1
|
Geraskevich AV, Solomonenko AN, Dorozhko EV, Korotkova EI, Barek J. Electrochemical Sensors for the Detection of Reactive Oxygen Species in Biological Systems: A Critical Review. Crit Rev Anal Chem 2022; 54:742-774. [PMID: 35867547 DOI: 10.1080/10408347.2022.2098669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Reactive oxygen species (ROS) involving superoxide anion, hydrogen peroxide and hydroxyl radical play important role in human health. ROS are known to be the markers of oxidative stress associated with different pathologies including neurodegenerative and cardiovascular diseases, as well as cancer. Accordingly, ROS level detection in biological systems is an essential problem for biomedical and analytical research. Electrochemical methods seem to have promising prospects in ROS determination due to their high sensitivity, rapidity, and simple equipment. This review demonstrates application of modern electrochemical sensors for ROS detection in biological objects (e.g., cell lines and body fluids) over a decade between 2011 and 2021. Particular attention is paid to sensors materials and various types of modifiers for ROS selective detection. Moreover, the sensors comparative characteristics, their main advantages, disadvantages and their possibilities and limitations are discussed.
Collapse
Affiliation(s)
- Alina V Geraskevich
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Anna N Solomonenko
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Elena V Dorozhko
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Elena I Korotkova
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Jiří Barek
- UNESCO Laboratory of Environmental Electrochemistry, Department of Analytical Chemistry, Faculty of Science, Charles University, Prague 2, Czechia, Czech Republic
| |
Collapse
|
2
|
Zou Z, Shi ZZ, Wu JG, Wu C, Zeng QX, Zhang YY, Zhou GD, Wu XS, Li J, Chen H, Yang HB, Li CM. Atomically Dispersed Co to an End-Adsorbing Molecule for Excellent Biomimetically and Prime Sensitively Detecting O 2•- Released from Living Cells. Anal Chem 2021; 93:10789-10797. [PMID: 34212722 DOI: 10.1021/acs.analchem.1c00483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Single-atom catalysis efficiently exposes the catalytic sites to reactant molecules while rendering opportunity to investigate the catalysis mechanisms at atomic levels for scientific insights. Here, for the first time, atomically dispersed Co atoms are synthesized as biomimetic "enzymes" to monitor superoxide anions (O2•-), delivering ultraordinary high sensitivity (710.03 μA·μM-1·cm-2), low detection limit (1.5 nM), and rapid response time (1.2 s), ranking the best among all the reported either bioenzymatic or biomimetic O2•- biosensors. The sensor is further successfully employed to real-time monitor O2•- released from living cells. Moreover, theoretical calculation and analysis associated with experimental results discover that a mode of end adsorption of the negatively charged O2•- on the Co3+ atom rather than a bridge or/and side adsorption of the two atoms of O2•- on two Co3+ atoms, respectively, plays an important role in the single-atomic catalysis toward O2•- oxidation, which not only facilitates faster electron transfer but also offers better selectivity. This work holds great promise for an inexpensive and sensitive atomic biomimetic O2•- sensor for bioresearch and clinic diagnosis, while revealing that the adsorption mode plays a critical role in single-atom catalysis for a fundamental insight.
Collapse
Affiliation(s)
- Zhuo Zou
- Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.,Institute for Clean Energy & Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China.,Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Zhuan Zhuan Shi
- Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jing Gao Wu
- Institute for Clean Energy & Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Chao Wu
- Institute for Clean Energy & Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Qing Xin Zeng
- Institute for Clean Energy & Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yuan Yuan Zhang
- Institute for Clean Energy & Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Guang Dong Zhou
- Institute for Clean Energy & Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Xiao Shuai Wu
- Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Juan Li
- Institute for Clean Energy & Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Hong Chen
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Hong Bin Yang
- Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chang Ming Li
- Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.,Institute for Clean Energy & Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China.,Institute of Advanced Cross-field Science, College of Life Science, Qingdao University, Qingdao 200671, China
| |
Collapse
|