1
|
Siri Y, Malla B, Thao LT, Hirai S, Ruti AA, Rahmani AF, Raya S, Angga MS, Sthapit N, Shrestha S, Takeda T, Kitajima M, Dinh NQ, Phuc PD, Ngo HTT, Haramoto E. Assessment of environmental factors influencing SARS-CoV-2 in Vietnam's surface water across two years of clinical data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177449. [PMID: 39542275 DOI: 10.1016/j.scitotenv.2024.177449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Wastewater-based epidemiology (WBE) is an effective, non-invasive method for monitoring the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by tracking viral prevalence in water. This study aimed to investigate the presence of SARS-CoV-2 in surface water in Vietnam over two years. One-step quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays were employed to quantify SARS-CoV-2 and its variant-specific mutation sites (G339D/E484A) and pepper mild mottle virus (PMMoV) from a total of 315 samples (105 samples per site) to compare with reported Coronavirus disease 2019 (COVID-19) cases and environmental factors. SARS-CoV-2 was detected in 38 % (40/105), 43 % (45/105), and 39 % (41/105) of water samples from Sites A, B, and C, respectively, with concentrations of 3.0-5.6 log10 copies/L. PMMoV concentrations were 5.1-8.9 log10 copies/L. SARS-CoV-2 levels were higher in winter compared with summer. There was a strong positive association between the mutant type and SARS-CoV-2 concentrations (Spearman's rho = 0.77, p < 0.01). The mean concentrations of mutant and nonmutant types were 2.3 and 1.8 log10 copies/L, respectively. Peaks in SARS-CoV-2 concentrations preceded reported COVID-19 cases by 2-4 weeks, with the highest association observed at a 4-week delay (Pearson's correlation coefficient: 0.46-0.53). Environmental factors, including temperature, pH, and electrical conductivity, correlated negatively with SARS-CoV-2 (Spearman's rho = -0.21, -0.28, and -0.21, respectively, p < 0.05), whereas average rainfall, humidity, and dissolved oxygen correlated positively (Spearman's rho = 0.20, 0.27, and 0.51, respectively, p < 0.05). These correlations highlight the significance of environmental variables in understanding viral prevalence in water. Our findings confirmed the utility of WBE as an early warning system for long-term monitoring. Future research should incorporate environmental factors to improve prediction accuracy for clinical cases and other waterborne diseases.
Collapse
Affiliation(s)
- Yadpiroon Siri
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Le Thanh Thao
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; Environmental Chemistry and Ecotoxicology Lab, Phenikaa University, Yen Nghia Ward, Ha Dong District, Hanoi 12116, Viet Nam
| | - Soichiro Hirai
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Annisa Andarini Ruti
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Aulia Fajar Rahmani
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sunayana Raya
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Made Sandhyana Angga
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Niva Sthapit
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sadhana Shrestha
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Tomoko Takeda
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaaki Kitajima
- Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Nguyen Quoc Dinh
- Environmental Chemistry and Ecotoxicology Lab, Phenikaa University, Yen Nghia Ward, Ha Dong District, Hanoi 12116, Viet Nam; External Engagement Office, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam
| | - Pham Duc Phuc
- Center for Public Health and Ecosystem Research, Hanoi University of Public Health, Viet Nam; Institute of Environmental Health and Sustainable Development, Hanoi, Viet Nam
| | - Huong Thi Thuy Ngo
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; Environmental Chemistry and Ecotoxicology Lab, Phenikaa University, Yen Nghia Ward, Ha Dong District, Hanoi 12116, Viet Nam.
