1
|
Slapø NB, Jørgensen KN, Elvsåshagen T, Nerland S, Roelfs D, Valstad M, Timpe CMF, Richard G, Beck D, Sæther LS, Frogner Werner MC, Lagerberg TV, Andreassen OA, Melle I, Agartz I, Westlye LT, Moberget T, Jönsson EG. Relationship between function and structure in the visual cortex in healthy individuals and in patients with severe mental disorders. Psychiatry Res Neuroimaging 2023; 332:111633. [PMID: 37028226 DOI: 10.1016/j.pscychresns.2023.111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 04/09/2023]
Abstract
Patients with schizophrenia spectrum disorders (SCZspect) and bipolar disorders (BD) show impaired function in the primary visual cortex (V1), indicated by altered visual evoked potential (VEP). While the neural substrate for altered VEP in these patients remains elusive, altered V1 structure may play a role. One previous study found a positive relationship between the amplitude of the P100 component of the VEP and V1 surface area, but not V1 thickness, in a small sample of healthy individuals. Here, we aimed to replicate these findings in a larger healthy control (HC) sample (n = 307) and to examine the same relationship in patients with SCZspect (n = 30) or BD (n = 45). We also compared the mean P100 amplitude, V1 surface area and V1 thickness between controls and patients and found no significant group differences. In HC only, we found a significant positive P100-V1 surface area association, while there were no significant P100-V1 thickness relationships in HC, SCZspect or BD. Together, our results confirm previous findings of a positive P100-V1 surface area association in HC, whereas larger patient samples are needed to further clarify the function-structure relationship in V1 in SCZspect and BD.
Collapse
Affiliation(s)
- Nora Berz Slapø
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway.
| | - Kjetil Nordbø Jørgensen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatry, Telemark Hospital, Skien, Norway
| | - Torbjørn Elvsåshagen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Neurology, Oslo University Hospital, Norway
| | - Stener Nerland
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Daniel Roelfs
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway
| | - Mathias Valstad
- Department of Mental Disorders, Norwegian Institute of Public Health, Norway
| | - Clara M F Timpe
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway
| | | | - Dani Beck
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | | | | | - Trine Vik Lagerberg
- NORMENT, Division of Mental Health and Addiction, Oslo University hospital, Norway
| | - Ole A Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University hospital, Norway
| | - Ingrid Melle
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University hospital, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Sciences, Stockholm Region, Stockholm, Sweden
| | - Lars T Westlye
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway
| | - Torgeir Moberget
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Behavioral Sciences, Faculty of Health Sciences, Oslo Metropolitan University, OsloMet, Oslo, Norway
| | - Erik G Jönsson
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Sciences, Stockholm Region, Stockholm, Sweden
| |
Collapse
|
2
|
Schallmo MP, Weldon KB, Kamath RS, Moser HR, Montoya SA, Killebrew KW, Demro C, Grant AN, Marjańska M, Sponheim SR, Olman CA. The psychosis human connectome project: Design and rationale for studies of visual neurophysiology. Neuroimage 2023; 272:120060. [PMID: 36997137 PMCID: PMC10153004 DOI: 10.1016/j.neuroimage.2023.120060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
Visual perception is abnormal in psychotic disorders such as schizophrenia. In addition to hallucinations, laboratory tests show differences in fundamental visual processes including contrast sensitivity, center-surround interactions, and perceptual organization. A number of hypotheses have been proposed to explain visual dysfunction in psychotic disorders, including an imbalance between excitation and inhibition. However, the precise neural basis of abnormal visual perception in people with psychotic psychopathology (PwPP) remains unknown. Here, we describe the behavioral and 7 tesla MRI methods we used to interrogate visual neurophysiology in PwPP as part of the Psychosis Human Connectome Project (HCP). In addition to PwPP (n = 66) and healthy controls (n = 43), we also recruited first-degree biological relatives (n = 44) in order to examine the role of genetic liability for psychosis in visual perception. Our visual tasks were designed to assess fundamental visual processes in PwPP, whereas MR spectroscopy enabled us to examine neurochemistry, including excitatory and inhibitory markers. We show that it is feasible to collect high-quality data across multiple psychophysical, functional MRI, and MR spectroscopy experiments with a sizable number of participants at a single research site. These data, in addition to those from our previously described 3 tesla experiments, will be made publicly available in order to facilitate further investigations by other research groups. By combining visual neuroscience techniques and HCP brain imaging methods, our experiments offer new opportunities to investigate the neural basis of abnormal visual perception in PwPP.
