A first photon initiates the cis to trans isomerization of the retinal chromophore—attached to the protein through a protonated Schiff base—and a series of transition states that eventually results in the formation of the thermally stable and active Meta state. Excitation by a second photon reverts this process to recover the original ground state. On the other hand, monostable opsins (e.g., bovine rhodopsin) lose their chromophore during the decay of the Meta II state (i.e., they bleach). Spectroscopic studies on the molecular details of the two-photon cycle in bistable opsins are limited. Here, we describe the successful expression and purification of recombinant rhodopsin-1 from the jumping spider Hasarius adansoni (JSR1). In its natural configuration, spectroscopic characterization of JSR1 is hampered by the similar absorption spectra in the visible spectrum of the inactive and active states. We solved this issue by separating their absorption spectra by replacing the endogenous 11-cis retinal chromophore with the blue-shifted 9-cis JSiR1. With this system, we used time-resolved ultraviolet-visible spectroscopy after pulsed laser excitation to obtain kinetic details of the rise and decay of the photocycle intermediates. We also used resonance Raman spectroscopy to elucidate structural changes of the retinal chromophore upon illumination. Our data clearly indicate that the protonated Schiff base is stable throughout the entire photoreaction. We additionally show that the accompanying conformational changes in the protein are different from those of monostable rhodopsin, as recorded by light-induced FTIR difference spectroscopy. Thus, we envisage JSR1 as becoming a model system for future studies on the reaction mechanisms of bistable opsins, e.g., by time-resolved x-ray crystallography.
Collapse
Affiliation(s)
- David Ehrenberg
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Niranjan Varma
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland; Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Xavier Deupi
- Division of Neutrons and Muons-Laboratory for Scientific Computing and Modelling, Paul Scherrer Institute, Villigen, Switzerland
| | - Mitsumasa Koyanagi
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Akihisa Terakita
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Gebhard F X Schertler
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland; Department of Biology, ETH Zürich, Zürich, Switzerland.
| | - Joachim Heberle
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Berlin, Germany.
| | - Elena Lesca
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland; Department of Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
42
|
Niessen KA, Xu M, George DK, Chen MC, Ferré-D'Amaré AR, Snell EH, Cody V, Pace J, Schmidt M, Markelz AG. Protein and RNA dynamical fingerprinting. Nat Commun 2019; 10:1026. [PMID: 30833555 PMCID: PMC6399446 DOI: 10.1038/s41467-019-08926-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 02/04/2019] [Indexed: 01/30/2023] Open
Abstract
Protein structural vibrations impact biology by steering the structure to functional intermediate states; enhancing tunneling events; and optimizing energy transfer. Strong water absorption and a broad continuous vibrational density of states have prevented optical identification of these vibrations. Recently spectroscopic signatures that change with functional state were measured using anisotropic terahertz microscopy. The technique however has complex sample positioning requirements and long measurement times, limiting access for the biomolecular community. Here we demonstrate that a simplified system increases spectroscopic structure to dynamically fingerprint biomacromolecules with a factor of 6 reduction in data acquisition time. Using this technique, polarization varying anisotropy terahertz microscopy, we show sensitivity to inhibitor binding and unique vibrational spectra for several proteins and an RNA G-quadruplex. The technique’s sensitivity to anisotropic absorbance and birefringence provides rapid assessment of macromolecular dynamics that impact biology. The characterization of biomacromolecule structural vibrations has been impeded by a broad continuous vibrational density of states obscuring molecule specific vibrations. A terahertz microscopy system using polarization control produces signatures to dynamically fingerprint proteins and a RNA G-quadruplex.
