1
|
Tytarenko A, Singh A, Ambati VK, Copeland MM, Kundrotas PJ, Halfmann R, Kasyanov PO, Feinberg EA, Vakser IA. Highly Optimized Simulation of Atomic Resolution Cell-Like Protein Environment. J Phys Chem B 2025; 129:3183-3190. [PMID: 40077832 PMCID: PMC11956777 DOI: 10.1021/acs.jpcb.4c07769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Computational approaches can provide details of molecular mechanisms in a crowded environment inside cells. Protein docking predicts stable configurations of molecular complexes, which correspond to deep energy minima. Systematic docking approaches, such as those based on fast Fourier transform (FFT), also map the entire intermolecular energy landscape by determining the position and depth of the full spectrum of the energy minima. Such mapping allows speeding up simulations by precalculating the intermolecular energy values. Our earlier study combined FFT docking with the Monte Carlo protocol, enabling simulation of cell-size, crowded protein systems with seconds, and longer trajectories at atomic resolution, several orders of magnitude longer than those achievable by alternative approaches. In this study, we present a further drastic extension of the modeling capabilities by parallelized implementation of the simulation protocol. The procedure was applied to a panel of Death Fold Domains that form nucleated polymers in human innate immune signaling, recapitulating their homooligomerization tendencies and providing insights into the molecular mechanisms of polymer nucleation. The parallelized protocol allows extension of the simulation trajectories by orders of magnitude beyond the previously reported implementation, reaching into the uncharted territory of atomic resolution simulation of cell-sized systems.
Collapse
Affiliation(s)
- Andrii
M. Tytarenko
- Institute
for Applied System Analysis at the Igor Sikorsky Kyiv Polytechnic
Institute, Kyiv 03056, Ukraine
| | - Amar Singh
- Computational
Biology Program, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Vineeth Kumar Ambati
- Computational
Biology Program, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Matthew M. Copeland
- Computational
Biology Program, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Petras J. Kundrotas
- Computational
Biology Program, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Randal Halfmann
- Stowers
Institute for Medical Research, Kansas City, Missouri 64110, United States
- Department
of Biochemistry and Molecular Biology, University
of Kansas Medical Center, Kansas
City, Kansas 66160, United States
| | - Pavlo O. Kasyanov
- Institute
for Applied System Analysis at the Igor Sikorsky Kyiv Polytechnic
Institute, Kyiv 03056, Ukraine
| | - Eugene A. Feinberg
- Department
of Applied Mathematics and Statistics, Stony
Brook University, Stony
Brook, New York 11794, United States
| | - Ilya A. Vakser
- Computational
Biology Program, The University of Kansas, Lawrence, Kansas 66045, United States
- Department
of Molecular Biosciences, The University
of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
2
|
Singh A, Tytarenko AM, Ambati VK, Copeland MM, Kundrotas PJ, Kasyanov PO, Feinberg EA, Vakser IA. GRAMMCell: Docking-based Cell Modeling Resource. J Mol Biol 2025:169085. [PMID: 40133778 DOI: 10.1016/j.jmb.2025.169085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025]
Abstract
The environment inside biological cells is densely populated by macromolecules and other cellular components. The crowding has a significant impact on folding and stability of macromolecules, and on kinetics of molecular interactions. Computational approaches to cell modeling, such as molecular dynamics, provide details of macromolecular behavior in concentrated solutions. However, such simulations are either slow, when carried out at atomic resolution, or significantly coarse-grained. Protein docking has been widely used for predicting structures of protein complexes. Systematic docking approaches, such as those based on Fast Fourier Transform (FFT), map the entire intermolecular energy landscape by determining the position and depth of the energy minima. The GRAMMCell web server implements docking-based approach for simulating cell crowded environment by sampling the intermolecular energy landscape generated by GRAMM (Global RAnge Molecular Matching). GRAMM systematically maps the landscape by a spectrum of docking poses corresponding to stable (deep energy minima) and transient (shallow minima) protein interactions. The sampling of these energy landscapes of a large system of proteins is performed in GRAMMCell using highly optimized Markov Chain Monte Carlo protocol. The procedure allows simulation of extra-long trajectories of large, crowded protein systems with atomic resolution accuracy. GRAMMCell is available at https://grammcell.compbio.ku.edu.
