1
|
Sottatipreedawong M, Kazmi AA, Vercellino I. How Cryo-EM Revolutionized the Field of Bioenergetics. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2025; 31:ozae089. [PMID: 39298136 DOI: 10.1093/mam/ozae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/11/2024] [Accepted: 08/31/2024] [Indexed: 02/19/2025]
Abstract
Ten years ago, the term "resolution revolution" was used for the first time to describe how cryogenic electron microscopy (cryo-EM) marked the beginning of a new era in the field of structural biology, enabling the investigation of previously unsolvable protein targets. The success of cryo-EM was recognized with the 2017 Chemistry Nobel Prize and has become a widely used method for the structural characterization of biological macromolecules, quickly catching up to x-ray crystallography. Bioenergetics is the division of biochemistry that studies the mechanisms of energy conversion in living organisms, strongly focused on the molecular machines (enzymes) that carry out these processes in cells. As bioenergetic enzymes can be arranged in complexes characterized by conformational heterogeneity/flexibility, they represent challenging targets for structural investigation by crystallography. Over the last decade, cryo-EM has therefore become a powerful tool to investigate the structure and function of bioenergetic complexes; here, we provide an overview of the main achievements enabled by the technique. We first summarize the features of cryo-EM and compare them to x-ray crystallography, and then, we present the exciting discoveries brought about by cryo-EM, particularly but not exclusively focusing on the oxidative phosphorylation system, which is a crucial energy-converting mechanism in humans.
Collapse
Affiliation(s)
- Muratha Sottatipreedawong
- Ernst RuskaCentre 3 for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 52428 Jülich (DE)
| | - Ahad Ali Kazmi
- Ernst RuskaCentre 3 for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 52428 Jülich (DE)
| | - Irene Vercellino
- Ernst RuskaCentre 3 for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 52428 Jülich (DE)
| |
Collapse
|
2
|
Uddin MR, Khaniya U, Gupta C, Mao J, Ranepura GA, Wei RJ, Ortiz-Soto J, Singharoy A, Gunner MR. Finding the E-channel proton loading sites by calculating the ensemble of protonation microstates. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149518. [PMID: 39442784 DOI: 10.1016/j.bbabio.2024.149518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
The aerobic electron transfer chain builds a proton gradient by proton coupled electron transfer reactions through a series of proteins. Complex I is the first enzyme in the sequence. Here transfer of two electrons from NADH to quinone yields four protons pumped from the membrane N- (negative, higher pH) side to the P- (positive, lower pH) side. Protons move through three linear antiporter paths, with a few amino acids and waters providing the route; and through the E-channel, a complex of competing paths, with clusters of interconnected protonatable residues. Proton loading sites (PLS) transiently bind protons as they are transported from N- to P-compartments. PLS can be individual residues or extended clusters of residues. The program MCCE uses Monte Carlos sampling to analyze the E-channel proton binding in equilibrium with individual Molecular Dynamics snapshots from trajectories of Thermus thermuphillus Complex I in the apo, quinone and quinol bound states. At pH 7, the five E-channel subunits (Nqo4, Nqo7, Nqo8, Nqo10, and Nqo11) take >25,000 protonation microstates, each with different residues protonated. The microstate explosion is tamed by analyzing interconnected clusters of residues along the proton transfer paths. A proton is bound and released from a cluster of five coupled residues on the protein N-side and to six coupled residues in the protein center. Loaded microstates bind protons to sites closer to the P-side in the forward pumping direction. MCCE microstate analysis identifies strongly coupled proton binding amongst individual residues in the two PLS clusters.
Collapse
Affiliation(s)
- Md Raihan Uddin
- Department of Physics, The City College of New York, NY 10031, USA; Graduate Program In Biochemistry, The Graduate Center of CUNY, 365 5th Avenue, NY 10031, USA
| | - Umesh Khaniya
- National Cancer Institute, NIH, Bethesda, MD 20814, USA; Ph.D. Program in Physics, The Graduate Center, City University of New York, New York 10016, USA
| | - Chitrak Gupta
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA; Bio-design Institute, Arizona State University, Tempe, AZ, USA
| | - Junjun Mao
- Department of Physics, The City College of New York, NY 10031, USA
| | - Gehan A Ranepura
- Department of Physics, The City College of New York, NY 10031, USA; Ph.D. Program in Physics, The Graduate Center, City University of New York, New York 10016, USA
| | - Rongmei Judy Wei
- Department of Physics, The City College of New York, NY 10031, USA; Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York 10016, USA
| | - Jose Ortiz-Soto
- Department of Physics, The City College of New York, NY 10031, USA; Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York 10016, USA
| | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA; Bio-design Institute, Arizona State University, Tempe, AZ, USA
| | - M R Gunner
- Department of Physics, The City College of New York, NY 10031, USA; Graduate Program In Biochemistry, The Graduate Center of CUNY, 365 5th Avenue, NY 10031, USA.