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
2
|
Sanchez-Chicana C, Leiva LM, Jimenez-Chunga J, Silva W, Jara J, Lopez-Urbina T, Gonzalez AE, Rojas M, Gomez-Puerta LA. Surveillance of coronavirus in wild mammals seized and rescued by the National Forest and Wildlife Service of Peru. Acta Trop 2024; 260:107453. [PMID: 39491661 DOI: 10.1016/j.actatropica.2024.107453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/02/2024] [Accepted: 11/02/2024] [Indexed: 11/05/2024]
Abstract
Coronaviruses are common around the world and infect a wide variety of animals, including domestic and wild ones. They are characterized by causing respiratory, enteric, hepatic, and neurological diseases of varying severity, from asymptomatic to severe. Wild animals play a crucial role in this group of viruses since they can act as hosts or reservoirs for pathogenic species of humans and domestic animals. The purpose of this study was to molecularly identify coronaviruses present in wild mammals seized and rescued by the National Forestry and Wildlife Service (SERFOR) of Peru. We molecularly analyzed tracheal and rectal swabs from 90 wild mammals seized and/or rescued by SERFOR, partially amplifying the coronavirus RdRp gene. Ten of the 90 animals studied (11.1%) were positive only for Alphacoronavirus. These were non-human primates (Aotus sp., Sapajus apella, and Saimiri sciureus), the crab-eating raccoon (Procyon cancrivorus), and the South American sea lion (Otaria flavescens). The partial sequence analysis of the RdRp gene revealed that nine sequences belonged to the Pedacovirus subgenus and shared 99.1% nucleotide identity with the porcine epidemic diarrhea virus (PEDV), and only one sequence belonged to the Tegacovirus subgenus and shared 95.6% identity with the Feline coronavirus (FCoV). The results show that various wild mammal species from Peru can act as hosts for coronaviruses capable of infecting domestic species. Due to this, it is necessary to implement measures that help us identify the genera and species of coronaviruses in these species to prevent and contain future epidemics or pandemics resulting from the high rate of recombination and mutation of this virus.
Collapse
Affiliation(s)
- Carol Sanchez-Chicana
- Facultad de Ciencias Biológicas, Laboratorio de Parasitología Humana y Animal, Universidad Nacional Mayor de San Marcos, Av. Venezuela s/n cuadra 34, Lima 1, Perú
| | - Lisseth M Leiva
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Av. Circunvalación, 2800, Lima 15021, Perú
| | - Juan Jimenez-Chunga
- Facultad de Ciencias Biológicas, Laboratorio de Parasitología Humana y Animal, Universidad Nacional Mayor de San Marcos, Av. Venezuela s/n cuadra 34, Lima 1, Perú
| | - Walter Silva
- Servicio Nacional Forestal y de Fauna Silvestre (SERFOR), Administración Técnica Forestal y de Fauna Silvestre (ATFFS), Av. Javier Prado Oeste 2442, Lima 15076, Perú
| | - Javier Jara
- Servicio Nacional Forestal y de Fauna Silvestre (SERFOR), Administración Técnica Forestal y de Fauna Silvestre (ATFFS), Av. Javier Prado Oeste 2442, Lima 15076, Perú
| | - Teresa Lopez-Urbina
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Av. Circunvalación, 2800, Lima 15021, Perú
| | - Armando E Gonzalez
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Av. Circunvalación, 2800, Lima 15021, Perú
| | - Miguel Rojas
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Av. Circunvalación, 2800, Lima 15021, Perú
| | - Luis A Gomez-Puerta
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Av. Circunvalación, 2800, Lima 15021, Perú.
| |
Collapse
|
3
|
Wang X, Zheng K, Wang Y, Hou X, He Y, Wang Z, Zhang J, Chen X, Liu X. Microplastics and viruses in the aquatic environment: a mini review. Front Microbiol 2024; 15:1433724. [PMID: 39021631 PMCID: PMC11251918 DOI: 10.3389/fmicb.2024.1433724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Microplastics (MPs) have been widely found in the environment and have exerted non-negligible impacts on the environment and human health. Extensive research has shown that MPs can act as carriers for viruses and interacts with them in various ways. Whether MPs influence the persistence, transmission and infectivity of virus has attracted global concern in the context of increasing MPs contamination. This review paper provides an overview of the current state of knowledge regarding the interactions between MPs and viruses in aquatic environments. Latest progress and research trends in this field are summarized based on literature analysis. Additionally, we discuss the potential risks posed by microplastic-associated viruses to human health and the environmental safety, highlighting that MPs can affect viral transmission and infectivity through various pathways. Finally, we underscores the need for further research to address key knowledge gaps, such as elucidating synergistic effects between MPs and viruses, understanding interactions under real environmental conditions, and exploring the role of biofilms in virus-MPs interactions. This review aims to contribute to a deeper understanding on the transmission of viruses in the context of increasing MPs pollution in water, and promote actions to reduce the potential risks.