Collapse
Affiliation(s)
- Amar Singh
- Computational Biology Program, The University of Kansas, Lawrence, KS 66045, USA
| | - Andrii M Tytarenko
- Institute for Applied System Analysis at the Igor Sikorsky Kyiv Polytechnic Institute, Kyiv 03056, Ukraine
| | - Vineeth Kumar Ambati
- Computational Biology Program, The University of Kansas, Lawrence, KS 66045, USA
| | - Matthew M Copeland
- Computational Biology Program, The University of Kansas, Lawrence, KS 66045, USA
| | - Petras J Kundrotas
- Computational Biology Program, The University of Kansas, Lawrence, KS 66045, USA
| | - Pavlo O Kasyanov
- Institute for Applied System Analysis at the Igor Sikorsky Kyiv Polytechnic Institute, Kyiv 03056, Ukraine
| | - Eugene A Feinberg
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ilya A Vakser
- Computational Biology Program, The University of Kansas, Lawrence, KS 66045, USA; Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
3
|
Honorato RV, Trellet ME, Jiménez-García B, Schaarschmidt JJ, Giulini M, Reys V, Koukos PI, Rodrigues JPGLM, Karaca E, van Zundert GCP, Roel-Touris J, van Noort CW, Jandová Z, Melquiond ASJ, Bonvin AMJJ. The HADDOCK2.4 web server for integrative modeling of biomolecular complexes. Nat Protoc 2024; 19:3219-3241. [PMID: 38886530 DOI: 10.1038/s41596-024-01011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/11/2024] [Indexed: 06/20/2024]
Abstract
Interactions between macromolecules, such as proteins and nucleic acids, are essential for cellular functions. Experimental methods can fail to provide all the information required to fully model biomolecular complexes at atomic resolution, particularly for large and heterogeneous assemblies. Integrative computational approaches have, therefore, gained popularity, complementing traditional experimental methods in structural biology. Here, we introduce HADDOCK2.4, an integrative modeling platform, and its updated web interface ( https://wenmr.science.uu.nl/haddock2.4 ). The platform seamlessly integrates diverse experimental and theoretical data to generate high-quality models of macromolecular complexes. The user-friendly web server offers automated parameter settings, access to distributed computing resources, and pre- and post-processing steps that enhance the user experience. To present the web server's various interfaces and features, we demonstrate two different applications: (i) we predict the structure of an antibody-antigen complex by using NMR data for the antigen and knowledge of the hypervariable loops for the antibody, and (ii) we perform coarse-grained modeling of PRC1 with a nucleosome particle guided by mutagenesis and functional data. The described protocols require some basic familiarity with molecular modeling and the Linux command shell. This new version of our widely used HADDOCK web server allows structural biologists and non-experts to explore intricate macromolecular assemblies encompassing various molecule types.
Collapse
Affiliation(s)
- Rodrigo V Honorato
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Mikael E Trellet
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Fluigent, Le Kremlin-Bicêtre, France
| | - Brian Jiménez-García
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Zymvol Biomodeling SL, Barcelona, Spain
| | - Jörg J Schaarschmidt
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Eggenstein-Leopoldshafen, Germany
| | - Marco Giulini
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Victor Reys
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Panagiotis I Koukos
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - João P G L M Rodrigues
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Schrödinger Inc., New York, NY, USA
| | - Ezgi Karaca
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Izmir Biomedicine and Genome Center, Izimir, Turkey
| | - Gydo C P van Zundert
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Schrödinger Inc., New York, NY, USA
| | - Jorge Roel-Touris
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Protein Design and Modeling Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Charlotte W van Noort
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Zuzana Jandová
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Boehringer Ingelheim International GmbH, Vienna, Austria
| | - Adrien S J Melquiond
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Utrecht Medical Center, Utrecht, the Netherlands
| | - Alexandre M J J Bonvin
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Singh A, Kundrotas PJ, Vakser IA. Diffusion of proteins in crowded solutions studied by docking-based modeling. J Chem Phys 2024; 161:095101. [PMID: 39225532 PMCID: PMC11374379 DOI: 10.1063/5.0220545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
The diffusion of proteins is significantly affected by macromolecular crowding. Molecular simulations accounting for protein interactions at atomic resolution are useful for characterizing the diffusion patterns in crowded environments. We present a comprehensive analysis of protein diffusion under different crowding conditions based on our recent docking-based approach simulating an intracellular crowded environment by sampling the intermolecular energy landscape using the Markov Chain Monte Carlo protocol. The procedure was extensively benchmarked, and the results are in very good agreement with the available experimental and theoretical data. The translational and rotational diffusion rates were determined for different types of proteins under crowding conditions in a broad range of concentrations. A protein system representing most abundant protein types in the E. coli cytoplasm was simulated, as well as large systems of other proteins of varying sizes in heterogeneous and self-crowding solutions. Dynamics of individual proteins was analyzed as a function of concentration and different diffusion rates in homogeneous and heterogeneous crowding. Smaller proteins diffused faster in heterogeneous crowding of larger molecules, compared to their diffusion in the self-crowded solution. Larger proteins displayed the opposite behavior, diffusing faster in the self-crowded solution. The results show the predictive power of our structure-based simulation approach for long timescales of cell-size systems at atomic resolution.