| |
Collapse
|
3
|
Gisdon FJ, Ackermann J, Welsch C, Koch I. Graph-Theoretical Prediction and Analysis of Biologically Relevant Substructures in an Open and Closed Conformation of Respiratory Complex I. Methods Mol Biol 2025; 2870:289-314. [PMID: 39543041 DOI: 10.1007/978-1-0716-4213-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Protein complexes are functional modules within the hierarchy of the cellular organization. Large protein complexes often consist of smaller functional modules, which are biologically relevant substructures with specific functions. The first protein complex of the respiratory chain, complex I, consists of functional modules for the electron transfer from NADH to quinone and the translocation of protons across the inner mitochondrial membrane. Complex I is well-characterized and biological modules have been experimentally assigned. Nevertheless, there is an ongoing discussion about the coupling of the electron transfer and the proton translocation, and about the proton translocation pathways.We modelled a mammalian complex I in open and closed conformations as complex graphs, with vertices representing protein chains and edges representing chain-chain contacts. Using a graph-theoretical method, we computed the structural modules of complex I, which indicated functional, biological substructures. We described characteristic structural features of complex I and observed a rearrangement of the structural modules. The changes in the structural modules indicated the formation of a functional module in the membrane arm of complex I during the conformational change.
Collapse
Affiliation(s)
- Florian J Gisdon
- Goethe University Frankfurt, Molecular Bioinformatics, Institute of Computer Science, Faculty of Computer Science and Mathematics, Frankfurt am Main, Germany.
| | - Jörg Ackermann
- Goethe University Frankfurt, Molecular Bioinformatics, Institute of Computer Science, Faculty of Computer Science and Mathematics, Frankfurt am Main, Germany
| | - Christoph Welsch
- Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Ina Koch
- Goethe University Frankfurt, Molecular Bioinformatics, Institute of Computer Science, Faculty of Computer Science and Mathematics, Frankfurt am Main, Germany
| |
Collapse
|
4
|
Wang P, Demaray J, Moroz S, Stuchebrukhov AA. Searching for proton transfer channels in respiratory complex I. Biophys J 2024; 123:4233-4244. [PMID: 39095988 PMCID: PMC11700350 DOI: 10.1016/j.bpj.2024.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/19/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
We have explored a strategy to identify potential proton transfer channels using computational analysis of a protein structure based on Voronoi partitioning and applied it for the analysis of proton transfer pathways in redox-driven proton-pumping respiratory complex I. The analysis results in a network of connected voids/channels, which represent the dual structure of the protein; we then hydrated the identified channels using our water placement program Dowser++. Many theoretical water molecules found in the channels perfectly match the observed experimental water molecules in the structure; some other predicted water molecules have not been resolved in the experiments. The channels are of varying cross sections. Some channels are big enough to accommodate water molecules that are suitable to conduct protons; others are too narrow to hold water but require only minor conformational changes to accommodate proton transfer. We provide a preliminary analysis of the proton conductivity of the network channels, classifying the proton transfer channels as open, closed, and partially open, and discuss possible conformational changes that can modulate, i.e., open and close, the channels.
Collapse
Affiliation(s)
- Panyue Wang
- Department of Chemistry, University of California at Davis, Davis, California
| | - Jackson Demaray
- Department of Chemistry, University of California at Davis, Davis, California
| | - Stanislav Moroz
- Department of Chemistry, University of California at Davis, Davis, California
| | | |
Collapse
|
5
|
Grivennikova VG, Gladyshev GV, Zharova TV, Borisov VB. Proton-Translocating NADH-Ubiquinone Oxidoreductase: Interaction with Artificial Electron Acceptors, Inhibitors, and Potential Medicines. Int J Mol Sci 2024; 25:13421. [PMID: 39769185 PMCID: PMC11677225 DOI: 10.3390/ijms252413421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Proton-translocating NADH-ubiquinone oxidoreductase (complex I) catalyzes the oxidation of NADH by ubiquinone accompanied by the transmembrane transfer of four protons, thus contributing to the formation of a proton motive force (pmf) across the coupling membranes of mitochondria and bacteria, which drives ATP synthesis in oxidative phosphorylation. In recent years, great progress has been achieved in resolving complex I structure by means of X-ray crystallography and high-resolution cryo-electron microscopy, which has led to the formulation of detailed hypotheses concerning the molecular mechanism of coupling of the redox reaction to vectorial proton translocation. To test and probe proposed mechanisms, a comprehensive study of complex I using other methods including molecular dynamics and a variety of biochemical studies such as kinetic and inhibitory analysis is required. Due to complex I being a major electron entry point for oxidative metabolism, various mutations of the enzyme lead to the development of severe pathologies and/or are associated with human metabolic disorders and have been well documented. This review examines current information on the structure and subunit composition of complex I of eukaryotes and prokaryotes, reactions catalyzed by this enzyme, and ways to regulate them. The review also discusses biomedical aspects related to the enzyme in light of recent findings.
