1
|
Li M, Qing R, Tao F, Xu P, Zhang S. Inhibitory effect of truncated isoforms on GPCR dimerization predicted by combinatorial computational strategy. Comput Struct Biotechnol J 2024; 23:278-286. [PMID: 38173876 PMCID: PMC10762321 DOI: 10.1016/j.csbj.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
G protein-coupled receptors (GPCRs) play a pivotal role in fundamental biological processes and disease development. GPCR isoforms, derived from alternative splicing, can exhibit distinct signaling patterns. Some highly-truncated isoforms can impact functional performance of full-length receptors, suggesting their intriguing regulatory roles. However, how these truncated isoforms interact with full-length counterparts remains largely unexplored. Here, we computationally investigated the interaction patterns of three human GPCRs from three different classes, ADORA1 (Class A), mGlu2 (Class C) and SMO (Class F) with their respective truncated isoforms because their homodimer structures have been experimentally determined, and they have truncated isoforms deposited and identified at protein level in Uniprot database. Combining the neural network-based AlphaFold2 and two physics-based protein-protein docking tools, we generated multiple complex structures and assessed the binding affinity in the context of atomistic molecular dynamics simulations. Our computational results suggested all the four studied truncated isoforms showed potent binding to their counterparts and overlapping interfaces with homodimers, indicating their strong potential to block homodimerization of their counterparts. Our study offers insights into functional significance of GPCR truncated isoforms and supports the ubiquity of their regulatory roles.
Collapse
Affiliation(s)
- Mengke Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Rui Qing
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuguang Zhang
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Li M, Qing R, Tao F, Xu P, Zhang S. Dynamic Dimerization of Chemokine Receptors and Potential Inhibitory Role of Their Truncated Isoforms Revealed through Combinatorial Prediction. Int J Mol Sci 2023; 24:16266. [PMID: 38003455 PMCID: PMC10671024 DOI: 10.3390/ijms242216266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Chemokine receptors play crucial roles in fundamental biological processes. Their malfunction may result in many diseases, including cancer, autoimmune diseases, and HIV. The oligomerization of chemokine receptors holds significant functional implications that directly affect their signaling patterns and pharmacological responses. However, the oligomerization patterns of many chemokine receptors remain poorly understood. Furthermore, several chemokine receptors have highly truncated isoforms whose functional role is not yet clear. Here, we computationally show homo- and heterodimerization patterns of four human chemokine receptors, namely CXCR2, CXCR7, CCR2, and CCR7, along with their interaction patterns with their respective truncated isoforms. By combining the neural network-based AlphaFold2 and physics-based protein-protein docking tool ClusPro, we predicted 15 groups of complex structures and assessed the binding affinities in the context of atomistic molecular dynamics simulations. Our results are in agreement with previous experimental observations and support the dynamic and diverse nature of chemokine receptor dimerization, suggesting possible patterns of higher-order oligomerization. Additionally, we uncover the strong potential of truncated isoforms to block homo- and heterodimerization of chemokine receptors, also in a dynamic manner. Our study provides insights into the dimerization patterns of chemokine receptors and the functional significance of their truncated isoforms.
Collapse
Affiliation(s)
- Mengke Li
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (R.Q.); (F.T.); (P.X.)
| | - Rui Qing
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (R.Q.); (F.T.); (P.X.)
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (R.Q.); (F.T.); (P.X.)
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (R.Q.); (F.T.); (P.X.)
