1
|
Miller J, Urvoas A, Gigant B, Ouldali M, Arteni A, Mesneau A, Valerio-Lepiniec M, Artzner F, Dujardin E, Minard P. Engineering of brick and staple components for ordered assembly of synthetic repeat proteins. J Struct Biol 2023; 215:108012. [PMID: 37567372 DOI: 10.1016/j.jsb.2023.108012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Synthetic ɑRep repeat proteins are engineered as Brick and Staple protein pairs that together self-assemble into helical filaments. In most cases, the filaments spontaneously form supercrystals. Here, we describe an expanded series of ɑRep Bricks designed to stabilize the interaction between consecutive Bricks, to control the length of the assembled multimers, or to alter the spatial distribution of the Staple on the filaments. The effects of these Brick modifications on the assembly, on the final filament structure and on the crystal symmetry are analyzed by biochemical methods, electron microscopy and small angle X-ray scattering. We further extend the concept of Brick/Staple protein origami by designing a new type of "Janus"-like Brick protein that is equally assembled by orthogonal staples binding its inner or outer surfaces and thus ending inside or outside the filaments. The relative roles of longitudinal and lateral associations in the assembly process are discussed. This set of results demonstrates important proofs-of-principle for engineering these remarkably versatile proteins toward nanometer-to-micron scale constructions.
Collapse
Affiliation(s)
- Jessalyn Miller
- Emory University Department of Chemistry, 1515 Dickey Drive, Atlanta, GA 30322, USA(1); Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, F-91198 Gif-sur-Yvette CEDEX, France
| | - Agathe Urvoas
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, F-91198 Gif-sur-Yvette CEDEX, France
| | - Benoit Gigant
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, F-91198 Gif-sur-Yvette CEDEX, France
| | - Malika Ouldali
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, F-91198 Gif-sur-Yvette CEDEX, France
| | - Ana Arteni
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, F-91198 Gif-sur-Yvette CEDEX, France
| | - Agnes Mesneau
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, F-91198 Gif-sur-Yvette CEDEX, France
| | - Marie Valerio-Lepiniec
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, F-91198 Gif-sur-Yvette CEDEX, France
| | - Franck Artzner
- Institut de Physique de Rennes (IPR), CNRS, UMR 6251, Université de Rennes 1, F-35042 Rennes, France
| | - Erik Dujardin
- Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS UMR 6303, Université de Bourgogne Franche-Comté, 21000 Dijon, France.
| | - Philippe Minard
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, F-91198 Gif-sur-Yvette CEDEX, France.
| |
Collapse
|
2
|
Lindenburg LH, Pantelejevs T, Gielen F, Zuazua-Villar P, Butz M, Rees E, Kaminski CF, Downs JA, Hyvönen M, Hollfelder F. Improved RAD51 binders through motif shuffling based on the modularity of BRC repeats. Proc Natl Acad Sci U S A 2021; 118:e2017708118. [PMID: 34772801 PMCID: PMC8727024 DOI: 10.1073/pnas.2017708118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 01/20/2023] Open
Abstract
Exchanges of protein sequence modules support leaps in function unavailable through point mutations during evolution. Here we study the role of the two RAD51-interacting modules within the eight binding BRC repeats of BRCA2. We created 64 chimeric repeats by shuffling these modules and measured their binding to RAD51. We found that certain shuffled module combinations were stronger binders than any of the module combinations in the natural repeats. Surprisingly, the contribution from the two modules was poorly correlated with affinities of natural repeats, with a weak BRC8 repeat containing the most effective N-terminal module. The binding of the strongest chimera, BRC8-2, to RAD51 was improved by -2.4 kCal/mol compared to the strongest natural repeat, BRC4. A crystal structure of RAD51:BRC8-2 complex shows an improved interface fit and an extended β-hairpin in this repeat. BRC8-2 was shown to function in human cells, preventing the formation of nuclear RAD51 foci after ionizing radiation.
Collapse
Affiliation(s)
- Laurens H Lindenburg
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Teodors Pantelejevs
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Fabrice Gielen
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Pedro Zuazua-Villar
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Maren Butz
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Eric Rees
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Jessica A Downs
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom;
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom;
| |
Collapse
|
3
|
Delucchi M, Näf P, Bliven S, Anisimova M. TRAL 2.0: Tandem Repeat Detection With Circular Profile Hidden Markov Models and Evolutionary Aligner. FRONTIERS IN BIOINFORMATICS 2021; 1:691865. [PMID: 36303789 PMCID: PMC9581039 DOI: 10.3389/fbinf.2021.691865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
The Tandem Repeat Annotation Library (TRAL) focuses on analyzing tandem repeat units in genomic sequences. TRAL can integrate and harmonize tandem repeat annotations from a large number of external tools, and provides a statistical model for evaluating and filtering the detected repeats. TRAL version 2.0 includes new features such as a module for identifying repeats from circular profile hidden Markov models, a new repeat alignment method based on the progressive Poisson Indel Process, an improved installation procedure and a docker container. TRAL is an open-source Python 3 library and is available, together with documentation and tutorials viavital-it.ch/software/tral.
Collapse
Affiliation(s)
- Matteo Delucchi
- Institute of Applied Simulations, School of Life Sciences und Facility Management, Zurich University of Applied Sciences, Wädenswil, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Paulina Näf
- Institute of Applied Simulations, School of Life Sciences und Facility Management, Zurich University of Applied Sciences, Wädenswil, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Spencer Bliven
- Institute of Applied Simulations, School of Life Sciences und Facility Management, Zurich University of Applied Sciences, Wädenswil, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Laboratory for Scientific Computing and Modelling, Paul Scherrer Institute, Villigen PSI, Villigen, Switzerland
| | - Maria Anisimova
- Institute of Applied Simulations, School of Life Sciences und Facility Management, Zurich University of Applied Sciences, Wädenswil, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- *Correspondence: Maria Anisimova,
| |
Collapse
|