1
|
Vijayrajratnam S, Patkowski JB, Khorsandi J, Beatty WL, Kannaiah S, Hasanovic A, O'Connor TJ, Costa TRD, Vogel JP. Optimized Legionella expression strain for affinity purification of His-tagged membrane proteins eliminates major multimeric contaminant. Microbiol Spectr 2025:e0322224. [PMID: 40387337 DOI: 10.1128/spectrum.03222-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/10/2025] [Indexed: 05/20/2025] Open
Abstract
Polyhistidine tags are frequently used for isolating proteins through nickel-nitrilotriacetic acid (Ni-NTA) affinity purification. However, proteins rich in histidine can also bind to the Ni-NTA resin, leading to contamination of the purification with undesired proteins. While attempting to purify the Legionella pneumophila Dot/Icm type IVB secretion system complex for single particle analysis, we encountered an unknown contaminant protein that bound to the Ni-NTA resin and formed uniform particles visible in negative stain electron microscopy (EM). Mass spectrometry identified this protein, which is encoded by the Legionella gene lpg1596 as a homolog of enoyl-CoA hydratase. Modeling of Lpg1596 revealed surface-exposed histidine clusters, which likely explains its ability to bind to the Ni-NTA resin. Moreover, since enoyl-CoA hydratase homologs are known to multimerize, multimers of Lpg1596 would be large enough to be visible by negative stain EM. To address the problematic issue of Lpg1596 binding to the Ni-NTA resin, we constructed and analyzed a L. pneumophila ∆lpg1596 mutant strain. Notably, Ni-NTA affinity purification of lysates from the ∆lpg1596 strain did not contain the contaminant protein or generate observable particles. Since the ∆lpg1596 mutant strain exhibited replication capabilities similar to the wild-type L. pneumophila in macrophages, its deletion will likely not affect pathogenesis studies. To facilitate the deletion of lpg1596 in other Legionella strains, we developed a set of natural transformation vectors with various antibiotic resistance markers. In summary, we present a strategy for removing a common Ni-NTA resin binding protein contaminant in L. pneumophila, which improves single particle analysis outcomes.IMPORTANCENi-NTA purifications are a common method for isolating proteins with a His-tag, but they have a drawback: they often enrich unwanted proteins that are rich in histidines, which can contaminate the sample. We identified one such contaminant in Legionella pneumophila, a protein with homology to enoyl-CoA hydratases (Lpg1596). This protein binds to the Ni-NTA resin and forms particles that are observable in electron microscope (EM) images, interfering with the analysis. By removing the gene responsible for making this protein (lpg1596), the problem was solved, and no unwanted particles appeared in the EM images. The ∆lpg1596 mutant strain is the first optimized strain for purifying His-tagged membrane proteins from Legionella, which can be used for further studies like single particle analysis.
