1
|
Huang Y, Liu Y, Wu Y, Tang Y, Zhang M, Liu S, Xiao L, Tao S, Xie M, Dai M, Li M, Gui H, Wang Q. Patterns of Convergence and Divergence Between Bipolar Disorder Type I and Type II: Evidence From Integrative Genomic Analyses. Front Cell Dev Biol 2022; 10:956265. [PMID: 35912095 PMCID: PMC9334650 DOI: 10.3389/fcell.2022.956265] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/21/2022] [Indexed: 01/05/2023] Open
Abstract
Aim: Genome-wide association studies (GWAS) analyses have revealed genetic evidence of bipolar disorder (BD), but little is known about the genetic structure of BD subtypes. We aimed to investigate the genetic overlap and distinction of bipolar type I (BD I) & type II (BD II) by conducting integrative post-GWAS analyses. Methods: We utilized single nucleotide polymorphism (SNP)–level approaches to uncover correlated and distinct genetic loci. Transcriptome-wide association analyses (TWAS) were then approached to pinpoint functional genes expressed in specific brain tissues and blood. Next, we performed cross-phenotype analysis, including exploring the potential causal associations between two BD subtypes and lithium responses and comparing the difference in genetic structures among four different psychiatric traits. Results: SNP-level evidence revealed three genomic loci, SLC25A17, ZNF184, and RPL10AP3, shared by BD I and II, and one locus (MAD1L1) and significant gene sets involved in calcium channel activity, neural and synapsed signals that distinguished two subtypes. TWAS data implicated different genes affecting BD I and II through expression in specific brain regions (nucleus accumbens for BD I). Cross-phenotype analyses indicated that BD I and II share continuous genetic structures with schizophrenia and major depressive disorder, which help fill the gaps left by the dichotomy of mental disorders. Conclusion: These combined evidences illustrate genetic convergence and divergence between BD I and II and provide an underlying biological and trans-diagnostic insight into major psychiatric disorders.
Collapse
Affiliation(s)
- Yunqi Huang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Yunjia Liu
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Yulu Wu
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Yiguo Tang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Mengting Zhang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Siyi Liu
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Liling Xiao
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Shiwan Tao
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Min Xie
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Minhan Dai
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Mingli Li
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Hongsheng Gui
- Center for Health Policy & Health Services Research, Henry Ford Health System, Detroit, MI, United States
- Behavioral Health Services, Henry Ford Health System, Detroit, MI, United States
- *Correspondence: Hongsheng Gui, ; Qiang Wang,
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
- *Correspondence: Hongsheng Gui, ; Qiang Wang,
| |
Collapse
|
2
|
Differential protein expression of DARPP-32 versus Calcineurin in the prefrontal cortex and nucleus accumbens in schizophrenia and bipolar disorder. Sci Rep 2019; 9:14877. [PMID: 31619735 PMCID: PMC6796065 DOI: 10.1038/s41598-019-51456-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/01/2019] [Indexed: 11/08/2022] Open
Abstract
Dopamine- and cAMP-regulated phosphoprotein of molecular weight 32 kDa (DARPP-32) integrates dopaminergic signaling into that of several other neurotransmitters. Calcineurin (CaN), located downstream of dopaminergic pathways, inactivates DARPP-32 by dephosphorylation. Despite several studies have examined their expression levels of gene and protein in postmortem patients’ brains, they rendered inconsistent results. In this study, protein expression levels of DARPP-32 and CaN were measured by enzyme-linked immunosorbent assay (ELISA) in the prefrontal cortex (PFC), and nucleus accumbens (NAc) of 49 postmortem samples from subjects with schizophrenia, bipolar disorder, and normal controls. We also examined the association between this expression and genetic variants of 8 dopaminergic system-associated molecules for 55 SNPs in the same postmortem samples. In the PFC of patients with schizophrenia, levels of DARPP-32 were significantly decreased, while those of CaN tended to increase. In the NAc, both of DARPP-32 and CaN showed no significant alternations in patients with schizophrenia or bipolar disorder. Further analysis of the correlation of DARPP-32 and CaN expressions, we found that positive correlations in controls and schizophrenia in PFC, and schizophrenia in NAc. In PFC, the expression ratio of DARPP-32/CaN were significantly lower in schizophrenia than controls. We also found that several of the aforementioned SNPs may predict protein expression, one of which was confirmed in a second independent sample set. This differential expression of DARPP-32 and CaN may reflect potential molecular mechanisms underlying the pathogenesis of schizophrenia and bipolar disorder, or differences between these two major psychiatric diseases.