Collapse
Affiliation(s)
- Michael-Paul Schallmo
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Kimberly B Weldon
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA; Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Rohit S Kamath
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Hannah R Moser
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Samantha A Montoya
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Kyle W Killebrew
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Caroline Demro
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA; Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Andrea N Grant
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Małgorzata Marjańska
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Scott R Sponheim
- Veterans Affairs Medical Center, Minneapolis, MN, USA; Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Cheryl A Olman
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA; Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Galdino LB, Fernandes T, Schmidt KE, Santos NA. Altered brain connectivity during visual stimulation in schizophrenia. Exp Brain Res 2022; 240:3327-3337. [PMID: 36322165 DOI: 10.1007/s00221-022-06495-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 10/20/2022] [Indexed: 11/23/2022]
Abstract
Schizophrenia (SCZ) can be described as a functional dysconnectivity syndrome that affects brain connectivity and circuitry. However, little is known about how sensory stimulation modulates network parameters in schizophrenia, such as their small-worldness (SW) during visual processing. To address this question, we applied graph theory algorithms to multi-electrode EEG recordings obtained during visual stimulation with a checkerboard pattern-reversal stimulus. Twenty-six volunteers participated in the study, 13 diagnosed with schizophrenia (SCZ; mean age = 38.3 years; SD = 9.61 years) and 13 healthy controls (HC; mean age = 28.92 years; SD = 12.92 years). The visually evoked potential (VEP) showed a global amplitude decrease (p < 0.05) for SCZ patients as opposed to HC but no differences in latency (p > 0.05). As a signature of functional connectivity, graph measures were obtained from the Magnitude-Squared Coherence between signals from pairs of occipital electrodes, separately for the alpha (8-13 Hz) and low-gamma (36-55 Hz) bands. For the alpha band, there was a significant effect of the visual stimulus on all measures (p < 0.05) but no group interaction between SCZ and HZ (p > 0.05). For the low-gamma spectrum, both groups showed a decrease of Characteristic Path Length (L) during visual stimulation (p < 0.05), but, contrary to the HC group, only SCZ significantly lowered their small-world (SW) connectivity index during visual stimulation (SCZ p < 0.05; HC p > 0.05). This indicates dysconnectivity of the functional network in the low-gamma band of SCZ during stimulation, which might indirectly reflect an altered ability to react to new sensory input in patients. These results provide novel evidence about a possible electrophysiological signature of the global deficits revealed by the application of graph theory onto electroencephalography in schizophrenia.
Collapse
Affiliation(s)
- Lucas B Galdino
- Laboratory of Perception, Neurosciences and Behaviour, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil. .,Neurobiology of Vision Lab, Brain Institute (ICe), Federal University of Rio Grande do Norte, Natal, Brazil.