Collapse
Affiliation(s)
| | - Mengyang Xu
- Department of Physics, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Deepu K George
- Department of Physics, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Michael C Chen
- National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | | | - Edward H Snell
- Hauptman-Woodward Medical Research Institute & Department of Structural Biology, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Vivian Cody
- Hauptman-Woodward Medical Research Institute & Department of Structural Biology, University at Buffalo, SUNY, Buffalo, NY, USA
| | - James Pace
- Hauptman-Woodward Medical Research Institute & Department of Structural Biology, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Marius Schmidt
- Department of Physics, University of Wisconsin, Milwaukee, WI, USA
| | - Andrea G Markelz
- Department of Physics, University at Buffalo, SUNY, Buffalo, NY, USA. .,Hauptman-Woodward Medical Research Institute & Department of Structural Biology, University at Buffalo, SUNY, Buffalo, NY, USA.
| |
Collapse
|
43
|
Nagai T, Mochizuki Y, Joti Y, Tama F, Miyashita O. Gaussian mixture model for coarse-grained modeling from XFEL. OPTICS EXPRESS 2018; 26:26734-26749. [PMID: 30469754 DOI: 10.1364/oe.26.026734] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/01/2018] [Indexed: 06/09/2023]
Abstract
We explore the advantage of Gaussian mixture model (GMM) for interpretation of single particle diffraction patterns from X-ray free electron laser (XFEL) experiments. GMM approximates a biomolecular shape by the superposition of Gaussian distributions. As the Fourier transformation of GMM can be quickly performed, we can efficiently simulate XFEL diffraction patterns from approximated structure models. We report that the resolution that GMM can accurately reproduce is proportional to the cubic root of the number of Gaussians used in the modeling. This behavior can be attributed to the correspondence between the number of adjustable parameters in GMM and the amount of sampling points in diffraction space. Furthermore, GMMs can successfully be used to perform angular assignment and to detect conformational variation. These results demonstrate that GMMs serve as useful coarse-grained models for hybrid approach in XFEL single particle experiments.
Collapse
|
44
|
Leonarski F, Redford S, Mozzanica A, Lopez-Cuenca C, Panepucci E, Nass K, Ozerov D, Vera L, Olieric V, Buntschu D, Schneider R, Tinti G, Froejdh E, Diederichs K, Bunk O, Schmitt B, Wang M. Fast and accurate data collection for macromolecular crystallography using the JUNGFRAU detector. Nat Methods 2018; 15:799-804. [PMID: 30275593 DOI: 10.1038/s41592-018-0143-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/25/2018] [Indexed: 11/09/2022]
Abstract
The accuracy of X-ray diffraction data is directly related to how the X-ray detector records photons. Here we describe the application of a direct-detection charge-integrating pixel-array detector (JUNGFRAU) in macromolecular crystallography (MX). JUNGFRAU features a uniform response on the subpixel level, linear behavior toward high photon rates, and low-noise performance across the whole dynamic range. We demonstrate that these features allow accurate MX data to be recorded at unprecedented speed. We also demonstrate improvements over previous-generation detectors in terms of data quality, using native single-wavelength anomalous diffraction (SAD) phasing, for thaumatin, lysozyme, and aminopeptidase N. Our results suggest that the JUNGFRAU detector will substantially improve the performance of synchrotron MX beamlines and equip them for future synchrotron light sources.
Collapse
Affiliation(s)
- Filip Leonarski
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Sophie Redford
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Aldo Mozzanica
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | | | | | - Karol Nass
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Dmitry Ozerov
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Laura Vera
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Dominik Buntschu
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Roman Schneider
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Gemma Tinti
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Erik Froejdh
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Kay Diederichs
- Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Oliver Bunk
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Bernd Schmitt
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland.
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland.
| |
Collapse
|
45
|
Chen PC, Hennig J. The role of small-angle scattering in structure-based screening applications. Biophys Rev 2018; 10:1295-1310. [PMID: 30306530 PMCID: PMC6233350 DOI: 10.1007/s12551-018-0464-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022] Open
Abstract
In many biomolecular interactions, changes in the assembly states and structural conformations of participants can act as a complementary reporter of binding to functional and thermodynamic assays. This structural information is captured by a number of structural biology and biophysical techniques that are viable either as primary screens in small-scale applications or as secondary screens to complement higher throughput methods. In particular, small-angle X-ray scattering (SAXS) reports the average distance distribution between all atoms after orientational averaging. Such information is important when for example investigating conformational changes involved in inhibitory and regulatory mechanisms where binding events do not necessarily cause functional changes. Thus, we summarise here the current and prospective capabilities of SAXS-based screening in the context of other methods that yield structural information. Broad guidelines are also provided to assist readers in preparing screening protocols that are tailored to available X-ray sources.