Collapse
|
3
|
The Emerging Roles of the Calcineurin-Nuclear Factor of Activated T-Lymphocytes Pathway in Nervous System Functions and Diseases. J Aging Res 2016; 2016:5081021. [PMID: 27597899 PMCID: PMC5002468 DOI: 10.1155/2016/5081021] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/21/2016] [Indexed: 12/27/2022] Open
Abstract
The ongoing epidemics of metabolic diseases and increase in the older population have increased the incidences of neurodegenerative diseases. Evidence from murine and cell line models has implicated calcineurin-nuclear factor of activated T-lymphocytes (NFAT) signaling pathway, a Ca2+/calmodulin-dependent major proinflammatory pathway, in the pathogenesis of these diseases. Neurotoxins such as amyloid-β, tau protein, and α-synuclein trigger abnormal calcineurin/NFAT signaling activities. Additionally increased activities of endogenous regulators of calcineurin like plasma membrane Ca2+-ATPase (PMCA) and regulator of calcineurin 1 (RCAN1) also cause neuronal and glial loss and related functional alterations, in neurodegenerative diseases, psychotic disorders, epilepsy, and traumatic brain and spinal cord injuries. Treatment with calcineurin/NFAT inhibitors induces some degree of neuroprotection and decreased reactive gliosis in the central and peripheral nervous system. In this paper, we summarize and discuss the current understanding of the roles of calcineurin/NFAT signaling in physiology and pathologies of the adult and developing nervous system, with an emphasis on recent reports and cutting-edge findings. Calcineurin/NFAT signaling is known for its critical roles in the developing and adult nervous system. Its role in physiological and pathological processes is still controversial. However, available data suggest that its beneficial and detrimental effects are context-dependent. In view of recent reports calcineurin/NFAT signaling is likely to serve as a potential therapeutic target for neurodegenerative diseases and conditions. This review further highlights the need to characterize better all factors determining the outcome of calcineurin/NFAT signaling in diseases and the downstream targets mediating the beneficial and detrimental effects.
Collapse
|
4
|
Shifting towards a model of mGluR5 dysregulation in schizophrenia: Consequences for future schizophrenia treatment. Neuropharmacology 2015; 115:73-91. [PMID: 26349010 DOI: 10.1016/j.neuropharm.2015.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/02/2015] [Accepted: 08/03/2015] [Indexed: 12/22/2022]
Abstract
Metabotropic glutamate receptor subtype 5 (mGluR5), encoded by the GRM5 gene, represents a compelling novel drug target for the treatment of schizophrenia. mGluR5 is a postsynaptic G-protein coupled glutamate receptor strongly linked with several critical cellular processes that are reported to be disrupted in schizophrenia. Accordingly, mGluR5 positive allosteric modulators show encouraging therapeutic potential in preclinical schizophrenia models, particularly for the treatment of cognitive dysfunctions against which currently available therapeutics are largely ineffective. More work is required to support the progression of mGluR5-targeting drugs into the clinic for schizophrenia treatment, although some obstacles may be overcome by comprehensively understanding how mGluR5 itself is involved in the neurobiology of the disorder. Several processes that are necessary for the regulation of mGluR5 activity have been identified, but not examined, in the context of schizophrenia. These processes include protein-protein interactions, dimerisation, subcellular trafficking, the impact of genetic variability or mutations on protein function, as well as epigenetic, post-transcriptional and post-translational processes. It is essential to understand these aspects of mGluR5 to determine whether they are affected in schizophrenia pathology, and to assess the consequences of mGluR5 dysfunction for the future use of mGluR5-based drugs. Here, we summarise the known processes that regulate mGluR5 and those that have already been studied in schizophrenia, and discuss the consequences of this dysregulation for current mGluR5 pharmacological strategies. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
|
5
|