Collapse
Affiliation(s)
| | - Jonasz B Patkowski
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Joshua Khorsandi
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wandy L Beatty
- Department of Molecular Microbiology, Washington University, St. Louis, Missouri, USA
| | | | - Ahmet Hasanovic
- Department of Molecular Microbiology, Washington University, St. Louis, Missouri, USA
| | - Tamara J O'Connor
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tiago R D Costa
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Joseph P Vogel
- Department of Molecular Microbiology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Sridhar S, Kiema T, Schmitz W, Widersten M, Wierenga RK. Structural enzymology studies with the substrate 3S-hydroxybutanoyl-CoA: bifunctional MFE1 is a less efficient dehydrogenase than monofunctional HAD. FEBS Open Bio 2024; 14:655-674. [PMID: 38458818 PMCID: PMC10988713 DOI: 10.1002/2211-5463.13786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/08/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024] Open
Abstract
Multifunctional enzyme, type-1 (MFE1) catalyzes the second and third step of the β-oxidation cycle, being, respectively, the 2E-enoyl-CoA hydratase (ECH) reaction (N-terminal part, crotonase fold) and the NAD+-dependent, 3S-hydroxyacyl-CoA dehydrogenase (HAD) reaction (C-terminal part, HAD fold). Structural enzymological properties of rat MFE1 (RnMFE1) as well as of two of its variants, namely the E123A variant (a glutamate of the ECH active site is mutated into alanine) and the BCDE variant (without domain A of the ECH part), were studied, using as substrate 3S-hydroxybutanoyl-CoA. Protein crystallographic binding studies show the hydrogen bond interactions of 3S-hydroxybutanoyl-CoA as well as of its 3-keto, oxidized form, acetoacetyl-CoA, with the catalytic glutamates in the ECH active site. Pre-steady state binding experiments with NAD+ and NADH show that the kon and koff rate constants of the HAD active site of monomeric RnMFE1 and the homologous human, dimeric 3S-hydroxyacyl-CoA dehydrogenase (HsHAD) for NAD+ and NADH are very similar, being the same as those observed for the E123A and BCDE variants. However, steady state and pre-steady state kinetic data concerning the HAD-catalyzed dehydrogenation reaction of the substrate 3S-hydroxybutanoyl-CoA show that, respectively, the kcat and kchem rate constants for conversion into acetoacetyl-CoA by RnMFE1 (and its two variants) are about 10 fold lower as when catalyzed by HsHAD. The dynamical properties of dehydrogenases are known to be important for their catalytic efficiency, and it is discussed that the greater complexity of the RnMFE1 fold correlates with the observation that RnMFE1 is a slower dehydrogenase than HsHAD.
Collapse
Affiliation(s)
- Shruthi Sridhar
- Faculty of Biochemistry and Molecular MedicineUniversity of OuluFinland
| | | | - Werner Schmitz
- Theodor Boveri Institute of Biosciences (Biocenter)University of WürzburgGermany
| | | | - Rik K. Wierenga
- Faculty of Biochemistry and Molecular MedicineUniversity of OuluFinland
| |
Collapse
|
3
|
Bu G, Danelius E, Wieske L, Gonen T. Polymorphic Structure Determination of the Macrocyclic Drug Paritaprevir by MicroED. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.09.556999. [PMID: 37781611 PMCID: PMC10541134 DOI: 10.1101/2023.09.09.556999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Paritaprevir is an orally bioavailable, macrocyclic drug used for treating chronic Hepatitis C virus infection. Its structures had been elusive to the public until recently when one of the crystal forms was solved by MicroED. In this work, we report the MicroED structures of two distinct polymorphic crystal forms of paritaprevir from the same experiment. The different polymorphs show conformational changes in the macrocyclic core, as well as the cyclopropylsulfonamide and methylpyrazinamide substituents. Molecular docking shows that one of the conformations fits well into the active site pocket of the NS3/4A serine protease target, and can interact with the pocket and catalytic triad via hydrophobic interactions and hydrogen bonds. These results can provide further insight for optimization of the binding of acylsulfonamide inhibitors to the NS3/4A serine protease. In addition, this also demonstrate the opportunity of deriving different polymorphs and distinct macrocycle conformations from the same experiments using MicroED.
Collapse
Affiliation(s)
- G Bu
- Department of Biological Chemistry, University of California Los Angeles, 615 Charles E.Young Drive South, Los Angeles, CA 90095, USA
| | - E Danelius
- Department of Biological Chemistry, University of California Los Angeles, 615 Charles E.Young Drive South, Los Angeles, CA 90095, USA
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - L.H Wieske
- Department of Chemistry – BMC, Uppsala University, Husargatan 3, 75237 Uppsala, Sweden
| | - T Gonen
- Department of Biological Chemistry, University of California Los Angeles, 615 Charles E.Young Drive South, Los Angeles, CA 90095, USA
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Physiology, University of California Los Angeles, 615 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| |
Collapse
|