| | - Shuguang Zhang
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| |
Collapse
|
3
|
Boulos I, Jabbour J, Khoury S, Mikhael N, Tishkova V, Candoni N, Ghadieh HE, Veesler S, Bassim Y, Azar S, Harb F. Exploring the World of Membrane Proteins: Techniques and Methods for Understanding Structure, Function, and Dynamics. Molecules 2023; 28:7176. [PMID: 37894653 PMCID: PMC10608922 DOI: 10.3390/molecules28207176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/13/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
In eukaryotic cells, membrane proteins play a crucial role. They fall into three categories: intrinsic proteins, extrinsic proteins, and proteins that are essential to the human genome (30% of which is devoted to encoding them). Hydrophobic interactions inside the membrane serve to stabilize integral proteins, which span the lipid bilayer. This review investigates a number of computational and experimental methods used to study membrane proteins. It encompasses a variety of technologies, including electrophoresis, X-ray crystallography, cryogenic electron microscopy (cryo-EM), nuclear magnetic resonance spectroscopy (NMR), biophysical methods, computational methods, and artificial intelligence. The link between structure and function of membrane proteins has been better understood thanks to these approaches, which also hold great promise for future study in the field. The significance of fusing artificial intelligence with experimental data to improve our comprehension of membrane protein biology is also covered in this paper. This effort aims to shed light on the complexity of membrane protein biology by investigating a variety of experimental and computational methods. Overall, the goal of this review is to emphasize how crucial it is to understand the functions of membrane proteins in eukaryotic cells. It gives a general review of the numerous methods used to look into these crucial elements and highlights the demand for multidisciplinary approaches to advance our understanding.
Collapse
Affiliation(s)
- Imad Boulos
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Joy Jabbour
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Serena Khoury
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Nehme Mikhael
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Victoria Tishkova
- CNRS, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, Aix-Marseille University, CEDEX 09, F-13288 Marseille, France; (V.T.); (N.C.); (S.V.)
| | - Nadine Candoni
- CNRS, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, Aix-Marseille University, CEDEX 09, F-13288 Marseille, France; (V.T.); (N.C.); (S.V.)
| | - Hilda E. Ghadieh
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Stéphane Veesler
- CNRS, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, Aix-Marseille University, CEDEX 09, F-13288 Marseille, France; (V.T.); (N.C.); (S.V.)
| | - Youssef Bassim
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Sami Azar
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Frédéric Harb
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| |
Collapse
|
4
|
Chen J, Wang Z, Zhang R, Yin H, Wang P, Wang C, Jiang Y. Heterodimerization of apelin and opioid receptor-like 1 receptors mediates apelin-13-induced G protein biased signaling. Life Sci 2023:121892. [PMID: 37364634 DOI: 10.1016/j.lfs.2023.121892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The apelin receptor (APJ) and the opioid-related nociceptin receptor 1 (ORL1) are family A G protein-coupled receptors that participate in a variety of physiological processes. The distribution and function of APJ and ORL1 in the nervous system and peripheral tissues are similar; however, the detailed mechanism of how these two receptors modulate signaling and physiological effects remains unclear. Here, we examined whether APJ and ORL1 form dimers, and investigated signal transduction pathways. The endogenous co-expression of APJ and ORL1 in SH-SY5Y cells was confirmed by western blotting and RT-PCR. Bioluminescence and fluorescence resonance energy transfer assays, as well as a proximity ligation assay and co-immunoprecipitation experiments, demonstrated that APJ and ORL1 heterodimerize in HEK293 cells. We found that the APJ-ORL1 heterodimer is selectively activated by apelin-13, which causes the dimer to couple to Gαi proteins and reduce the recruitment of GRKs and β-arrestins to the dimer. We showed that the APJ-ORL1 dimer exhibits biased signaling, in which G protein-dependent signaling pathways override β-arrestin-dependent signaling pathways. Our results demonstrate that the structural interface of the APJ-ORL1 dimer switches from transmembrane domain TM1/TM2 in the inactive state to TM5 in the active state. We used mutational analysis and BRET assays to identify key residues in TM5 (APJ L2185.55, APJ I2245.61, and ORL1 L2295.52) responsible for the receptor-receptor interaction. These results provide important information on the APJ-ORL1 heterodimer and may assist the design of new drugs targeting biased signaling pathways for treatment of pain and cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Jing Chen
- Neurobiology Institute, Jining Medical University, Jining, China; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom.
| | - Zhengwen Wang
- Neurobiology Institute, Jining Medical University, Jining, China
| | - Rumin Zhang
- Neurobiology Institute, Jining Medical University, Jining, China
| | - Haiyan Yin
- Neurobiology Institute, Jining Medical University, Jining, China
| | - Peixiang Wang
- Neurobiology Institute, Jining Medical University, Jining, China
| | - Chunmei Wang
- Neurobiology Institute, Jining Medical University, Jining, China
| | - Yunlu Jiang
- Neurobiology Institute, Jining Medical University, Jining, China.