Collapse
Affiliation(s)
- Po-Chia Chen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory Heidelberg, Meyerhofstrasse 1, 69126, Heidelberg, Germany.
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory Heidelberg, Meyerhofstrasse 1, 69126, Heidelberg, Germany.
| |
Collapse
|
46
|
Bennett K, Kowalewski M, Rouxel JR, Mukamel S. Monitoring molecular nonadiabatic dynamics with femtosecond X-ray diffraction. Proc Natl Acad Sci U S A 2018; 115:6538-6547. [PMID: 29891703 PMCID: PMC6042073 DOI: 10.1073/pnas.1805335115] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ultrafast time-resolved X-ray scattering, made possible by free-electron laser sources, provides a wealth of information about electronic and nuclear dynamical processes in molecules. The technique provides stroboscopic snapshots of the time-dependent electronic charge density traditionally used in structure determination and reflects the interplay of elastic and inelastic processes, nonadiabatic dynamics, and electronic populations and coherences. The various contributions to ultrafast off-resonant diffraction from populations and coherences of molecules in crystals, in the gas phase, or from single molecules are surveyed for core-resonant and off-resonant diffraction. Single-molecule [Formula: see text] scaling and two-molecule [Formula: see text] scaling contributions, where N is the number of active molecules, are compared. Simulations are presented for the excited-state nonadiabatic dynamics of the electron harpooning at the avoided crossing in NaF. We show how a class of multiple diffraction signals from a single molecule can reveal charge-density fluctuations through multidimensional correlation functions of the charge density.
Collapse
Affiliation(s)
- Kochise Bennett
- Department of Chemistry, University of California, Irvine, CA 92697-2025
- Department of Physics and Astronomy, University of California, Irvine, CA 92697-2025
| | - Markus Kowalewski
- Department of Chemistry, University of California, Irvine, CA 92697-2025
| | - Jérémy R Rouxel
- Department of Chemistry, University of California, Irvine, CA 92697-2025
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, CA 92697-2025;
- Department of Physics and Astronomy, University of California, Irvine, CA 92697-2025
| |
Collapse
|
47
|
Nogly P, Weinert T, James D, Carbajo S, Ozerov D, Furrer A, Gashi D, Borin V, Skopintsev P, Jaeger K, Nass K, Båth P, Bosman R, Koglin J, Seaberg M, Lane T, Kekilli D, Brünle S, Tanaka T, Wu W, Milne C, White T, Barty A, Weierstall U, Panneels V, Nango E, Iwata S, Hunter M, Schapiro I, Schertler G, Neutze R, Standfuss J. Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser. Science 2018; 361:science.aat0094. [PMID: 29903883 DOI: 10.1126/science.aat0094] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/29/2018] [Indexed: 12/23/2022]
Abstract
Ultrafast isomerization of retinal is the primary step in photoresponsive biological functions including vision in humans and ion transport across bacterial membranes. We used an x-ray laser to study the subpicosecond structural dynamics of retinal isomerization in the light-driven proton pump bacteriorhodopsin. A series of structural snapshots with near-atomic spatial resolution and temporal resolution in the femtosecond regime show how the excited all-trans retinal samples conformational states within the protein binding pocket before passing through a twisted geometry and emerging in the 13-cis conformation. Our findings suggest ultrafast collective motions of aspartic acid residues and functional water molecules in the proximity of the retinal Schiff base as a key facet of this stereoselective and efficient photochemical reaction.