Collapse
Affiliation(s)
- Xiuwen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Kaixin Zheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Yi Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Xin Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Yike He
- The Eighth Geological Brigade, Hebei Geological Prospecting Bureau, Qinhuangdao, China
- Marine Ecological Restoration and Smart Ocean Engineering Research Center of Hebei Province, Qinhuangdao, China
| | - Zhiyun Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Jiabo Zhang
- The Eighth Geological Brigade, Hebei Geological Prospecting Bureau, Qinhuangdao, China
- Marine Ecological Restoration and Smart Ocean Engineering Research Center of Hebei Province, Qinhuangdao, China
| | - Xiaochen Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
4
|
Gundran RS, Dela Cruz DD, Mananggit MR, Ongtangco JT, Baccay XD, Domingo RD, Miranda MEG, Bailey E, Cody SG, Pulscher LA, Robie ER, Gray GC. Surveillance for respiratory viruses in freshwater bodies visited by migratory birds, the Philippines. Western Pac Surveill Response J 2024; 15:1-5. [PMID: 39188892 PMCID: PMC11346469 DOI: 10.5365/wpsar.2024.15.3.1123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Affiliation(s)
- Romeo S Gundran
- Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
| | | | | | - Joely T Ongtangco
- Department of Agriculture, Regional Field Office III, Pampanga, Philippines
| | - Xandre D Baccay
- Department of Agriculture, Regional Field Office III, Pampanga, Philippines
| | | | | | - Emily Bailey
- Department of Public Health, Campbell University, Buies Creek, North Carolina, United States of America
| | - Samantha Gabrielle Cody
- Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Laura A Pulscher
- Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Emily R Robie
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
| | - Gregory C Gray
- Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Global Health, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
5
|
Santos JF, del Rocío Silva-Calpa L, de Souza FG, Pal K. Central Countries' and Brazil's Contributions to Nanotechnology. CURRENT NANOMATERIALS 2024; 9:109-147. [DOI: 10.2174/2405461508666230525124138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/09/2023] [Accepted: 03/14/2023] [Indexed: 01/05/2025]
Abstract
Abstract:
Nanotechnology is a cornerstone of the scientific advances witnessed over the past few
years. Nanotechnology applications are extensively broad, and an overview of the main trends
worldwide can give an insight into the most researched areas and gaps to be covered. This document
presents an overview of the trend topics of the three leading countries studying in this area, as
well as Brazil for comparison. The data mining was made from the Scopus database and analyzed
using the VOSviewer and Voyant Tools software. More than 44.000 indexed articles published
from 2010 to 2020 revealed that the countries responsible for the highest number of published articles
are The United States, China, and India, while Brazil is in the fifteenth position. Thematic
global networks revealed that the standing-out research topics are health science, energy,
wastewater treatment, and electronics. In a temporal observation, the primary topics of research are:
India (2020), which was devoted to facing SARS-COV 2; Brazil (2019), which is developing promising
strategies to combat cancer; China (2018), whit research on nanomedicine and triboelectric
nanogenerators; the United States (2017) and the Global tendencies (2018) are also related to the
development of triboelectric nanogenerators. The collected data are available on GitHub. This study
demonstrates the innovative use of data-mining technologies to gain a comprehensive understanding
of nanotechnology's contributions and trends and highlights the diverse priorities of nations in
this cutting-edge field.