| |
Collapse
|
5
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
6
|
The M 1 muscarinic receptor is present in situ as a ligand-regulated mixture of monomers and oligomeric complexes. Proc Natl Acad Sci U S A 2022; 119:e2201103119. [PMID: 35671422 PMCID: PMC9214538 DOI: 10.1073/pnas.2201103119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although it is appreciated that members of the large family of rhodopsin-like cell surface receptors can form dimeric or larger protein complexes when expressed at high levels in cultured cells, their organizational state within native cells and tissues of the body is largely unknown. We assessed this in neurons of the central nervous system by replacing the M1 muscarinic acetylcholine receptor in mice with a form of this receptor with an added fluorescent protein. Receptor function was unaltered by this change, and the biophysical approach we used demonstrated that the receptor exists as a mixture of monomers and dimers or oligomers. Drug treatments that target this receptor promote its monomerization, which may have significance for receptor function. The quaternary organization of rhodopsin-like G protein-coupled receptors in native tissues is unknown. To address this we generated mice in which the M1 muscarinic acetylcholine receptor was replaced with a C-terminally monomeric enhanced green fluorescent protein (mEGFP)–linked variant. Fluorescence imaging of brain slices demonstrated appropriate regional distribution, and using both anti-M1 and anti–green fluorescent protein antisera the expressed transgene was detected in both cortex and hippocampus only as the full-length polypeptide. M1-mEGFP was expressed at levels equal to the M1 receptor in wild-type mice and was expressed throughout cell bodies and projections in cultured neurons from these animals. Signaling and behavioral studies demonstrated M1-mEGFP was fully active. Application of fluorescence intensity fluctuation spectrometry to regions of interest within M1-mEGFP–expressing neurons quantified local levels of expression and showed the receptor was present as a mixture of monomers, dimers, and higher-order oligomeric complexes. Treatment with both an agonist and an antagonist ligand promoted monomerization of the M1-mEGFP receptor. The quaternary organization of a class A G protein-coupled receptor in situ was directly quantified in neurons in this study, which answers the much-debated question of the extent and potential ligand-induced regulation of basal quaternary organization of such a receptor in native tissue when present at endogenous expression levels.
Collapse
|
7
|
Zhang R, Li D, Mao H, Wei X, Xu M, Zhang S, Jiang Y, Wang C, Xin Q, Chen X, Li G, Ji B, Yan M, Cai X, Dong B, Randeva HS, Liu C, Chen J. Disruption of 5-hydroxytryptamine 1A receptor and orexin receptor 1 heterodimer formation affects novel G protein-dependent signaling pathways and has antidepressant effects in vivo. Transl Psychiatry 2022; 12:122. [PMID: 35338110 PMCID: PMC8956632 DOI: 10.1038/s41398-022-01886-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 01/28/2023] Open
Abstract
G protein-coupled receptor (GPCR) heterodimers are new targets for the treatment of depression. Increasing evidence supports the importance of serotonergic and orexin-producing neurons in numerous physiological processes, possibly via a crucial interaction between 5-hydroxytryptamine 1A receptor (5-HT1AR) and orexin receptor 1 (OX1R). However, little is known about the function of 5-HT1AR/OX1R heterodimers. It is unclear how the transmembrane domains (TMs) of the dimer affect its function and whether its modulation mediates antidepressant-like effects. Here, we examined the mechanism of 5-HT1AR/OX1R dimerization and downstream G protein-dependent signaling. We found that 5-HT1AR and OX1R form constitutive heterodimers that induce novel G protein-dependent signaling, and that this heterodimerization does not affect recruitment of β-arrestins to the complex. In addition, we found that the structural interface of the active 5-HT1AR/OX1R dimer transforms from TM4/TM5 in the basal state to TM6 in the active conformation. We also used mutation analyses to identify key residues at the interface (5-HT1AR R1514.40, 5-HT1AR Y1985.41, and OX1R L2305.54). Injection of chronic unpredictable mild stress (CUMS) rats with TM4/TM5 peptides improved their depression-like emotional status and decreased the number of endogenous 5-HT1AR/OX1R heterodimers in the rat brain. These antidepressant effects may be mediated by upregulation of BDNF levels and enhanced phosphorylation and activation of CREB in the hippocampus and medial prefrontal cortex. This study provides evidence that 5-HT1AR/OX1R heterodimers are involved in the pathological process of depression. Peptides including TMs of the 5-HT1AR/OX1R heterodimer interface are candidates for the development of compounds with fast-acting antidepressant-like effects.