Collapse
Affiliation(s)
- Przemyslaw Nogly
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Tobias Weinert
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland.,Photon Science Division-Swiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Daniel James
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Sergio Carbajo
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Dmitry Ozerov
- Science IT, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Antonia Furrer
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Dardan Gashi
- SwissFEL, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Veniamin Borin
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Petr Skopintsev
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Kathrin Jaeger
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Karol Nass
- SwissFEL, Paul Scherrer Institut, 5232 Villigen, Switzerland.,Photon Science Division-Swiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Petra Båth
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE- 40530 Gothenburg, Sweden
| | - Robert Bosman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE- 40530 Gothenburg, Sweden
| | - Jason Koglin
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Matthew Seaberg
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Thomas Lane
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Demet Kekilli
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Steffen Brünle
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Tomoyuki Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe- cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Wenting Wu
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | | | - Thomas White
- Center for Free-Electron Laser Science (CFEL), DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Anton Barty
- Center for Free-Electron Laser Science (CFEL), DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Uwe Weierstall
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Valerie Panneels
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe- cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe- cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mark Hunter
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gebhard Schertler
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland.,Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE- 40530 Gothenburg, Sweden
| | - Jörg Standfuss
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland.
| |
Collapse
|
48
|
Capturing dynamic conformational shifts in protein–ligand recognition using integrative structural biology in solution. Emerg Top Life Sci 2018; 2:107-119. [DOI: 10.1042/etls20170090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 11/17/2022]
Abstract
In recent years, a dynamic view of the structure and function of biological macromolecules is emerging, highlighting an essential role of dynamic conformational equilibria to understand molecular mechanisms of biological functions. The structure of a biomolecule, i.e. protein or nucleic acid in solution, is often best described as a dynamic ensemble of conformations, rather than a single structural state. Strikingly, the molecular interactions and functions of the biological macromolecule can then involve a shift between conformations that pre-exist in such an ensemble. Upon external cues, such population shifts of pre-existing conformations allow gradually relaying the signal to the downstream biological events. An inherent feature of this principle is conformational dynamics, where intrinsically disordered regions often play important roles to modulate the conformational ensemble. Unequivocally, solution-state NMR spectroscopy is a powerful technique to study the structure and dynamics of such biomolecules in solution. NMR is increasingly combined with complementary techniques, including fluorescence spectroscopy and small angle scattering. The combination of these techniques provides complementary information about the conformation and dynamics in solution and thus affords a comprehensive description of biomolecular functions and regulations. Here, we illustrate how an integrated approach combining complementary techniques can assess the structure and dynamics of proteins and protein complexes in solution.
Collapse
|
49
|
Marcellini M, Nasedkin A, Zietz B, Petersson J, Vincent J, Palazzetti F, Malmerberg E, Kong Q, Wulff M, van der Spoel D, Neutze R, Davidsson J. Transient isomers in the photodissociation of bromoiodomethane. J Chem Phys 2018; 148:134307. [PMID: 29626862 DOI: 10.1063/1.5005595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The photochemistry of halomethanes is fascinating for the complex cascade reactions toward either the parent or newly synthesized molecules. Here, we address the structural rearrangement of photodissociated CH2IBr in methanol and cyclohexane, probed by time-resolved X-ray scattering in liquid solution. Upon selective laser cleavage of the C-I bond, we follow the reaction cascade of the two geminate geometrical isomers, CH2I-Br and CH2Br-I. Both meta-stable isomers decay on different time scales, mediated by solvent interaction, toward the original parent molecule. We observe the internal rearrangement of CH2Br-I to CH2I-Br in cyclohexane by extending the time window up to 3 μs. We track the photoproduct kinetics of CH2Br-I in methanol solution where only one isomer is observed. The effect of the polarity of solvent on the geminate recombination pathways is discussed.