Collapse
Affiliation(s)
- Jonas Farias Santos
- Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leydi del Rocío Silva-Calpa
- Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando Gomes de Souza
- Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Macromoléculas Professora Eloisa Mano, Centro de
Tecnologia-Cidade Universitária, Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kaushik Pal
- University Center
for Research and Development (UCRD), Department of Physics, Chandigarh University, Ludhiana - Chandigarh State
Hwy, Mohali, Gharuan, 140413 Punjab, India
| |
Collapse
|
6
|
Zambrano KT, Imani M, Cunha DGF. COVID-19 and organisational resilience in Brazil's water sector. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157637. [PMID: 35905969 PMCID: PMC9361783 DOI: 10.1016/j.scitotenv.2022.157637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
The COVID-19 pandemic required a wide range of adaptations to the way that water sector operated globally. This paper looks into the impact of the COVID-19 pandemic on Brazilian water sector and evaluates the water sector's organisational resilience from the lens of water professionals. This study uses British Standard (BS 65000:2014)'s Resilience Maturity Scale method to evaluate organisational resilience in water sector under two defined scenarios of before and during the pandemic. For this purpose, the self-assessment framework developed by Southern Water in the United Kingdom (based on BS 65000:2014), comprising of the core resilience elements of Direction, Awareness, Alignment, Learning, Strengthening, and Assurance, are used for evaluations. A qualitative-quantitative surveying method is used for data collection. A total of 14 responses to the whole questionnaire were received from May 2021 to August 2021, each representing one water company in Brazil (four local companies and ten state-owned ones). The analyses identified COVID-19 as a threat multiplier particularly to already existing financial challenges due to the pre-existing threats in water sector. Bad debt and the COVID-19 emergency measures are recognised as the main challenges by 21 % and 14 % of the survey respondents. The state-owned and local companies scored an almost similar maturity level 3, 35 % and 34 % respectively, while the local companies scored much lower at maturity level 4 i.e., 26 % as opposed to 47 % in state-owned sector. This indicates that COVID-19 has a greater impact on local companies and the needs to increase preparedness. This study replicates an international experience to raise awareness on water sector's resiliency in Brazil and how it can be improved to withstand future external shocks. It sheds light on how and what existing challenges can be exacerbated facing a global shock and proposes opportunities for improvement of resilience maturity in water sector in Brazil.
Collapse
Affiliation(s)
- Karen Tavares Zambrano
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, São Paulo CEP 13560-590, Brazil.
| | - Maryam Imani
- School of Engineering & the Built Environment, Faculty of Science and Engineering, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, United Kingdom.
| | - Davi Gasparini Fernandes Cunha
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, São Paulo CEP 13560-590, Brazil.
| |
Collapse
|
7
|
Al-Hazmi HE, Shokrani H, Shokrani A, Jabbour K, Abida O, Mousavi Khadem SS, Habibzadeh S, Sonawane SH, Saeb MR, Bonilla-Petriciolet A, Badawi M. Recent advances in aqueous virus removal technologies. CHEMOSPHERE 2022; 305:135441. [PMID: 35764113 PMCID: PMC9233172 DOI: 10.1016/j.chemosphere.2022.135441] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 05/09/2023]
Abstract
The COVID-19 outbreak has triggered a massive research, but still urgent detection and treatment of this virus seems a public concern. The spread of viruses in aqueous environments underlined efficient virus treatment processes as a hot challenge. This review critically and comprehensively enables identifying and classifying advanced biochemical, membrane-based and disinfection processes for effective treatment of virus-contaminated water and wastewater. Understanding the functions of individual and combined/multi-stage processes in terms of manufacturing and economical parameters makes this contribution a different story from available review papers. Moreover, this review discusses challenges of combining biochemical, membrane and disinfection processes for synergistic treatment of viruses in order to reduce the dissemination of waterborne diseases. Certainly, the combination technologies are proactive in minimizing and restraining the outbreaks of the virus. It emphasizes the importance of health authorities to confront the outbreaks of unknown viruses in the future.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Hanieh Shokrani
- Department of Chemical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - Amirhossein Shokrani
- Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - Karam Jabbour
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Otman Abida
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | | | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Shirish H Sonawane
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal, 506004, Telangana, India
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | | | - Michael Badawi
- Université de Lorraine, Laboratoire de Physique et Chimie Théoriques LPCT UMR CNRS, 7019, Nancy, France.