Collapse
Affiliation(s)
- Rumin Zhang
- grid.449428.70000 0004 1797 7280Neurobiology Institute, Jining Medical University, Jining, China
| | - Dandan Li
- grid.449428.70000 0004 1797 7280Neurobiology Institute, Jining Medical University, Jining, China
| | - Huiling Mao
- grid.449428.70000 0004 1797 7280Neurobiology Institute, Jining Medical University, Jining, China
| | - Xiaonan Wei
- grid.449428.70000 0004 1797 7280Neurobiology Institute, Jining Medical University, Jining, China
| | - MingDong Xu
- grid.449428.70000 0004 1797 7280Neurobiology Institute, Jining Medical University, Jining, China
| | - Shengnan Zhang
- grid.449428.70000 0004 1797 7280Neurobiology Institute, Jining Medical University, Jining, China
| | - Yunlu Jiang
- grid.449428.70000 0004 1797 7280Neurobiology Institute, Jining Medical University, Jining, China
| | - Chunmei Wang
- grid.449428.70000 0004 1797 7280Neurobiology Institute, Jining Medical University, Jining, China
| | - Qing Xin
- grid.449428.70000 0004 1797 7280Neurobiology Institute, Jining Medical University, Jining, China
| | - Xiaoyu Chen
- Department of Physiology, Shandong First Medical University, Taian, China
| | - Guorong Li
- grid.410585.d0000 0001 0495 1805School of Life Sciences, Shandong Normal University, Jinan, China
| | - Bingyuan Ji
- grid.449428.70000 0004 1797 7280Neurobiology Institute, Jining Medical University, Jining, China
| | - Maocai Yan
- grid.449428.70000 0004 1797 7280School of Pharmacy, Jining Medical University, Shandong, China
| | - Xin Cai
- grid.268079.20000 0004 1790 6079Department of Physiology, Weifang Medical University, Weifang, China
| | - Bo Dong
- grid.460018.b0000 0004 1769 9639Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Harpal S. Randeva
- grid.7372.10000 0000 8809 1613Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Chuanxin Liu
- grid.449428.70000 0004 1797 7280Neurobiology Institute, Jining Medical University, Jining, China
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, Jining, China. .,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
| |
Collapse
|
8
|
Salmaso V, Jain S, Jacobson KA. Purinergic GPCR transmembrane residues involved in ligand recognition and dimerization. Methods Cell Biol 2021; 166:133-159. [PMID: 34752329 PMCID: PMC8620127 DOI: 10.1016/bs.mcb.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
We compare the GPCR-ligand interactions and highlight important residues for recognition in purinergic receptors-from both X-ray crystallographic and cryo-EM structures. These include A1 and A2A adenosine receptors, and P2Y1 and P2Y12 receptors that respond to ADP and other nucleotides. These receptors are important drug discovery targets for immune, metabolic and nervous system disorders. In most cases, orthosteric ligands are represented, except for one allosteric P2Y1 antagonist. This review catalogs the residues and regions that engage in contacts with ligands or with other GPCR protomers in dimeric forms. Residues that are in proximity to bound ligands within purinergic GPCR families are correlated. There is extensive conservation of recognition motifs between adenosine receptors, but the P2Y1 and P2Y12 receptors are each structurally distinct in their ligand recognition. Identifying common interaction features for ligand recognition within a receptor class that has multiple structures available can aid in the drug discovery process.