Collapse
Affiliation(s)
- Amar Singh
- Computational Biology Program, The University of Kansas, Lawrence, Kansas 66045, USA
| | - Petras J Kundrotas
- Computational Biology Program, The University of Kansas, Lawrence, Kansas 66045, USA
| | - Ilya A Vakser
- Computational Biology Program, The University of Kansas, Lawrence, Kansas 66045, USA
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
5
|
Lagunes L, Briggs K, Martin-Holder P, Xu Z, Maurer D, Ghabra K, Deeds EJ. Modeling reveals the strength of weak interactions in stacked-ring assembly. Biophys J 2024; 123:1763-1780. [PMID: 38762753 PMCID: PMC11267433 DOI: 10.1016/j.bpj.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024] Open
Abstract
Cells employ many large macromolecular machines for the execution and regulation of processes that are vital for cell and organismal viability. Interestingly, cells cannot synthesize these machines as functioning units. Instead, cells synthesize the molecular parts that must then assemble into the functional complex. Many important machines, including chaperones such as GroEL and proteases such as the proteasome, comprise protein rings that are stacked on top of one another. While there is some experimental data regarding how stacked-ring complexes such as the proteasome self-assemble, a comprehensive understanding of the dynamics of stacked-ring assembly is currently lacking. Here, we developed a mathematical model of stacked-trimer assembly and performed an analysis of the assembly of the stacked homomeric trimer, which is the simplest stacked-ring architecture. We found that stacked rings are particularly susceptible to a form of kinetic trapping that we term "deadlock," in which the system gets stuck in a state where there are many large intermediates that are not the fully assembled structure but that cannot productively react. When interaction affinities are uniformly strong, deadlock severely limits assembly yield. We thus predicted that stacked rings would avoid situations where all interfaces in the structure have high affinity. Analysis of available crystal structures indicated that indeed the majority-if not all-of stacked trimers do not contain uniformly strong interactions. Finally, to better understand the origins of deadlock, we developed a formal pathway analysis and showed that, when all the binding affinities are strong, many of the possible pathways are utilized. In contrast, optimal assembly strategies utilize only a small number of pathways. Our work suggests that deadlock is a critical factor influencing the evolution of macromolecular machines and provides general principles for understanding the self-assembly efficiency of existing machines.
Collapse
Affiliation(s)
- Leonila Lagunes
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California; Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, California
| | - Koan Briggs
- Department of Physics, University of Kansas, Lawrence, Kansas
| | - Paige Martin-Holder
- Department of Molecular Immunology, Microbiology and Genetics, UCLA, Los Angeles, California
| | - Zaikun Xu
- Center for Computational Biology, University of Kansas, Lawrence, Kansas
| | - Dustin Maurer
- Center for Computational Biology, University of Kansas, Lawrence, Kansas
| | - Karim Ghabra
- Computational and Systems Biology IDP, UCLA, Los Angeles, California
| | - Eric J Deeds
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California; Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, California; Center for Computational Biology, University of Kansas, Lawrence, Kansas.
| |
Collapse
|
6
|
Vakser IA. Prediction of protein interactions is essential for studying biomolecular mechanisms. Proteomics 2023; 23:e2300219. [PMID: 37667816 DOI: 10.1002/pmic.202300219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 09/06/2023]
Abstract
Structural characterization of protein interactions is essential for our ability to understand and modulate physiological processes. Computational approaches to modeling of protein complexes provide structural information that far exceeds capabilities of the existing experimental techniques. Protein structure prediction in general, and prediction of protein interactions in particular, has been revolutionized by the rapid progress in Deep Learning techniques. The work of Schweke et al. (Proteomics 2023, 23, 2200323) presents a community-wide study of an important problem of distinguishing physiological protein-protein complexes/interfaces (experimentally determined or modeled) from non-physiological ones. The authors designed and generated a large benchmark set of physiological and non-physiological homodimeric complexes, and evaluated a large set of scoring functions, as well as AlphaFold predictions, on their ability to discriminate the non-physiological interfaces. The problem of separating physiological interfaces from non-physiological ones is very difficult, largely due to the lack of a clear distinction between the two categories in a crowded environment inside a living cell. Still, the ability to identify key physiologically significant interfaces in the variety of possible configurations of a protein-protein complex is important. The study presents a major data resource and methodological development in this important direction for molecular and cellular biology.