| | - Thiago Fernandes
- Laboratory of Perception, Neurosciences and Behaviour, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| | - Kerstin E Schmidt
- Neurobiology of Vision Lab, Brain Institute (ICe), Federal University of Rio Grande do Norte, Natal, Brazil
| | - Natanael A Santos
- Laboratory of Perception, Neurosciences and Behaviour, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| |
Collapse
|
4
|
Diamond A, Silverstein SM, Keane BP. Visual system assessment for predicting a transition to psychosis. Transl Psychiatry 2022; 12:351. [PMID: 36038544 PMCID: PMC9424317 DOI: 10.1038/s41398-022-02111-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 01/19/2023] Open
Abstract
The field of psychiatry is far from perfect in predicting which individuals will transition to a psychotic disorder. Here, we argue that visual system assessment can help in this regard. Such assessments have generated medium-to-large group differences with individuals prior to or near the first psychotic episode or have shown little influence of illness duration in larger samples of more chronic patients. For example, self-reported visual perceptual distortions-so-called visual basic symptoms-occur in up to 2/3rds of those with non-affective psychosis and have already longitudinally predicted an impending onset of schizophrenia. Possibly predictive psychophysical markers include enhanced contrast sensitivity, prolonged backward masking, muted collinear facilitation, reduced stereoscopic depth perception, impaired contour and shape integration, and spatially restricted exploratory eye movements. Promising brain-based markers include visual thalamo-cortical hyperconnectivity, decreased occipital gamma band power during visual detection (MEG), and reduced visually evoked occipital P1 amplitudes (EEG). Potentially predictive retinal markers include diminished cone a- and b-wave amplitudes and an attenuated photopic flicker response during electroretinography. The foregoing assessments are often well-described mechanistically, implying that their findings could readily shed light on the underlying pathophysiological changes that precede or accompany a transition to psychosis. The retinal and psychophysical assessments in particular are inexpensive, well-tolerated, easy to administer, and brief, with few inclusion/exclusion criteria. Therefore, across all major levels of analysis-from phenomenology to behavior to brain and retinal functioning-visual system assessment could complement and improve upon existing methods for predicting which individuals go on to develop a psychotic disorder.
Collapse
Affiliation(s)
- Alexander Diamond
- Department of Psychiatry, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, USA
| | - Steven M Silverstein
- Department of Psychiatry, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, USA
- Department of Neuroscience, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, USA
- Center for Visual Science, University of Rochester, 601 Elmwood Ave, Rochester, NY, USA
- Department of Ophthalmology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, USA
| | - Brian P Keane
- Department of Psychiatry, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, USA.
- Department of Neuroscience, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, USA.
- Center for Visual Science, University of Rochester, 601 Elmwood Ave, Rochester, NY, USA.
- Department of Brain & Cognitive Sciences, University of Rochester, 358 Meliora Hall, NY, Rochester, USA.
| |
Collapse
|
5
|
Kipiński L, Maciejowski A, Małyszczak K, Pilecki W. High-frequency changes in single-trial visual evoked potentials for unattended stimuli in chronic schizophrenia. J Neurosci Methods 2022; 377:109626. [DOI: 10.1016/j.jneumeth.2022.109626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/26/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
|
6
|
Bozali E, Yalinbas D. Analysis of the Thickness of the Outer Retinal Layer Using Optical Coherence Tomography - A Predictor of Visual Acuity in Schizophrenia. Klin Monbl Augenheilkd 2022; 239:1232-1238. [PMID: 35320864 DOI: 10.1055/a-1741-7988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND The aim of this study was to evaluate the thickness of the outer retinal layer (ORL) together with macular thickness and changes in the retinal nerve fiber layer (RNFL) in patients with schizophrenia in comparison with healthy controls. METHODS This study included 114 eyes of 57 patients diagnosed with schizophrenia and 114 eyes of 57 healthy controls. Central foveal thickness (CFT), central macular thickness (CMT), and ORL thickness were measured in both groups via the images obtained by spectral-domain optical coherence tomography (SD-OCT). RNFL was also assessed in four quadrants (inferior, superior, temporal, nasal). CMT measurements were presented as the average thickness of the macula in the central 1 mm area on the Early Treatment Diabetic Retinopathy Study (ETDRS) grid. The ORL thickness was defined as the distance between the external limiting membrane and retinal pigment epithelium at the center of the foveal pit. RESULTS The mean age of 57 patients was 37 ± 10 years, of whom 34 (60%) were male and 23 (40%) female. No statistically significant difference was found between groups in terms of age and gender (p = 0.8 for age, p = 0.9 for gender). There was no statistically significant difference in the mean CMT between the two groups (p = 0.1). The mean ORL thickness in the two groups was 99.8 ± 8.3 and 103.7 ± 6.2, respectively, and was significantly decreased in the schizophrenia group (p = 0.005). RNFL analysis demonstrated significant thinning in the inferior and superior quadrants compared to healthy controls (p < 0.001 and p = 0.017, respectively). CONCLUSIONS SD-OCT findings - especially ORL and RNFL thickness - may be related to the neurodegenerational changes in schizophrenia.