Kunii Y, Miura I, Matsumoto J, Hino M, Wada A, Niwa SI, Nawa H, Sakai M, Someya T, Takahashi H, Kakita A, Yabe H. Elevated postmortem striatal t-DARPP expression in schizophrenia and associations with DRD2/ANKK1 polymorphism. Prog Neuropsychopharmacol Biol Psychiatry 2014; 53:123-8. [PMID: 24704945 DOI: 10.1016/j.pnpbp.2014.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/18/2014] [Accepted: 03/25/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Dopamine- and cAMP-regulated phosphoprotein of molecular weight 32 kDa (DARPP-32) and calcineurin (CaN) have been implicated in the pathogenesis of schizophrenia because they function as molecular integrators of dopamine and glutamate signaling. DARPP-32 and CaN are mainly expressed in the caudate nucleus and putamen; however, a few postmortem brain studies have focused on DARPP-32 expression in striatum from patients with schizophrenia. METHODS We used immunoblotting techniques and postmortem tissue samples from patients with schizophrenia and from normal control individuals to examine the expression of two major DARPP-32 isoforms, full-length (FL-DARPP) and truncated (t-DARPP), and of CaN in the striatum. We also assessed whether there was any significant correlation between the expression levels of either protein and the A1 allele of Taq1A genotype in the dopamine D2 receptor (DRD2) gene/ankyrin-repeat containing kinase 1 (ANKK1) gene. RESULTS We found that the mean t-DARPP expression level in the caudate was higher in patients with schizophrenia than in control individuals (P<0.05) and the A1 allele of Taq1A genotype in DRD2/ANKK1 was significantly associated with elevated expression of t-DARPP in the caudate. Also, the A1 allele was significantly correlated with the total score of antemortem psychiatric symptoms. CONCLUSION These results may reflect potential molecular mechanisms important to the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Yasuto Kunii
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima 960-1295, Japan.
| | - Itaru Miura
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima 960-1295, Japan
| | - Junya Matsumoto
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima 960-1295, Japan
| | - Mizuki Hino
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima 960-1295, Japan
| | - Akira Wada
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima 960-1295, Japan
| | - Shin-ichi Niwa
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima 960-1295, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Niigata, Niigata 951-8585, Japan
| | - Miwako Sakai
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Niigata, Niigata 951-8585, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata, Niigata 951-8585, Japan
| | - Hitoshi Takahashi
- Department of Pathology, Brain Research Institute, University of Niigata, 1-757 Asahimachi-dori, Niigata, Niigata 951-8585, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, University of Niigata, 1-757 Asahimachi-dori, Niigata, Niigata 951-8585, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima 960-1295, Japan
| |
Collapse
|
6
|
Synaptic proteins in the postmortem anterior cingulate cortex in schizophrenia: relationship to treatment and treatment response. Neuropsychopharmacology 2014; 39:2095-103. [PMID: 24603856 PMCID: PMC4104326 DOI: 10.1038/npp.2014.57] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/14/2014] [Accepted: 03/04/2014] [Indexed: 12/27/2022]
Abstract
The anterior cingulate cortex (ACC) is one of several brain regions that are abnormal in schizophrenia (SZ). Here we compared markers of synapse and mitochondrial function using western blots of postmortem ACC in: 1) normal controls (NCs, n=13) vs subjects with SZ (n=25); NC, treatment-resistant SZ, and treatment-responsive SZ; and 3) NC and SZ treated with typical or atypical antipsychotic drugs (APDs). Protein levels of synaptophysin, mitofusin-2, vGLUT1, and calcineurin did not differ between the NC and SZ group as a whole, or the NCs vs the SZ group divided by treatment response or type of APDs. In several cases, the levels of vGLUT1 were minuscule or absent. The proportion of NCs lacking vGLUT1 was significantly less than that of the SZ groups. There were several positive correlations across all subjects between: 1) synaptophysin and vGLUT1; 2) synaptophysin and calcineurin; 3) synaptophysin and mitofusin; and 4) calcineurin and mitofusin. Synaptophysin and calcineurin were positively correlated in responders, and this correlation was significantly stronger than that in treatment-resistant SZ subjects or in NCs. Synaptophysin and calcineurin were positively correlated in SZ patients on atypical APDs; this correlation was significantly stronger than that in SZ patients on typical APDs or in NCs. Mitofusin-2 and calcineurin were positively correlated in SZ patients on atypical APDs and in NCs; this correlation was stronger in SZ patients on atypical rather than typical APDs or in NCs. The correlation between these proteins, which have roles in synaptic vesicle cycling, glutamate transmission, mitochondrial fusion, and calcium buffering, is complex and was differentially regulated among the groups.