Collapse
Affiliation(s)
- Veronica Salmaso
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
9
|
Mlyniec K, Siodłak D, Doboszewska U, Nowak G. GPCR oligomerization as a target for antidepressants: Focus on GPR39. Pharmacol Ther 2021; 225:107842. [PMID: 33746052 DOI: 10.1016/j.pharmthera.2021.107842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/15/2021] [Indexed: 11/30/2022]
Abstract
At present most of the evidence for the relevance of oligomerization for the pharmacology of depression comes from in vitro studies which identified oligomers, and from neuropsychopharmacological studies of receptors which participate in oligomerization. For example, behavioural and biochemical studies in knockout animals suggest that GPR39 may mediate the antidepressant action of monoaminergic antidepressants. We have recently found long-lasting antidepressant-like effects of GPR39 agonist, thus suggesting GPR39 as a target for the development of novel antidepressant drugs. In vitro studies have shown that GPR39 oligomerizes with other GPCRs. Oligomerization of GPR39 should thus be considered in relation to the development of new antidepressants targeting this receptor as well as antidepressants targeting other receptors that may form complexes with GPR39. Here, we summarize recent data suggestive of the importance of oligomerization for the pharmacology of depression and discuss approaches for validation of this phenomenon.
Collapse
Affiliation(s)
- Katarzyna Mlyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland.
| | - Dominika Siodłak
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Urszula Doboszewska
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland; Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, PL 31-343 Kraków, Poland
| |
Collapse
|
10
|
Structural Characterization of Receptor-Receptor Interactions in the Allosteric Modulation of G Protein-Coupled Receptor (GPCR) Dimers. Int J Mol Sci 2021; 22:ijms22063241. [PMID: 33810175 PMCID: PMC8005122 DOI: 10.3390/ijms22063241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 01/07/2023] Open
Abstract
G protein-coupled receptor (GPCR) oligomerization, while contentious, continues to attract the attention of researchers. Numerous experimental investigations have validated the presence of GPCR dimers, and the relevance of dimerization in the effectuation of physiological functions intensifies the attractiveness of this concept as a potential therapeutic target. GPCRs, as a single entity, have been the main source of scrutiny for drug design objectives for multiple diseases such as cancer, inflammation, cardiac, and respiratory diseases. The existence of dimers broadens the research scope of GPCR functions, revealing new signaling pathways that can be targeted for disease pathogenesis that have not previously been reported when GPCRs were only viewed in their monomeric form. This review will highlight several aspects of GPCR dimerization, which include a summary of the structural elucidation of the allosteric modulation of class C GPCR activation offered through recent solutions to the three-dimensional, full-length structures of metabotropic glutamate receptor and γ-aminobutyric acid B receptor as well as the role of dimerization in the modification of GPCR function and allostery. With the growing influence of computational methods in the study of GPCRs, we will also be reviewing recent computational tools that have been utilized to map protein-protein interactions (PPI).
Collapse
|
11
|
Ozkan A, Sitharam M, Flores-Canales JC, Prabhu R, Kurnikova M. Baseline Comparisons of Complementary Sampling Methods for Assembly Driven by Short-Ranged Pair Potentials toward Fast and Flexible Hybridization. J Chem Theory Comput 2021; 17:1967-1987. [PMID: 33576635 DOI: 10.1021/acs.jctc.0c00945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work measures baseline sampling characteristics that highlight fundamental differences between sampling methods for assembly driven by short-ranged pair potentials. Such granular comparison is essential for fast, flexible, and accurate hybridization of complementary methods. Besides sampling speed, efficiency, and accuracy of uniform grid coverage, other sampling characteristics measured are (i) accuracy of covering narrow low energy regions that have low effective dimension (ii) ability to localize sampling to specific basins, and (iii) flexibility in sampling distributions. As a proof of concept, we compare a recently developed geometric methodology EASAL (Efficient Atlasing and Search of Assembly Landscapes) and the traditional Monte Carlo (MC) method for sampling the energy landscape of two assembling trans-membrane helices, driven by short-range pair potentials. By measuring the above-mentioned sampling characteristics, we demonstrate that EASAL provides localized and accurate coverage of crucial regions of the energy landscape of low effective dimension, under flexible sampling distributions, with much fewer samples and computational resources than MC sampling. EASAL's empirically validated theoretical guarantees permit credible extrapolation of these measurements and comparisons to arbitrary number and size of assembling units. Promising avenues for hybridizing the complementary advantages of the two methods are discussed.
