1
|
Goumas G, Vlachothanasi EN, Fradelos EC, Mouliou DS. Biosensors, Artificial Intelligence Biosensors, False Results and Novel Future Perspectives. Diagnostics (Basel) 2025; 15:1037. [PMID: 40310427 PMCID: PMC12025796 DOI: 10.3390/diagnostics15081037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025] Open
Abstract
Medical biosensors have set the basis of medical diagnostics, and Artificial Intelligence (AI) has boosted diagnostics to a great extent. However, false results are evident in every method, so it is crucial to identify the reasons behind a possible false result in order to control its occurrence. This is the first critical state-of-the-art review article to discuss all the commonly used biosensor types and the reasons that can give rise to potential false results. Furthermore, AI is discussed in parallel with biosensors and their misdiagnoses, and again some reasons for possible false results are discussed. Finally, an expert opinion with further future perspectives is presented based on general expert insights, in order for some false diagnostic results of biosensors and AI biosensors to be surpassed.
Collapse
Affiliation(s)
- Georgios Goumas
- School of Public Health, University of West Attica, 12243 Athens, Greece;
| | - Efthymia N. Vlachothanasi
- Laboratory of Clinical Nursing, Department of Nursing, University of Thessaly Larissa, 41334 Larissa, Greece; (E.N.V.); (E.C.F.)
| | - Evangelos C. Fradelos
- Laboratory of Clinical Nursing, Department of Nursing, University of Thessaly Larissa, 41334 Larissa, Greece; (E.N.V.); (E.C.F.)
| | | |
Collapse
|
2
|
Bui CV, Boswell CW, Ciruna B, Rocheleau JV. Apollo-NADP + reveals in vivo adaptation of NADPH/NADP + metabolism in electrically activated pancreatic β cells. SCIENCE ADVANCES 2023; 9:eadi8317. [PMID: 37792934 PMCID: PMC10550227 DOI: 10.1126/sciadv.adi8317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023]
Abstract
Several genetically encoded sensors have been developed to study live cell NADPH/NADP+ dynamics, but their use has been predominantly in vitro. Here, we developed an in vivo assay using the Apollo-NADP+ sensor and microfluidic devices to measure endogenous NADPH/NADP+ dynamics in the pancreatic β cells of live zebrafish embryos. Flux through the pentose phosphate pathway, the main source of NADPH in many cell types, has been reported to be low in β cells. Thus, it is unclear how these cells compensate to meet NADPH demands. Using our assay, we show that pyruvate cycling is the main source of NADP+ reduction in β cells, with contributions from folate cycling after acute electrical activation. INS1E β cells also showed a stress-induced increase in folate cycling and further suggested that this cycling requires both increased glycolytic intermediates and cytosolic NAD+. Overall, we show in vivo application of the Apollo-NADP+ sensor and reveal that β cells are capable of adapting NADPH/NADP+ redox during stress.
Collapse
Affiliation(s)
- Cindy V. Bui
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Curtis W. Boswell
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Brian Ciruna
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan V. Rocheleau
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Biosensors and biopolymer-based nanocomposites for smart food packaging: Challenges and opportunities. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100745] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Akter S, Khan MS, Smith EN, Flashman E. Measuring ROS and redox markers in plant cells. RSC Chem Biol 2021; 2:1384-1401. [PMID: 34704044 PMCID: PMC8495998 DOI: 10.1039/d1cb00071c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/28/2021] [Indexed: 01/05/2023] Open
Abstract
Reactive oxygen species (ROS) are produced throughout plant cells as a by-product of electron transfer processes. While highly oxidative and potentially damaging to a range of biomolecules, there exists a suite of ROS-scavenging antioxidant strategies that maintain a redox equilibrium. This balance can be disrupted in the event of cellular stress leading to increased ROS levels, which can act as a useful stress signal but, in excess, can result in cell damage and death. As crop plants become exposed to greater degrees of multiple stresses due to climate change, efforts are ongoing to engineer plants with greater stress tolerance. It is therefore important to understand the pathways underpinning ROS-mediated signalling and damage, both through measuring ROS themselves and other indicators of redox imbalance. The highly reactive and transient nature of ROS makes this challenging to achieve, particularly in a way that is specific to individual ROS species. In this review, we describe the range of chemical and biological tools and techniques currently available for ROS and redox marker measurement in plant cells and tissues. We discuss the limitations inherent in current methodology and opportunities for advancement.
Collapse
Affiliation(s)
- Salma Akter
- Department of Chemistry, University of Oxford Oxford UK
- Faculty of Biological Sciences, University of Dhaka Dhaka 1000 Bangladesh
| | - Mohammad Shahneawz Khan
- Department of Chemistry, University of Oxford Oxford UK
- Faculty of Biological Sciences, University of Dhaka Dhaka 1000 Bangladesh
| | | | | |
Collapse
|