Collapse
Affiliation(s)
- Moreno Marcellini
- Department of Chemistry-Ångström Laboratory, Uppsala University, P.O. Box 462, SE-751 20 Uppsala, Sweden
| | - Alexandr Nasedkin
- Department of Chemistry-Ångström Laboratory, Uppsala University, P.O. Box 462, SE-751 20 Uppsala, Sweden
| | - Burkhard Zietz
- Department of Chemistry-Ångström Laboratory, Uppsala University, P.O. Box 462, SE-751 20 Uppsala, Sweden
| | - Jonas Petersson
- Department of Chemistry-Ångström Laboratory, Uppsala University, P.O. Box 462, SE-751 20 Uppsala, Sweden
| | - Jonathan Vincent
- Department of Chemistry-Ångström Laboratory, Uppsala University, P.O. Box 462, SE-751 20 Uppsala, Sweden
| | - Federico Palazzetti
- Universitá di Perugia, Dipartimento di Chimica, Biologia e Biotecnologie, 06123 Perugia, Italy
| | - Erik Malmerberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Qingyu Kong
- Argonne National Laboratory's, Xray Science Division, 9700 S Cass Ave., Argonne, Illinois 60439, USA
| | - Michael Wulff
- European Synchrotron Radiation Facility, B.P. 220, F-380 43 Grenoble Cedex, France
| | - David van der Spoel
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, P.O. Box 596, SE-751 24 Uppsala, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Jan Davidsson
- Department of Chemistry-Ångström Laboratory, Uppsala University, P.O. Box 462, SE-751 20 Uppsala, Sweden
| |
Collapse
|
50
|
Lee DB, Kim JM, Seok JH, Lee JH, Jo JD, Mun JY, Conrad C, Coe J, Nelson G, Hogue B, White TA, Zatsepin N, Weierstall U, Barty A, Chapman H, Fromme P, Spence J, Chung MS, Oh CH, Kim KH. Supersaturation-controlled microcrystallization and visualization analysis for serial femtosecond crystallography. Sci Rep 2018; 8:2541. [PMID: 29416086 PMCID: PMC5803221 DOI: 10.1038/s41598-018-20899-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/23/2018] [Indexed: 11/09/2022] Open
Abstract
Time-resolved serial femtosecond crystallography with X-ray free electron laser (XFEL) holds the potential to view fast reactions occurring at near-physiological temperature. However, production and characterization of homogeneous micron-sized protein crystals at high density remain a bottleneck, due to the lack of the necessary equipments in ordinary laboratories. We describe here supersaturation-controlled microcrystallization and visualization and analysis tools that can be easily used in any laboratory. The microcrystallization conditions of the influenza virus hemagglutinin were initially obtained with low reproducibility, which was improved by employing a rapid evaporation of hanging drops. Supersaturation-controlled microcrystallization was then developed in a vapor diffusion mode, where supersaturation was induced by evaporation in hanging drops sequentially for durations ranging from 30 sec to 3 min, depending on the protein. It was applied successfully to the microcrystal formation of lysozyme, ferritin and hemagglutinin with high density. Moreover, visualization and analysis tools were developed to characterize the microcrystals observed by light microscopy. The size and density distributions of microcrystals analyzed by the tools were found to be consistent with the results of manual analysis, further validated by high-resolution microscopic analyses. Our supersaturation-controlled microcrystallization and visualization and analysis tools will provide universal access to successful XFEL studies.
Collapse
Affiliation(s)
- Dan Bi Lee
- Department of Biotechnology & Bioinformatics, Korea University, Sejong, Korea
| | - Jong-Min Kim
- Department of Electronics & Information Engineering, Korea University, Sejong, Korea
| | - Jong Hyeon Seok
- Department of Biotechnology & Bioinformatics, Korea University, Sejong, Korea
| | - Ji-Hye Lee
- Department of Biotechnology & Bioinformatics, Korea University, Sejong, Korea
| | - Jae Deok Jo
- Department of Biotechnology & Bioinformatics, Korea University, Sejong, Korea
| | - Ji Young Mun
- Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu, Korea
| | - Chelsie Conrad
- Department of Chemistry, Arizona State University, Tempe, Arizona, USA
| | - Jesse Coe
- Department of Chemistry, Arizona State University, Tempe, Arizona, USA
| | - Garrett Nelson
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Brenda Hogue
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - Thomas A White
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Nadia Zatsepin
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Uwe Weierstall
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Anton Barty
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Henry Chapman
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Petra Fromme
- Department of Chemistry, Arizona State University, Tempe, Arizona, USA
| | - John Spence
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Mi Sook Chung
- Department of Food and Nutrition, Duksung Women's University, Seoul, Korea
| | - Chang-Hyun Oh
- Department of Electronics & Information Engineering, Korea University, Sejong, Korea.
| | - Kyung Hyun Kim
- Department of Biotechnology & Bioinformatics, Korea University, Sejong, Korea.
| |
Collapse
|