Collapse
Affiliation(s)
- Aysegul Ozkan
- CISE Department, University of Florida, Gainesville, Florida 32611-6120, United States
| | - Meera Sitharam
- CISE Department, University of Florida, Gainesville, Florida 32611-6120, United States
| | | | - Rahul Prabhu
- CISE Department, University of Florida, Gainesville, Florida 32611-6120, United States
| | - Maria Kurnikova
- Chemistry Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
12
|
Structural Complexity and Plasticity of Signaling Regulation at the Melanocortin-4 Receptor. Int J Mol Sci 2020; 21:ijms21165728. [PMID: 32785054 PMCID: PMC7460885 DOI: 10.3390/ijms21165728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
The melanocortin-4 receptor (MC4R) is a class A G protein-coupled receptor (GPCR), essential for regulation of appetite and metabolism. Pathogenic inactivating MC4R mutations are the most frequent cause of monogenic obesity, a growing medical and socioeconomic problem worldwide. The MC4R mediates either ligand-independent or ligand-dependent signaling. Agonists such as α-melanocyte-stimulating hormone (α-MSH) induce anorexigenic effects, in contrast to the endogenous inverse agonist agouti-related peptide (AgRP), which causes orexigenic effects by suppressing high basal signaling activity. Agonist action triggers the binding of different subtypes of G proteins and arrestins, leading to concomitant induction of diverse intracellular signaling cascades. An increasing number of experimental studies have unraveled molecular properties and mechanisms of MC4R signal transduction related to physiological and pathophysiological aspects. In addition, the MC4R crystal structure was recently determined at 2.75 Å resolution in an inactive state bound with a peptide antagonist. Underpinned by structural homology models of MC4R complexes simulating a presumably active-state conformation compared to the structure of the inactive state, we here briefly summarize the current understanding and key players involved in the MC4R switching process between different activity states. Finally, these perspectives highlight the complexity and plasticity in MC4R signaling regulation and identify gaps in our current knowledge.
Collapse
|
13
|
Barreto CAV, Baptista SJ, Preto AJ, Matos-Filipe P, Mourão J, Melo R, Moreira I. Prediction and targeting of GPCR oligomer interfaces. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 169:105-149. [PMID: 31952684 DOI: 10.1016/bs.pmbts.2019.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
GPCR oligomerization has emerged as a hot topic in the GPCR field in the last years. Receptors that are part of these oligomers can influence each other's function, although it is not yet entirely understood how these interactions work. The existence of such a highly complex network of interactions between GPCRs generates the possibility of alternative targets for new therapeutic approaches. However, challenges still exist in the characterization of these complexes, especially at the interface level. Different experimental approaches, such as FRET or BRET, are usually combined to study GPCR oligomer interactions. Computational methods have been applied as a useful tool for retrieving information from GPCR sequences and the few X-ray-resolved oligomeric structures that are accessible, as well as for predicting new and trustworthy GPCR oligomeric interfaces. Machine-learning (ML) approaches have recently helped with some hindrances of other methods. By joining and evaluating multiple structure-, sequence- and co-evolution-based features on the same algorithm, it is possible to dilute the issues of particular structures and residues that arise from the experimental methodology into all-encompassing algorithms capable of accurately predict GPCR-GPCR interfaces. All these methods used as a single or a combined approach provide useful information about GPCR oligomerization and its role in GPCR function and dynamics. Altogether, we present experimental, computational and machine-learning methods used to study oligomers interfaces, as well as strategies that have been used to target these dynamic complexes.
Collapse
Affiliation(s)
- Carlos A V Barreto
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Salete J Baptista
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, LRS, Portugal
| | - António José Preto
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Pedro Matos-Filipe
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Joana Mourão
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Rita Melo
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, LRS, Portugal
| | - Irina Moreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Science and Technology Faculty, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
14
|
Editorial overview: Theory and simulation: demystifying GPCRs – structure, function and drug design. Curr Opin Struct Biol 2019; 55:vi-viii. [DOI: 10.1016/j.sbi.2019.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|