Collapse
|
7
|
Wada A, Kunii Y, Ikemoto K, Yang Q, Hino M, Matsumoto J, Niwa SI. Increased ratio of calcineurin immunoreactive neurons in the caudate nucleus of patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2012; 37:8-14. [PMID: 22285318 DOI: 10.1016/j.pnpbp.2012.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 12/29/2011] [Accepted: 01/11/2012] [Indexed: 11/27/2022]
Abstract
Calcineurin (CaN) has been investigated extensively in numerous biochemical, behavioral, and genetic studies in schizophrenia because its function is closely related to dopamine-glutamate signal transduction, which is thought to be associated with pathophysiological changes in schizophrenia. Although evidence has suggested that dysfunction of CaN may be a risk factor for schizophrenia, there have been few reports focusing on the expression of CaN mRNA and CaN protein levels in the brains of schizophrenic patients. In addition, findings on CaN expression in postmortem brains from patients with schizophrenia have been inconsistent. Here, we conducted immunohistochemical examinations of several regions in postmortem brains, including the dorsolateral prefrontal cortex (DLPFC), hippocampus, caudate nucleus, and putamen, using specific antibodies, and compared the results from the brains of nine schizophrenic subjects to nine age- and sex-matched control subjects. There was no significant difference in the ratio of CaN immunoreactive (IR) neurons between schizophrenia and control groups in the DLPFC or hippocampus, and a significantly increased ratio of CaN-IR neurons was seen in the caudate nucleus in the brains from schizophrenia patients. As the striatum contains most of the brain dopamine, the results of the present study have critical implications and suggest that alterations in CaN signaling in the caudate contribute to the pathogenesis of schizophrenia. This is the first report of caudate CaN abnormalities in schizophrenia.
Collapse
Affiliation(s)
- Akira Wada
- Departments of Neuropsychiatry, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
A case–control association analysis of CABIN1 with schizophrenia in a Japanese population. J Hum Genet 2010; 55:179-81. [DOI: 10.1038/jhg.2009.136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Tabarés-Seisdedos R, Rubenstein JLR. Chromosome 8p as a potential hub for developmental neuropsychiatric disorders: implications for schizophrenia, autism and cancer. Mol Psychiatry 2009; 14:563-89. [PMID: 19204725 DOI: 10.1038/mp.2009.2] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Defects in genetic and developmental processes are thought to contribute susceptibility to autism and schizophrenia. Presumably, owing to etiological complexity identifying susceptibility genes and abnormalities in the development has been difficult. However, the importance of genes within chromosomal 8p region for neuropsychiatric disorders and cancer is well established. There are 484 annotated genes located on 8p; many are most likely oncogenes and tumor-suppressor genes. Molecular genetics and developmental studies have identified 21 genes in this region (ADRA1A, ARHGEF10, CHRNA2, CHRNA6, CHRNB3, DKK4, DPYSL2, EGR3, FGF17, FGF20, FGFR1, FZD3, LDL, NAT2, NEF3, NRG1, PCM1, PLAT, PPP3CC, SFRP1 and VMAT1/SLC18A1) that are most likely to contribute to neuropsychiatric disorders (schizophrenia, autism, bipolar disorder and depression), neurodegenerative disorders (Parkinson's and Alzheimer's disease) and cancer. Furthermore, at least seven nonprotein-coding RNAs (microRNAs) are located at 8p. Structural variants on 8p, such as copy number variants, microdeletions or microduplications, might also contribute to autism, schizophrenia and other human diseases including cancer. In this review, we consider the current state of evidence from cytogenetic, linkage, association, gene expression and endophenotyping studies for the role of these 8p genes in neuropsychiatric disease. We also describe how a mutation in an 8p gene (Fgf17) results in a mouse with deficits in specific components of social behavior and a reduction in its dorsomedial prefrontal cortex. We finish by discussing the biological connections of 8p with respect to neuropsychiatric disorders and cancer, despite the shortcomings of this evidence.