Collapse
Affiliation(s)
- Vera G. Grivennikova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (V.G.G.); (G.V.G.); (T.V.Z.)
| | - Grigory V. Gladyshev
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (V.G.G.); (G.V.G.); (T.V.Z.)
| | - Tatyana V. Zharova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (V.G.G.); (G.V.G.); (T.V.Z.)
| | - Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
6
|
Ivanov BS, Bridges HR, Jarman OD, Hirst J. Structure of the turnover-ready state of an ancestral respiratory complex I. Nat Commun 2024; 15:9340. [PMID: 39472559 PMCID: PMC11522691 DOI: 10.1038/s41467-024-53679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Respiratory complex I is pivotal for cellular energy conversion, harnessing energy from NADH:ubiquinone oxidoreduction to drive protons across energy-transducing membranes for ATP synthesis. Despite detailed structural information on complex I, its mechanism of catalysis remains elusive due to lack of accompanying functional data for comprehensive structure-function analyses. Here, we present the 2.3-Å resolution structure of complex I from the α-proteobacterium Paracoccus denitrificans, a close relative of the mitochondrial progenitor, in phospholipid-bilayer nanodiscs. Three eukaryotic-type supernumerary subunits (NDUFS4, NDUFS6 and NDUFA12) plus a novel L-isoaspartyl-O-methyltransferase are bound to the core complex. Importantly, the enzyme is in a single, homogeneous resting state that matches the closed, turnover-ready (active) state of mammalian complex I. Our structure reveals the elements that stabilise the closed state and completes P. denitrificans complex I as a unified platform for combining structure, function and genetics in mechanistic studies.
Collapse
Affiliation(s)
- Bozhidar S Ivanov
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK
| | - Hannah R Bridges
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK
- Structura Biotechnology Inc., Toronto, Canada
| | - Owen D Jarman
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Judy Hirst
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
7
|
Eisermann J, Liang Y, Wright JJ, Clifford E, Wilton-Ely JDET, Kuimova MK, Roessler MM. The Effect of Reactive Oxygen Species on Respiratory Complex I Activity in Liposomes. Chemistry 2024; 30:e202402035. [PMID: 39058376 DOI: 10.1002/chem.202402035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 07/28/2024]
Abstract
Respiratory complex I (R-CI) is an essential enzyme in the mitochondrial electron transport chain but also a major source of reactive oxygen species (ROS), which are implicated in neurodegenerative diseases and ageing. While the mechanism of ROS production by R-CI is well-established, the feedback of ROS on R-CI activity is poorly understood. Here, we perform EPR spectroscopy on R-CI incorporated in artificial membrane vesicles to reveal that ROS (particularly hydroxyl radicals) reduce R-CI activity by making the membrane more polar and by increasing its hydrogen bonding capability. Moreover, the mechanism that we have uncovered reveals that the feedback of ROS on R-CI activity via the membrane is transient and not permanent; lipid peroxidation is negligible for the levels of ROS generated under these conditions. Our successful use of modular proteoliposome systems in conjunction with EPR spectroscopy and other biophysical techniques is a powerful approach for investigating ROS effects on other membrane proteins.
Collapse
Affiliation(s)
- Jana Eisermann
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
- Department of Chemistry, University of Stuttgart, Institute of Physical Chemistry, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Yuxin Liang
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - John J Wright
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Building, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Eleanor Clifford
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - James D E T Wilton-Ely
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Marina K Kuimova
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Maxie M Roessler
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| |
Collapse
|
8
|
Maldonado M. Plant supercomplex I + III2 structure and function: implications for the growing field. Biochem Soc Trans 2024; 52:1647-1659. [PMID: 39177070 PMCID: PMC11668291 DOI: 10.1042/bst20230947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024]
Abstract
Mitochondrial respiration is major source of chemical energy for all free-living eukaryotes. Nevertheless, the mechanisms of the respiratory complexes and supercomplexes remain poorly understood. Here, I review recent structural and functional investigations of plant supercomplex I + III2 from Arabidopsis thaliana and Vigna radiata. I discuss commonalities, open questions and implications for complex I, complex III2 and supercomplexes in plants and non-plants. Studies across further clades will enhance our understanding of respiration and the potential universal mechanisms of its complexes and supercomplexes.