Collapse
Affiliation(s)
- Ilya A Vakser
- Computational Biology Program, The University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
7
|
Jenkins NW, Kundrotas PJ, Vakser IA. Size of the protein-protein energy funnel in crowded environment. Front Mol Biosci 2022; 9:1031225. [PMID: 36425657 PMCID: PMC9679368 DOI: 10.3389/fmolb.2022.1031225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
Association of proteins to a significant extent is determined by their geometric complementarity. Large-scale recognition factors, which directly relate to the funnel-like intermolecular energy landscape, provide important insights into the basic rules of protein recognition. Previously, we showed that simple energy functions and coarse-grained models reveal major characteristics of the energy landscape. As new computational approaches increasingly address structural modeling of a whole cell at the molecular level, it becomes important to account for the crowded environment inside the cell. The crowded environment drastically changes protein recognition properties, and thus significantly alters the underlying energy landscape. In this study, we addressed the effect of crowding on the protein binding funnel, focusing on the size of the funnel. As crowders occupy the funnel volume, they make it less accessible to the ligands. Thus, the funnel size, which can be defined by ligand occupancy, is generally reduced with the increase of the crowders concentration. This study quantifies this reduction for different concentration of crowders and correlates this dependence with the structural details of the interacting proteins. The results provide a better understanding of the rules of protein association in the crowded environment.
Collapse
Affiliation(s)
- Nathan W. Jenkins
- Computational Biology Program, The University of Kansas, Lawrence, KS, United States
| | - Petras J. Kundrotas
- Computational Biology Program, The University of Kansas, Lawrence, KS, United States
- *Correspondence: Petras J. Kundrotas, ; Ilya A. Vakser,
| | - Ilya A. Vakser
- Computational Biology Program, The University of Kansas, Lawrence, KS, United States
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, United States
- *Correspondence: Petras J. Kundrotas, ; Ilya A. Vakser,
| |
Collapse
|
8
|
Vakser IA, Grudinin S, Jenkins NW, Kundrotas PJ, Deeds EJ. Docking-based long timescale simulation of cell-size protein systems at atomic resolution. Proc Natl Acad Sci U S A 2022; 119:e2210249119. [PMID: 36191203 PMCID: PMC9565162 DOI: 10.1073/pnas.2210249119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/02/2022] [Indexed: 01/03/2023] Open
Abstract
Computational methodologies are increasingly addressing modeling of the whole cell at the molecular level. Proteins and their interactions are the key component of cellular processes. Techniques for modeling protein interactions, thus far, have included protein docking and molecular simulation. The latter approaches account for the dynamics of the interactions but are relatively slow, if carried out at all-atom resolution, or are significantly coarse grained. Protein docking algorithms are far more efficient in sampling spatial coordinates. However, they do not account for the kinetics of the association (i.e., they do not involve the time coordinate). Our proof-of-concept study bridges the two modeling approaches, developing an approach that can reach unprecedented simulation timescales at all-atom resolution. The global intermolecular energy landscape of a large system of proteins was mapped by the pairwise fast Fourier transform docking and sampled in space and time by Monte Carlo simulations. The simulation protocol was parametrized on existing data and validated on a number of observations from experiments and molecular dynamics simulations. The simulation protocol performed consistently across very different systems of proteins at different protein concentrations. It recapitulated data on the previously observed protein diffusion rates and aggregation. The speed of calculation allows reaching second-long trajectories of protein systems that approach the size of the cells, at atomic resolution.