Collapse
Affiliation(s)
- Erman Bozali
- Sivas Cumhuriyet University Faculty of Medicine, Department of Ophthalmology, Sivas, Turkey
| | - Duygu Yalinbas
- Sivas Cumhuriyet University Faculty of Medicine, Department of Ophthalmology, Sivas, Turkey
| |
Collapse
|
7
|
Francisco AA, Foxe JJ, Horsthuis DJ, Molholm S. Early visual processing and adaptation as markers of disease, not vulnerability: EEG evidence from 22q11.2 deletion syndrome, a population at high risk for schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:28. [PMID: 35314711 PMCID: PMC8938446 DOI: 10.1038/s41537-022-00240-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/21/2022] [Indexed: 01/17/2023]
Abstract
We investigated visual processing and adaptation in 22q11.2 deletion syndrome (22q11.2DS), a condition characterized by an increased risk for schizophrenia. Visual processing differences have been described in schizophrenia but remain understudied early in the disease course. Electrophysiology was recorded during a visual adaptation task with different interstimulus intervals to investigate visual processing and adaptation in 22q11.2DS (with (22q+) and without (22q−) psychotic symptoms), compared to control and idiopathic schizophrenia groups. Analyses focused on early windows of visual processing. While increased amplitudes were observed in 22q11.2DS in an earlier time window (90–140 ms), decreased responses were seen later (165–205 ms) in schizophrenia and 22q+. 22q11.2DS, and particularly 22q−, presented increased adaptation effects. We argue that while amplitude and adaptation in the earlier time window may reflect specific neurogenetic aspects associated with a deletion in chromosome 22, amplitude in the later window may be a marker of the presence of psychosis and/or of its chronicity/severity.
Collapse
Affiliation(s)
- Ana A Francisco
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, USA.,The Cognitive Neurophysiology Laboratory, Department of Neuroscience, The Ernest J. Del Monde Institute for Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Douwe J Horsthuis
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, USA. .,The Cognitive Neurophysiology Laboratory, Department of Neuroscience, The Ernest J. Del Monde Institute for Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
8
|
Hever F, Sahin D, Aschenbrenner S, Bossert M, Herwig K, Wirtz G, Oelkers-Ax R, Weisbrod M, Sharma A. Visual N80 latency as a marker of neuropsychological performance in schizophrenia: Evidence for bottom-up cognitive models. Clin Neurophysiol 2021; 132:872-885. [PMID: 33636604 DOI: 10.1016/j.clinph.2021.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Cognitive deficits and visual impairment in the magnocellular (M) pathway, have been independently reported in schizophrenia. The current study examined the association between neuropsychological (NPS) performance and visual evoked potentials (VEPs: N80/P1 to M- and P(parvocellular)-biased visual stimuli) in schizophrenia and healthy controls. METHODS NPS performance and VEPs were measured in n = 44 patients and n = 34 matched controls. Standardized NPS-scores were combined into Domains and a PCA (Principal Component Analysis) generated Composite. Group differences were assessed via (M)ANOVAs, association between NPS and VEP parameters via PCA, Pearson's coefficient and bootstrapping. Logistic regression was employed to assess classification power. RESULTS Patients showed general cognitive impairment, whereas group differences for VEP-parameters were non-significant. In patients, N80 latency across conditions loaded onto one factor with cognitive composite, showed significant negative correlations of medium effect sizes with NPS performance for M/P mixed stimuli and classified low and high performance with 70% accuracy. CONCLUSION The study provides no evidence for early visual pathway impairment but suggests a heightened association between early visual processing and cognitive performance in schizophrenia. SIGNIFICANCE Our results lend support to bottom-up models of cognitive function in schizophrenia and implicate visual N80 latency as a potential biomarker of cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Felix Hever
- Research Group Neurocognition, Department of General Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany.