Collapse
Affiliation(s)
- Maria Maldonado
- Department of Plant Biology, University of California, Davis, Davis, CA, U.S.A
| |
Collapse
|
9
|
Pöverlein MC, Hulm A, Dietschreit JCB, Kussmann J, Ochsenfeld C, Kaila VRI. QM/MM Free Energy Calculations of Long-Range Biological Protonation Dynamics by Adaptive and Focused Sampling. J Chem Theory Comput 2024; 20:5751-5762. [PMID: 38718352 DOI: 10.1021/acs.jctc.4c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Water-mediated proton transfer reactions are central for catalytic processes in a wide range of biochemical systems, ranging from biological energy conversion to chemical transformations in the metabolism. Yet, the accurate computational treatment of such complex biochemical reactions is highly challenging and requires the application of multiscale methods, in particular hybrid quantum/classical (QM/MM) approaches combined with free energy simulations. Here, we combine the unique exploration power of new advanced sampling methods with density functional theory (DFT)-based QM/MM free energy methods for multiscale simulations of long-range protonation dynamics in biological systems. In this regard, we show that combining multiple walkers/well-tempered metadynamics with an extended system adaptive biasing force method (MWE) provides a powerful approach for exploration of water-mediated proton transfer reactions in complex biochemical systems. We compare and combine the MWE method also with QM/MM umbrella sampling and explore the sampling of the free energy landscape with both geometric (linear combination of proton transfer distances) and physical (center of excess charge) reaction coordinates and show how these affect the convergence of the potential of mean force (PMF) and the activation free energy. We find that the QM/MM-MWE method can efficiently explore both direct and water-mediated proton transfer pathways together with forward and reverse hole transfer mechanisms in the highly complex proton channel of respiratory Complex I, while the QM/MM-US approach shows a systematic convergence of selected long-range proton transfer pathways. In this regard, we show that the PMF along multiple proton transfer pathways is recovered by combining the strengths of both approaches in a QM/MM-MWE/focused US (FUS) scheme and reveals new mechanistic insight into the proton transfer principles of Complex I. Our findings provide a promising basis for the quantitative multiscale simulations of long-range proton transfer reactions in biological systems.
Collapse
Affiliation(s)
- Maximilian C Pöverlein
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Andreas Hulm
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), 81377 Munich, Germany
| | - Johannes C B Dietschreit
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), 81377 Munich, Germany
- Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jörg Kussmann
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), 81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), 81377 Munich, Germany
- Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
10
|
Zheng W, Chai P, Zhu J, Zhang K. High-resolution in situ structures of mammalian respiratory supercomplexes. Nature 2024; 631:232-239. [PMID: 38811722 PMCID: PMC11222160 DOI: 10.1038/s41586-024-07488-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
Mitochondria play a pivotal part in ATP energy production through oxidative phosphorylation, which occurs within the inner membrane through a series of respiratory complexes1-4. Despite extensive in vitro structural studies, determining the atomic details of their molecular mechanisms in physiological states remains a major challenge, primarily because of loss of the native environment during purification. Here we directly image porcine mitochondria using an in situ cryo-electron microscopy approach. This enables us to determine the structures of various high-order assemblies of respiratory supercomplexes in their native states. We identify four main supercomplex organizations: I1III2IV1, I1III2IV2, I2III2IV2 and I2III4IV2, which potentially expand into higher-order arrays on the inner membranes. These diverse supercomplexes are largely formed by 'protein-lipids-protein' interactions, which in turn have a substantial impact on the local geometry of the surrounding membranes. Our in situ structures also capture numerous reactive intermediates within these respiratory supercomplexes, shedding light on the dynamic processes of the ubiquinone/ubiquinol exchange mechanism in complex I and the Q-cycle in complex III. Structural comparison of supercomplexes from mitochondria treated under different conditions indicates a possible correlation between conformational states of complexes I and III, probably in response to environmental changes. By preserving the native membrane environment, our approach enables structural studies of mitochondrial respiratory supercomplexes in reaction at high resolution across multiple scales, from atomic-level details to the broader subcellular context.
Collapse
Affiliation(s)
- Wan Zheng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Pengxin Chai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jiapeng Zhu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Kai Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
11
|
Rigobello L, Lugli F, Caporali L, Bartocci A, Fadanni J, Zerbetto F, Iommarini L, Carelli V, Ghelli AM, Musiani F. A computational study to assess the pathogenicity of single or combinations of missense variants on respiratory complex I. Int J Biol Macromol 2024; 273:133086. [PMID: 38871105 DOI: 10.1016/j.ijbiomac.2024.133086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Variants found in the respiratory complex I (CI) subunit genes encoded by mitochondrial DNA can cause severe genetic diseases. However, it is difficult to establish a priori whether a single or a combination of CI variants may impact oxidative phosphorylation. Here we propose a computational approach based on coarse-grained molecular dynamics simulations aimed at investigating new CI variants. One of the primary CI variants associated with the Leber hereditary optic neuropathy (m.14484T>C/MT-ND6) was used as a test case and was investigated alone or in combination with two additional rare CI variants whose role remains uncertain. We found that the primary variant positioned in the E-channel region, which is fundamental for CI function, stiffens the enzyme dynamics. Moreover, a new mechanism for the transition between π- and α-conformation in the helix carrying the primary variant is proposed. This may have implications for the E-channel opening/closing mechanism. Finally, our findings show that one of the rare variants, located next to the primary one, further worsens the stiffening, while the other rare variant does not affect CI function. This approach may be extended to other variants candidate to exert a pathogenic impact on CI dynamics, or to investigate the interaction of multiple variants.
Collapse
Affiliation(s)
- Laura Rigobello
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna I-40127, Italy
| | - Francesca Lugli
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna I-40126, Italy.