Collapse
Affiliation(s)
- Ilya A. Vakser
- Computational Biology Program, The University of Kansas, Lawrence, KS
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS
| | - Sergei Grudinin
- University of Grenoble Alpes, CNRS, Grenoble INP, LJK, Grenoble, France
| | - Nathan W. Jenkins
- Computational Biology Program, The University of Kansas, Lawrence, KS
| | | | - Eric J. Deeds
- Department of Integrative Biology and Physiology, Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA
| |
Collapse
|
9
|
Priyamvada P, Debroy R, Anbarasu A, Ramaiah S. A comprehensive review on genomics, systems biology and structural biology approaches for combating antimicrobial resistance in ESKAPE pathogens: computational tools and recent advancements. World J Microbiol Biotechnol 2022; 38:153. [PMID: 35788443 DOI: 10.1007/s11274-022-03343-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/21/2022] [Indexed: 12/11/2022]
Abstract
In recent decades, antimicrobial resistance has been augmented as a global concern to public health owing to the global spread of multidrug-resistant strains from different ESKAPE pathogens. This alarming trend and the lack of new antibiotics with novel modes of action in the pipeline necessitate the development of non-antibiotic ways to treat illnesses caused by these isolates. In molecular biology, computational approaches have become crucial tools, particularly in one of the most challenging areas of multidrug resistance. The rapid advancements in bioinformatics have led to a plethora of computational approaches involving genomics, systems biology, and structural biology currently gaining momentum among molecular biologists since they can be useful and provide valuable information on the complex mechanisms of AMR research in ESKAPE pathogens. These computational approaches would be helpful in elucidating the AMR mechanisms, identifying important hub genes/proteins, and their promising targets together with their interactions with important drug targets, which is a crucial step in drug discovery. Therefore, the present review aims to provide holistic information on currently employed bioinformatic tools and their application in the discovery of multifunctional novel therapeutic drugs to combat the current problem of AMR in ESKAPE pathogens. The review also summarizes the recent advancement in the AMR research in ESKAPE pathogens utilizing the in silico approaches.
Collapse
Affiliation(s)
- P Priyamvada
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), 632014, Vellore, India.,Department of Bio-Sciences, SBST, VIT, 632014, Vellore, India
| | - Reetika Debroy
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), 632014, Vellore, India.,Department of Bio-Medical Sciences, SBST, VIT, 632014, Vellore, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), 632014, Vellore, India.,Department of Biotechnology, SBST, VIT, 632014, Vellore, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), 632014, Vellore, India. .,Department of Bio-Sciences, SBST, VIT, 632014, Vellore, India. .,School of Biosciences and Technology VIT, 632014, Vellore, Tamil Nadu, India.
| |
Collapse
|
10
|
Aderinwale T, Christoffer CW, Sarkar D, Alnabati E, Kihara D. Computational structure modeling for diverse categories of macromolecular interactions. Curr Opin Struct Biol 2020; 64:1-8. [PMID: 32599506 PMCID: PMC7665979 DOI: 10.1016/j.sbi.2020.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/06/2020] [Accepted: 05/21/2020] [Indexed: 01/23/2023]
Abstract
Computational protein-protein docking is one of the most intensively studied topics in structural bioinformatics. The field has made substantial progress through over three decades of development. The development began with methods for rigid-body docking of two proteins, which have now been extended in different directions to cover the various macromolecular interactions observed in a cell. Here, we overview the recent developments of the variations of docking methods, including multiple protein docking, peptide-protein docking, and disordered protein docking methods.
Collapse
Affiliation(s)
- Tunde Aderinwale
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Daipayan Sarkar
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Eman Alnabati
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
11
|
Vakser IA. Challenges in protein docking. Curr Opin Struct Biol 2020; 64:160-165. [PMID: 32836051 DOI: 10.1016/j.sbi.2020.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/19/2020] [Accepted: 07/11/2020] [Indexed: 11/30/2022]
Abstract
Current developments in protein docking aim at improvement of applicability, accuracy and utility of modeling macromolecular complexes. The challenges include the need for greater emphasis on protein docking to molecules of different types, proper accounting for conformational flexibility upon binding, new promising methodologies based on residue co-evolution and deep learning, affinity prediction, and further development of fully automated docking servers. Importantly, new developments increasingly focus on realistic modeling of protein interactions in vivo, including crowded environment inside a cell, which involves multiple transient encounters, and propagating the system in time. This opinion paper offers the author's perspective on these challenges in structural modeling of protein interactions and the future of protein docking.