| | - Derya Sahin
- Research Group Neurocognition, Department of General Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Steffen Aschenbrenner
- Department of Psychiatry and Psychotherapy, SRH Hospital Karlsbad-Langensteinbach, Germany
| | - Magdalena Bossert
- Department of Psychiatry and Psychotherapy, SRH Hospital Karlsbad-Langensteinbach, Germany
| | - Kerstin Herwig
- Research Group Neurocognition, Department of General Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Gustav Wirtz
- SRH RPK Karlsbad, Psychiatric Rehabilitation, Karlsbad-Langensteinbach, Germany
| | - Rieke Oelkers-Ax
- Research Group Neurocognition, Department of General Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Matthias Weisbrod
- Research Group Neurocognition, Department of General Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany; Department of Psychiatry and Psychotherapy, SRH Hospital Karlsbad-Langensteinbach, Germany
| | - Anuradha Sharma
- Research Group Neurocognition, Department of General Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
9
|
Daskalakis AA, Zomorrodi R, Blumberger DM, Rajji TK. Evidence for prefrontal cortex hypofunctioning in schizophrenia through somatosensory evoked potentials. Schizophr Res 2020; 215:197-203. [PMID: 31662233 DOI: 10.1016/j.schres.2019.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 09/11/2019] [Accepted: 10/12/2019] [Indexed: 10/25/2022]
Abstract
Patients with schizophrenia (SCZ) exhibit a variety of symptoms related to altered processing of somatosensory information. Little is known, however, about the neural substrates underlying somatosensory impairments in SCZ. This study endeavored to evaluate somatosensory processing in patients with SCZ compared to healthy individuals by generating somatosensory evoked potentials through stimulation of the right median nerve. The median nerve was stimulated by a peripheral nerve stimulator in 34 SCZ and 33 healthy control (HC) participants. The peripheral nerve stimulus (PNS) intensity was adjusted to 300 percent of sensory threshold and delivered at 0.1 Hz. The EEG data were acquired through 64-channels per 10-20 montage. We collected and averaged 100 trials and the recording electrodes of interest were the F3/F5 electrodes representing the dorsolateral prefrontal cortex (DLPFC) and C3/CP3 representing the somatosensory cortex (S1). In response to PNS, SCZ participants experienced over the DLPFC N30 amplitude that was significantly smaller than that of HC participants. By contrast, S1 N20 was of similar amplitude between the two groups. In addition, we found an association between N20 and N30 amplitudes in SCZ but not in HC participants. Our findings suggest that patients with SCZ demonstrate aberrant processing of somatosensory activation by the DLPFC locally and not due to a connectivity disruption between S1 and DLPFC. These results could help to develop a model through which to DLPFC hypofunctioning could be studied. Our findings may also help to identify a potential biological target to treat somatosensory information processing related deficits in SCZ.