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna I-40124, Italy
| | - Alessio Bartocci
- Department of Physics, University of Trento, Trento I-38123, Italy; INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento I-38123, Italy
| | - Jacopo Fadanni
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna I-40126, Italy
| | - Francesco Zerbetto
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna I-40126, Italy
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna I-40127, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna I-40124, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna I-40123, Italy
| | - Anna Maria Ghelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna I-40127, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna I-40124, Italy
| | - Francesco Musiani
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna I-40127, Italy.
| |
Collapse
|
12
|
Grba DN, Wright JJ, Yin Z, Fisher W, Hirst J. Molecular mechanism of the ischemia-induced regulatory switch in mammalian complex I. Science 2024; 384:1247-1253. [PMID: 38870289 DOI: 10.1126/science.ado2075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024]
Abstract
Respiratory complex I is an efficient driver for oxidative phosphorylation in mammalian mitochondria, but its uncontrolled catalysis under challenging conditions leads to oxidative stress and cellular damage. Ischemic conditions switch complex I from rapid, reversible catalysis into a dormant state that protects upon reoxygenation, but the molecular basis for the switch is unknown. We combined precise biochemical definition of complex I catalysis with high-resolution cryo-electron microscopy structures in the phospholipid bilayer of coupled vesicles to reveal the mechanism of the transition into the dormant state, modulated by membrane interactions. By implementing a versatile membrane system to unite structure and function, attributing catalytic and regulatory properties to specific structural states, we define how a conformational switch in complex I controls its physiological roles.
Collapse
Affiliation(s)
| | | | | | | | - Judy Hirst
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
13
|
Djurabekova A, Lasham J, Zdorevskyi O, Zickermann V, Sharma V. Long-range electron proton coupling in respiratory complex I - insights from molecular simulations of the quinone chamber and antiporter-like subunits. Biochem J 2024; 481:499-514. [PMID: 38572757 DOI: 10.1042/bcj20240009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
Respiratory complex I is a redox-driven proton pump. Several high-resolution structures of complex I have been determined providing important information about the putative proton transfer paths and conformational transitions that may occur during catalysis. However, how redox energy is coupled to the pumping of protons remains unclear. In this article, we review biochemical, structural and molecular simulation data on complex I and discuss several coupling models, including the key unresolved mechanistic questions. Focusing both on the quinone-reductase domain as well as the proton-pumping membrane-bound domain of complex I, we discuss a molecular mechanism of proton pumping that satisfies most experimental and theoretical constraints. We suggest that protonation reactions play an important role not only in catalysis, but also in the physiologically-relevant active/deactive transition of complex I.
Collapse
Affiliation(s)
| | - Jonathan Lasham
- Department of Physics, University of Helsinki, Helsinki, Finland
| | | | - Volker Zickermann
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki, Finland
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Laube E, Schiller J, Zickermann V, Vonck J. Using cryo-EM to understand the assembly pathway of respiratory complex I. Acta Crystallogr D Struct Biol 2024; 80:159-173. [PMID: 38372588 PMCID: PMC10910544 DOI: 10.1107/s205979832400086x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Complex I (proton-pumping NADH:ubiquinone oxidoreductase) is the first component of the mitochondrial respiratory chain. In recent years, high-resolution cryo-EM studies of complex I from various species have greatly enhanced the understanding of the structure and function of this important membrane-protein complex. Less well studied is the structural basis of complex I biogenesis. The assembly of this complex of more than 40 subunits, encoded by nuclear or mitochondrial DNA, is an intricate process that requires at least 20 different assembly factors in humans. These are proteins that are transiently associated with building blocks of the complex and are involved in the assembly process, but are not part of mature complex I. Although the assembly pathways have been studied extensively, there is limited information on the structure and molecular function of the assembly factors. Here, the insights that have been gained into the assembly process using cryo-EM are reviewed.
Collapse
Affiliation(s)
- Eike Laube
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Jonathan Schiller
- Institute of Biochemistry II, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Volker Zickermann
- Institute of Biochemistry II, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| |
Collapse
|
15
|
Yin Z, Agip ANA, Bridges HR, Hirst J. Structural insights into respiratory complex I deficiency and assembly from the mitochondrial disease-related ndufs4 -/- mouse. EMBO J 2024; 43:225-249. [PMID: 38177503 PMCID: PMC10897435 DOI: 10.1038/s44318-023-00001-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 01/06/2024] Open
Abstract
Respiratory complex I (NADH:ubiquinone oxidoreductase) is essential for cellular energy production and NAD+ homeostasis. Complex I mutations cause neuromuscular, mitochondrial diseases, such as Leigh Syndrome, but their molecular-level consequences remain poorly understood. Here, we use a popular complex I-linked mitochondrial disease model, the ndufs4-/- mouse, to define the structural, biochemical, and functional consequences of the absence of subunit NDUFS4. Cryo-EM analyses of the complex I from ndufs4-/- mouse hearts revealed a loose association of the NADH-dehydrogenase module, and discrete classes containing either assembly factor NDUFAF2 or subunit NDUFS6. Subunit NDUFA12, which replaces its paralogue NDUFAF2 in mature complex I, is absent from all classes, compounding the deletion of NDUFS4 and preventing maturation of an NDUFS4-free enzyme. We propose that NDUFAF2 recruits the NADH-dehydrogenase module during assembly of the complex. Taken together, the findings provide new molecular-level understanding of the ndufs4-/- mouse model and complex I-linked mitochondrial disease.