| |
Collapse
|
8
|
One-Year Surveillance of SARS-CoV-2 Virus in Natural and Drinking Water. Pathogens 2022; 11:pathogens11101133. [PMID: 36297189 PMCID: PMC9609174 DOI: 10.3390/pathogens11101133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Although the SARS-CoV-2 virus has been detected in wastewater from several countries, monitoring its presence in other water matrices is still limited. This study aimed to evaluate the presence of this virus in natural and drinking water over one year of monitoring (2021). A survey of viral RNA was carried out by RT-qPCR in concentrated samples of surface water, groundwater, and drinking water from different regions of Portugal. SARS-CoV-2 RNA—quantified in genomic copies per liter (gc/L) of sampled water—was not detected in groundwater, but was detected and quantified in samples of surface water (two out of 43; 8035 and 23,757 gc/L) and in drinking water (one out of 43 samples; 7463 gc/L). The study also detected and quantified Norovirus RNA, intending to confirm the use of this enteric virus to assess variations in fecal matter throughout the sampling campaign. The samples positive for SARS-CoV-2 RNA also had the highest concentrations of Norovirus RNA—including the drinking water sample, which proved negative for fecal enteric bacteria (FIB). These results indicate that, to protect human health, it is advisable to continue monitoring these viruses, and noroviruses as fecal indicators (FI) as well—especially in low-flow water bodies that receive wastewater.
Collapse
|
9
|
Castrejón-Jiménez NS, García-Pérez BE, Reyes-Rodríguez NE, Vega-Sánchez V, Martínez-Juárez VM, Hernández-González JC. Challenges in the Detection of SARS-CoV-2: Evolution of the Lateral Flow Immunoassay as a Valuable Tool for Viral Diagnosis. BIOSENSORS 2022; 12:bios12090728. [PMID: 36140114 PMCID: PMC9496238 DOI: 10.3390/bios12090728] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 12/11/2022]
Abstract
SARS-CoV-2 is an emerging infectious disease of zoonotic origin that caused the coronavirus disease in late 2019 and triggered a pandemic that has severely affected human health and caused millions of deaths. Early and massive diagnosis of SARS-CoV-2 infected patients is the key to preventing the spread of the virus and controlling the outbreak. Lateral flow immunoassays (LFIA) are the simplest biosensors. These devices are clinical diagnostic tools that can detect various analytes, including viruses and antibodies, with high sensitivity and specificity. This review summarizes the advantages, limitations, and evolution of LFIA during the SARS-CoV-2 pandemic and the challenges of improving these diagnostic devices.