Collapse
Affiliation(s)
- Ilya A Vakser
- Computational Biology Program and Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
12
|
Koukos P, Bonvin A. Integrative Modelling of Biomolecular Complexes. J Mol Biol 2020; 432:2861-2881. [DOI: 10.1016/j.jmb.2019.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022]
|
13
|
Koukos PI, Roel-Touris J, Ambrosetti F, Geng C, Schaarschmidt J, Trellet ME, Melquiond ASJ, Xue LC, Honorato RV, Moreira I, Kurkcuoglu Z, Vangone A, Bonvin AMJJ. An overview of data-driven HADDOCK strategies in CAPRI rounds 38-45. Proteins 2019; 88:1029-1036. [PMID: 31886559 DOI: 10.1002/prot.25869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/17/2019] [Accepted: 12/26/2019] [Indexed: 01/18/2023]
Abstract
Our information-driven docking approach HADDOCK has demonstrated a sustained performance since the start of its participation to CAPRI. This is due, in part, to its ability to integrate data into the modeling process, and to the robustness of its scoring function. We participated in CAPRI both as server and manual predictors. In CAPRI rounds 38-45, we have used various strategies depending on the available information. These ranged from imposing restraints to a few residues identified from literature as being important for the interaction, to binding pockets identified from homologous complexes or template-based refinement/CA-CA restraint-guided docking from identified templates. When relevant, symmetry restraints were used to limit the conformational sampling. We also tested for a large decamer target a new implementation of the MARTINI coarse-grained force field in HADDOCK. Overall, we obtained acceptable or better predictions for 13 and 11 server and manual submissions, respectively, out of the 22 interfaces. Our server performance (acceptable or higher-quality models when considering the top 10) was better (59%) than the manual (50%) one, in which we typically experiment with various combinations of protocols and data sources. Again, our simple scoring function based on a linear combination of intermolecular van der Waals and electrostatic energies and an empirical desolvation term demonstrated a good performance in the scoring experiment with a 63% success rate across all 22 interfaces. An analysis of model quality indicates that, while we are consistently performing well in generating acceptable models, there is room for improvement for generating/identifying higher quality models.
Collapse
Affiliation(s)
- Panagiotis I Koukos
- Faculty of Science, Department of Chemistry, Bijvoet Center for Biomolecular Research, Computational Structural Biology Group, Utrecht University, Utrecht, The Netherlands
| | - Jorge Roel-Touris
- Faculty of Science, Department of Chemistry, Bijvoet Center for Biomolecular Research, Computational Structural Biology Group, Utrecht University, Utrecht, The Netherlands
| | - Francesco Ambrosetti
- Faculty of Science, Department of Chemistry, Bijvoet Center for Biomolecular Research, Computational Structural Biology Group, Utrecht University, Utrecht, The Netherlands.,Department of Physics, Sapienza University, Rome, Italy
| | - Cunliang Geng
- Faculty of Science, Department of Chemistry, Bijvoet Center for Biomolecular Research, Computational Structural Biology Group, Utrecht University, Utrecht, The Netherlands
| | - Jörg Schaarschmidt
- Faculty of Science, Department of Chemistry, Bijvoet Center for Biomolecular Research, Computational Structural Biology Group, Utrecht University, Utrecht, The Netherlands.,Multiscale Materials Modelling and Virtual Design, Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Mikael E Trellet
- Faculty of Science, Department of Chemistry, Bijvoet Center for Biomolecular Research, Computational Structural Biology Group, Utrecht University, Utrecht, The Netherlands
| | - Adrien S J Melquiond
- Faculty of Science, Department of Chemistry, Bijvoet Center for Biomolecular Research, Computational Structural Biology Group, Utrecht University, Utrecht, The Netherlands
| | - Li C Xue
- Faculty of Science, Department of Chemistry, Bijvoet Center for Biomolecular Research, Computational Structural Biology Group, Utrecht University, Utrecht, The Netherlands
| | - Rodrigo V Honorato
- Faculty of Science, Department of Chemistry, Bijvoet Center for Biomolecular Research, Computational Structural Biology Group, Utrecht University, Utrecht, The Netherlands
| | - Irina Moreira
- Faculty of Science, Department of Chemistry, Bijvoet Center for Biomolecular Research, Computational Structural Biology Group, Utrecht University, Utrecht, The Netherlands.,CNC-Center for Neuroscience and Cell Biology, Rua Larga, FMUC, Polo I, 1° andar, Universidade de Coimbra, Coimbra, Portugal
| | - Zeynep Kurkcuoglu
- Faculty of Science, Department of Chemistry, Bijvoet Center for Biomolecular Research, Computational Structural Biology Group, Utrecht University, Utrecht, The Netherlands
| | - Anna Vangone
- Faculty of Science, Department of Chemistry, Bijvoet Center for Biomolecular Research, Computational Structural Biology Group, Utrecht University, Utrecht, The Netherlands
| | - Alexandre M J J Bonvin
- Faculty of Science, Department of Chemistry, Bijvoet Center for Biomolecular Research, Computational Structural Biology Group, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|