Collapse
Affiliation(s)
- Zhan Yin
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Ahmed-Noor A Agip
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK
- Max-Planck-Institute of Biophysics, Frankfurt, 60438, Germany
| | - Hannah R Bridges
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK.
- Structura Biotechnology Inc., Toronto, Canada.
| | - Judy Hirst
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
16
|
Monroy-Cárdenas M, Andrades V, Almarza C, Vera MJ, Martínez J, Pulgar R, Amalraj J, Araya-Maturana R, Urra FA. A New Quinone-Based Inhibitor of Mitochondrial Complex I in D-Conformation, Producing Invasion Reduction and Sensitization to Venetoclax in Breast Cancer Cells. Antioxidants (Basel) 2023; 12:1597. [PMID: 37627592 PMCID: PMC10451541 DOI: 10.3390/antiox12081597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial Complex I plays a crucial role in the proliferation, chemoresistance, and metastasis of breast cancer (BC) cells. This highlights it as an attractive target for anti-cancer drugs. Using submitochondrial particles, we identified FRV-1, an ortho-carbonyl quinone, which inhibits NADH:duroquinone activity in D-active conformation and reduces the 3ADP state respiration dependent on Complex I, causing mitochondrial depolarization, ATP drop, increased superoxide levels, and metabolic remodeling towards glycolysis in BC cells. Introducing methyl groups at FRV-1 structure produced analogs that acted as electron acceptors at the Complex I level or increased the inhibitory effect of FCCP-stimulated oxygen consumption rate, which correlated with their redox potential, but increased toxicity on RMF-621 human breast fibroblasts was observed. FRV-1 was inactive in the naphthoquinone oxidoreductase 1 (NOQ1)-positive BC cell line, MCF7, but the sensitivity was recovered by dicoumarol, a NOQ1 inhibitor, suggesting that FRV-1 is a NOQ1 substrate. Importantly, FRV-1 selectively inhibited the proliferation, migration, and invasion of NQO1 negative BC cell, MDA-MB-231, in an OXPHOS- and ROS-dependent manner and sensitized it to the BH3 mimetic drug venetoclax. Overall, FRV-1 is a novel Complex I inhibitor in D-active conformation, blocking possibly the re-activation to A-state, producing selective anti-cancer effects in NQO1-negative BC cell lines.
Collapse
Affiliation(s)
- Matías Monroy-Cárdenas
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca 3480094, Chile
| | - Víctor Andrades
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago 7810000, Chile
- Network for Snake Venom Research and Drug Discovery, Santiago 7810000, Chile
| | - Cristopher Almarza
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago 7810000, Chile
- Network for Snake Venom Research and Drug Discovery, Santiago 7810000, Chile
| | - María Jesús Vera
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Laboratorio de Biología Celular, Instituto de Nutrición y Tecnología de los Alimento (INTA), Universidad de Chile, Santiago 7830490, Chile
| | - Jorge Martínez
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Laboratorio de Biología Celular, Instituto de Nutrición y Tecnología de los Alimento (INTA), Universidad de Chile, Santiago 7830490, Chile
| | - Rodrigo Pulgar
- Laboratorio de Genómica y Genética de Interacciones Biológicas (LG2IB), Instituto de Nutrición y Tecnología de los Alimento (INTA), Universidad de Chile, El Líbano 5524, Santiago 7830490, Chile
| | - John Amalraj
- Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca 3480094, Chile
| | - Ramiro Araya-Maturana
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca 3480094, Chile
- Network for Snake Venom Research and Drug Discovery, Santiago 7810000, Chile
| | - Félix A. Urra
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago 7810000, Chile
- Network for Snake Venom Research and Drug Discovery, Santiago 7810000, Chile
| |
Collapse
|
17
|
Kim H, Saura P, Pöverlein MC, Gamiz-Hernandez AP, Kaila VRI. Quinone Catalysis Modulates Proton Transfer Reactions in the Membrane Domain of Respiratory Complex I. J Am Chem Soc 2023; 145:17075-17086. [PMID: 37490414 PMCID: PMC10416309 DOI: 10.1021/jacs.3c03086] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Indexed: 07/27/2023]
Abstract
Complex I is a redox-driven proton pump that drives electron transport chains and powers oxidative phosphorylation across all domains of life. Yet, despite recently resolved structures from multiple organisms, it still remains unclear how the redox reactions in Complex I trigger proton pumping up to 200 Å away from the active site. Here, we show that the proton-coupled electron transfer reactions during quinone reduction drive long-range conformational changes of conserved loops and trans-membrane (TM) helices in the membrane domain of Complex I from Yarrowia lipolytica. We find that the conformational switching triggers a π → α transition in a TM helix (TM3ND6) and establishes a proton pathway between the quinone chamber and the antiporter-like subunits, responsible for proton pumping. Our large-scale (>20 μs) atomistic molecular dynamics (MD) simulations in combination with quantum/classical (QM/MM) free energy calculations show that the helix transition controls the barrier for proton transfer reactions by wetting transitions and electrostatic effects. The conformational switching is enabled by re-arrangements of ion pairs that propagate from the quinone binding site to the membrane domain via an extended network of conserved residues. We find that these redox-driven changes create a conserved coupling network within the Complex I superfamily, with point mutations leading to drastic activity changes and mitochondrial disorders. On a general level, our findings illustrate how catalysis controls large-scale protein conformational changes and enables ion transport across biological membranes.