Collapse
Affiliation(s)
- R Tabarés-Seisdedos
- Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, CIBER-SAM, University of Valencia, Valencia, Spain.
| | | |
Collapse
|
10
|
Millan MJ, Brocco M. Cognitive Impairment in Schizophrenia: a Review of Developmental and Genetic Models, and Pro-cognitive Profile of the Optimised D3 > D2 Antagonist, S33138. Therapie 2008; 63:187-229. [DOI: 10.2515/therapie:2008041] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2008] [Indexed: 01/23/2023]
|
11
|
Mathieu F, Miot S, Etain B, El Khoury MA, Chevalier F, Bellivier F, Leboyer M, Giros B, Tzavara ET. Association between the PPP3CC gene, coding for the calcineurin gamma catalytic subunit, and bipolar disorder. Behav Brain Funct 2008; 4:2. [PMID: 18201382 PMCID: PMC2267477 DOI: 10.1186/1744-9081-4-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 01/17/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Calcineurin is a neuron-enriched phosphatase that regulates synaptic plasticity and neuronal adaptation. Activation of calcineurin, overall, antagonizes the effects of the cyclic AMP activated protein/kinase A. Thus, kinase/phosphatase dynamic balance seems to be critical for transition to long-term cellular responses in neurons, and disruption of this equilibrium should induce behavioral impairments in animal models. Genetic animal models, as well as post-mortem studies in humans have implicated calcineurin dependent calcium and cyclic AMP regulated phosphorylation/dephosphorylation in both affective responses and psychosis. Recently, genetic association between schizophrenia and genetic variation of the human calcineurin A gamma subunit gene (PPP3CC) has been reported. METHODS Based on the assumption of the common underlying genetic factor in schizophrenia and bipolar affective disorder (BPAD), we performed association analysis of CC33 and CCS3 polymorphisms of the PPP3CC gene reported to be associated with schizophrenia in a French sample of 115 BPAD patients and 97 healthy controls. RESULTS Carrying 'CT' or 'TT' genotypes of the PPP3CC-CC33 polymorphism increased risk to develop BPAD comparing to carry 'CC' genotype (OR = 1.8 [1.01-3.0]; p = 0.05). For the PPP3CC-CCS3 polymorphism, 'AG' or 'GG' carriers have an increased risk to develop BPAD than 'AA' carriers (OR = 2.8 [1.5-5.2]). The CC33 and CCS3 polymorphisms were observed in significant linkage disequilibrium (D' = 0.91, r2 = 0.72). Haplotype frequencies were significantly different in BPAD patients than in controls (p = 0.03), with a significant over-transmission of the 'TG' haplotype in BPAD patients (p = 0.001). CONCLUSION We suggest that the PPP3CC gene might be a susceptibility gene for BPAD, in accordance with current neurobiological hypotheses that implicate dysregulation of signal-transduction pathways, such as those regulated by calcineurin, in the etiology of affective disorders.
Collapse
Affiliation(s)
- Flavie Mathieu
- INSERM U-513, Faculté de Médecine, 8 rue de Général Sarrail, 94000, Créteil, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Schmitt A, Bauer M, Heinsen H, Feiden W, Consortium of Brainnet Europe II, Falkai P, Alafuzoff I, Arzberger T, Al-Sarraj S, Bell JE, Bogdanovic N, Brück W, Budka H, Ferrer I, Giaccone G, Kovacs GG, Meyronet D, Palkovits M, Parchi P, Patsouris E, Ravid R, Reynolds R, Riederer P, Roggendorf W, Schwalber A, Seilhean D, Kretzschmar H. How a neuropsychiatric brain bank should be run: a consensus paper of Brainnet Europe II. J Neural Transm (Vienna) 2006; 114:527-37. [PMID: 17165101 DOI: 10.1007/s00702-006-0601-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 10/28/2006] [Indexed: 01/02/2023]
Abstract
The development of new molecular and neurobiological methods, computer-assisted quantification techniques and neurobiological investigation methods which can be applied to the human brain, all have evoked an increased demand for post-mortem tissue in research. Psychiatric disorders are considered to be of neurobiological origin. Thus far, however, the etiology and pathophysiology of schizophrenia, depression and dementias are not well understood at the cellular and molecular level. The following will outline the consensus of the working group for neuropsychiatric brain banking organized in the Brainnet Europe II, on ethical guidelines for brain banking, clinical diagnostic criteria, the minimal clinical data set of retrospectively analyzed cases as well as neuropathological standard investigations to perform stageing for neurodegenerative disorders in brain tissue. We will list regions of interest for assessments in psychiatric disorder, propose a dissection scheme and describe preservation and storage conditions of tissue. These guidelines may be of value for future implementations of additional neuropsychiatric brain banks world-wide.
Collapse
Affiliation(s)
- A Schmitt
- Department of Psychiatry, University of Göttingen, Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|