Collapse
Affiliation(s)
- Nayeli Shantal Castrejón-Jiménez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1 Exhacienda de Aquetzalpa A.P. 32, Tulancingo 43600, Mexico
| | - Blanca Estela García-Pérez
- Department of Microbiology, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, México City 11340, Mexico
| | - Nydia Edith Reyes-Rodríguez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1 Exhacienda de Aquetzalpa A.P. 32, Tulancingo 43600, Mexico
| | - Vicente Vega-Sánchez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1 Exhacienda de Aquetzalpa A.P. 32, Tulancingo 43600, Mexico
| | - Víctor Manuel Martínez-Juárez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1 Exhacienda de Aquetzalpa A.P. 32, Tulancingo 43600, Mexico
| | - Juan Carlos Hernández-González
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1 Exhacienda de Aquetzalpa A.P. 32, Tulancingo 43600, Mexico
- Correspondence: ; Tel.: +52-775-756-0308
| |
Collapse
|
10
|
Tesauro M, Terraneo M, Consonni M, Fappani C, Colzani D, Stevanin C, Amendola A, Masseroni D, Tanzi E. A Methodological Approach to Water Concentration to Investigate the Presence of SARS-CoV-2 RNA in Surface Freshwaters. Pathogens 2022; 11:845. [PMID: 36014966 PMCID: PMC9415985 DOI: 10.3390/pathogens11080845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
During the COVID-19 public health emergency, an increasing number of studies reported the occurrence of SARS-CoV-2 in wastewaters worldwide, but little is known about the presence of the virus in surface freshwaters. The aim of the current study was to develop and validate an appropriate and scalable methodological approach for the concentration and detection of SARS-CoV-2 from surface freshwater samples, collected within the Milan rural network subjected to flood spillways activity. Overall, both surface water and distilled water samples spiked with inactivated SARS-CoV-2 were used to validate the concentration method for pathogens determination. Two pre-filtration systems, filter paper and Sartolab® P20 (Sartorius, Germany) and two concentration methods, two-phase (PEG-dextran method) separation and tangential flow ultrafiltration (UF), were compared. The effects of pre-filtration and concentration on viral nucleic acid recovery were assessed through real time RT-PCR targeting SARS-CoV-2 and the internal viral control PMMoV (Pepper Mild Mottle Virus). Our results showed that UF is more sensitive than the PEG-dextran method in viral acid nucleic recovery from surface water samples. Better results were obtained pre-filtering samples with Sartolab® P20 and extracting the nucleic acids with undiluted silica, rather than diluted as required by the standard protocol. The proposed method will be used for the monitoring of surface waters in the Milan area.
Collapse
Affiliation(s)
- Marina Tesauro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Carlo Pascal 36, 20133 Milan, Italy;
- Coordinated Research Center “EpiSoMI”, University of Milan, Via Carlo Pascal 36, 20133 Milan, Italy; (A.A.); (E.T.)
| | - Mara Terraneo
- Department of Health Sciences, University of Milan, Via Carlo Pascal 36, 20133 Milan, Italy; (M.T.); (C.F.); (D.C.); (C.S.)
| | - Michela Consonni
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Carlo Pascal 36, 20133 Milan, Italy;
| | - Clara Fappani
- Department of Health Sciences, University of Milan, Via Carlo Pascal 36, 20133 Milan, Italy; (M.T.); (C.F.); (D.C.); (C.S.)
- Department of Clinical Sciences and Community Health, University of Milan, Via della Commenda 19, 20122 Milan, Italy
| | - Daniela Colzani
- Department of Health Sciences, University of Milan, Via Carlo Pascal 36, 20133 Milan, Italy; (M.T.); (C.F.); (D.C.); (C.S.)
| | - Caterina Stevanin
- Department of Health Sciences, University of Milan, Via Carlo Pascal 36, 20133 Milan, Italy; (M.T.); (C.F.); (D.C.); (C.S.)
| | - Antonella Amendola
- Coordinated Research Center “EpiSoMI”, University of Milan, Via Carlo Pascal 36, 20133 Milan, Italy; (A.A.); (E.T.)
- Department of Health Sciences, University of Milan, Via Carlo Pascal 36, 20133 Milan, Italy; (M.T.); (C.F.); (D.C.); (C.S.)
| | - Daniele Masseroni
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of Milan, Via Celoria 2, 20133 Milan, Italy;
| | - Elisabetta Tanzi
- Coordinated Research Center “EpiSoMI”, University of Milan, Via Carlo Pascal 36, 20133 Milan, Italy; (A.A.); (E.T.)
- Department of Health Sciences, University of Milan, Via Carlo Pascal 36, 20133 Milan, Italy; (M.T.); (C.F.); (D.C.); (C.S.)
| |
Collapse
|