Collapse
Affiliation(s)
- Hyunho Kim
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Patricia Saura
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | | | - Ana P. Gamiz-Hernandez
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Ville R. I. Kaila
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|
18
|
Grba DN, Chung I, Bridges HR, Agip ANA, Hirst J. Investigation of hydrated channels and proton pathways in a high-resolution cryo-EM structure of mammalian complex I. SCIENCE ADVANCES 2023; 9:eadi1359. [PMID: 37531432 PMCID: PMC10396290 DOI: 10.1126/sciadv.adi1359] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023]
Abstract
Respiratory complex I, a key enzyme in mammalian metabolism, captures the energy released by reduction of ubiquinone by NADH to drive protons across the inner mitochondrial membrane, generating the proton-motive force for ATP synthesis. Despite remarkable advances in structural knowledge of this complicated membrane-bound enzyme, its mechanism of catalysis remains controversial. In particular, how ubiquinone reduction is coupled to proton pumping and the pathways and mechanisms of proton translocation are contested. We present a 2.4-Å resolution cryo-EM structure of complex I from mouse heart mitochondria in the closed, active (ready-to-go) resting state, with 2945 water molecules modeled. By analyzing the networks of charged and polar residues and water molecules present, we evaluate candidate pathways for proton transfer through the enzyme, for the chemical protons for ubiquinone reduction, and for the protons transported across the membrane. Last, we compare our data to the predictions of extant mechanistic models, and identify key questions to answer in future work to test them.
Collapse
|
19
|
Eisermann J, Wright JJ, Wilton-Ely JDET, Hirst J, Roessler MM. Using light scattering to assess how phospholipid-protein interactions affect complex I functionality in liposomes. RSC Chem Biol 2023; 4:386-398. [PMID: 37292059 PMCID: PMC10246558 DOI: 10.1039/d2cb00158f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/20/2023] [Indexed: 09/28/2024] Open
Abstract
Complex I is an essential membrane protein in respiration, oxidising NADH and reducing ubiquinone to contribute to the proton-motive force that powers ATP synthesis. Liposomes provide an attractive platform to investigate complex I in a phospholipid membrane with the native hydrophobic ubiquinone substrate and proton transport across the membrane, but without convoluting contributions from other proteins present in the native mitochondrial inner membrane. Here, we use dynamic and electrophoretic light scattering techniques (DLS and ELS) to show how physical parameters, in particular the zeta potential (ζ-potential), correlate strongly with the biochemical functionality of complex I-containing proteoliposomes. We find that cardiolipin plays a crucial role in the reconstitution and functioning of complex I and that, as a highly charged lipid, it acts as a sensitive reporter on the biochemical competence of proteoliposomes in ELS measurements. We show that the change in ζ-potential between liposomes and proteoliposomes correlates linearly with protein retention and catalytic oxidoreduction activity of complex I. These correlations are dependent on the presence of cardiolipin, but are otherwise independent of the liposome lipid composition. Moreover, changes in the ζ-potential are sensitive to the proton motive force established upon proton pumping by complex I, thereby constituting a complementary technique to established biochemical assays. ELS measurements may thus serve as a more widely useful tool to investigate membrane proteins in lipid systems, especially those that contain charged lipids.
Collapse
Affiliation(s)
- Jana Eisermann
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus London W12 0BZ UK
| | - John J Wright
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus Cambridge CB2 0XY UK
| | - James D E T Wilton-Ely
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus London W12 0BZ UK
| | - Judy Hirst
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus Cambridge CB2 0XY UK
| | - Maxie M Roessler
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus London W12 0BZ UK
| |
Collapse
|
20
|
Pereira CS, Teixeira MH, Russell DA, Hirst J, Arantes GM. Mechanism of rotenone binding to respiratory complex I depends on ligand flexibility. Sci Rep 2023; 13:6738. [PMID: 37185607 PMCID: PMC10130173 DOI: 10.1038/s41598-023-33333-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Respiratory complex I is a major cellular energy transducer located in the inner mitochondrial membrane. Its inhibition by rotenone, a natural isoflavonoid, has been used for centuries by indigenous peoples to aid in fishing and, more recently, as a broad-spectrum pesticide or even a possible anticancer therapeutic. Unraveling the molecular mechanism of rotenone action will help to design tuned derivatives and to understand the still mysterious catalytic mechanism of complex I. Although composed of five fused rings, rotenone is a flexible molecule and populates two conformers, bent and straight. Here, a rotenone derivative locked in the straight form was synthesized and found to inhibit complex I with 600-fold less potency than natural rotenone. Large-scale molecular dynamics and free energy simulations of the pathway for ligand binding to complex I show that rotenone is more stable in the bent conformer, either free in the membrane or bound to the redox active site in the substrate-binding Q-channel. However, the straight conformer is necessary for passage from the membrane through the narrow entrance of the channel. The less potent inhibition of the synthesized derivative is therefore due to its lack of internal flexibility, and interconversion between bent and straight forms is required to enable efficient kinetics and high stability for rotenone binding. The ligand also induces reconfiguration of protein loops and side-chains inside the Q-channel similar to structural changes that occur in the open to closed conformational transition of complex I. Detailed understanding of ligand flexibility and interactions that determine rotenone binding may now be exploited to tune the properties of synthetic derivatives for specific applications.
Collapse
Affiliation(s)
- Caroline S Pereira
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-900, Brazil
| | - Murilo H Teixeira
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-900, Brazil
| | - David A Russell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Judy Hirst
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK.
| | - Guilherme M Arantes
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
21
|
Sazanov LA. From the 'black box' to 'domino effect' mechanism: what have we learned from the structures of respiratory complex I. Biochem J 2023; 480:319-333. [PMID: 36920092 PMCID: PMC10212512 DOI: 10.1042/bcj20210285] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 03/16/2023]
Abstract
My group and myself have studied respiratory complex I for almost 30 years, starting in 1994 when it was known as a L-shaped giant 'black box' of bioenergetics. First breakthrough was the X-ray structure of the peripheral arm, followed by structures of the membrane arm and finally the entire complex from Thermus thermophilus. The developments in cryo-EM technology allowed us to solve the first complete structure of the twice larger, ∼1 MDa mammalian enzyme in 2016. However, the mechanism coupling, over large distances, the transfer of two electrons to pumping of four protons across the membrane remained an enigma. Recently we have solved high-resolution structures of mammalian and bacterial complex I under a range of redox conditions, including catalytic turnover. This allowed us to propose a robust and universal mechanism for complex I and related protein families. Redox reactions initially drive conformational changes around the quinone cavity and a long-distance transfer of substrate protons. These set up a stage for a series of electrostatically driven proton transfers along the membrane arm ('domino effect'), eventually resulting in proton expulsion from the distal antiporter-like subunit. The mechanism radically differs from previous suggestions, however, it naturally explains all the unusual structural features of complex I. In this review I discuss the state of knowledge on complex I, including the current most controversial issues.
Collapse
Affiliation(s)
- Leonid A. Sazanov
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| |
Collapse
|
22
|
Agip ANA, Chung I, Sanchez-Martinez A, Whitworth AJ, Hirst J. Cryo-EM structures of mitochondrial respiratory complex I from Drosophila melanogaster. eLife 2023; 12:e84424. [PMID: 36622099 PMCID: PMC9977279 DOI: 10.7554/elife.84424] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
Respiratory complex I powers ATP synthesis by oxidative phosphorylation, exploiting the energy from NADH oxidation by ubiquinone to drive protons across an energy-transducing membrane. Drosophila melanogaster is a candidate model organism for complex I due to its high evolutionary conservation with the mammalian enzyme, well-developed genetic toolkit, and complex physiology for studies in specific cell types and tissues. Here, we isolate complex I from Drosophila and determine its structure, revealing a 43-subunit assembly with high structural homology to its 45-subunit mammalian counterpart, including a hitherto unknown homologue to subunit NDUFA3. The major conformational state of the Drosophila enzyme is the mammalian-type 'ready-to-go' active resting state, with a fully ordered and enclosed ubiquinone-binding site, but a subtly altered global conformation related to changes in subunit ND6. The mammalian-type 'deactive' pronounced resting state is not observed: in two minor states, the ubiquinone-binding site is unchanged, but a deactive-type π-bulge is present in ND6-TMH3. Our detailed structural knowledge of Drosophila complex I provides a foundation for new approaches to disentangle mechanisms of complex I catalysis and regulation in bioenergetics and physiology.
Collapse
Affiliation(s)
- Ahmed-Noor A Agip
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Injae Chung
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Alvaro Sanchez-Martinez
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Alexander J Whitworth
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Judy Hirst
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical CampusCambridgeUnited Kingdom
| |
Collapse
|