Collapse
Affiliation(s)
- Anastasios A Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Tarek K Rajji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Ramsay IS, Schallmo MP, Biagianti B, Fisher M, Vinogradov S, Sponheim SR. Deficits in Auditory and Visual Sensory Discrimination Reflect a Genetic Liability for Psychosis and Predict Disruptions in Global Cognitive Functioning. Front Psychiatry 2020; 11:638. [PMID: 32733293 PMCID: PMC7358403 DOI: 10.3389/fpsyt.2020.00638] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/19/2020] [Indexed: 11/29/2022] Open
Abstract
Sensory discrimination thresholds (i.e., the briefest stimulus that can be accurately perceived) can be measured using tablet-based auditory and visual sweep paradigms. These basic sensory functions have been found to be diminished in patients with psychosis. However, the extent to which worse sensory discrimination characterizes genetic liability for psychosis, and whether it is related to clinical symptomatology and community functioning remains unknown. In the current study we compared patients with psychosis (PSY; N=76), their first-degree biological relatives (REL; N=44), and groups of healthy controls (CON; N=13 auditory and visual/N=275 auditory/N=267 visual) on measures of auditory and visual sensory discrimination, and examined relationships with a battery of symptom, cognitive, and functioning measures. Sound sweep thresholds differed among the PSY, REL, and CON groups, driven by higher thresholds in the PSY compared to CON group, with the REL group showing intermediate thresholds. Visual thresholds also differed among the three groups, driven by higher thresholds in the REL versus CON group, and no significant differences between the REL and PSY groups. Across groups and among patients, higher thresholds (poorer discrimination) for both sound and visual sweeps strongly correlated with lower global cognitive scores. We conclude that low-level auditory and visual sensory discrimination deficits in psychosis may reflect genetic liability for psychotic illness. Critically, these deficits relate to global cognitive disruptions that are a hallmark of psychotic illnesses such as schizophrenia.
Collapse
Affiliation(s)
- Ian S Ramsay
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Michael-Paul Schallmo
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Bruno Biagianti
- Department of R&D, Posit Science Corporation, San Francisco, CA, United States
| | - Melissa Fisher
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Sophia Vinogradov
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Scott R Sponheim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States.,Minneapolis Veterans Affairs Medical Center, Minneapolis, MN, United States
| |
Collapse
|
11
|
Fernandes TMP, Silverstein SM, Almeida NLD, Santos NAD. Psychophysical evaluation of contrast sensitivity using Gabor patches in tobacco addiction. J Clin Neurosci 2018; 57:68-73. [DOI: 10.1016/j.jocn.2018.08.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/13/2018] [Indexed: 10/28/2022]
|
12
|
Silverstein SM, Paterno D, Cherneski L, Green S. Optical coherence tomography indices of structural retinal pathology in schizophrenia. Psychol Med 2018; 48:2023-2033. [PMID: 29233210 DOI: 10.1017/s0033291717003555] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Prior optical coherence tomography (OCT) studies of schizophrenia have identified thinning of retinal layers. However, findings have varied across reports, and most studies have had serious methodological limitations. To address unresolved issues, we determined whether: (1) retinal thinning in schizophrenia occurs independently of comorbid medical conditions that affect the retina; (2) thinning is independent of antipsychotic medication dose; (3) optic nerve parameters are abnormal in schizophrenia; and (4) OCT indices are related to visual and cognitive impairments common in schizophrenia. METHODS A total of 32 people with schizophrenia and 32 matched controls participated. Spectral domain OCT generated data on retinal nerve fiber layer (RNFL), macula, and ganglion cell-inner plexiform layer (GCL-IPL) thickness, in addition to cup volume and the cup-to-disc ratio at the optic nerve head. Subjects with schizophrenia also completed measures of symptoms, visual processing, and IQ. RESULTS The groups did not differ on RNFL, macula, or GCL-IPL thickness. However, thinning of these layers was related to the presence of diabetes or hypertension across the sample as a whole. The schizophrenia group demonstrated enlarged cup volume and an enlarged cup-to-disc ratio in both eyes, which were unrelated to medical comorbidity, but were related to increased cognitive symptoms. CONCLUSIONS Past reports of retinal thinning may be artifacts of medical comorbidity that is over-represented in schizophrenia, or other confounds. However, optic nerve head abnormalities may hold promise as biomarkers of central nervous system abnormality, including cognitive decline, in schizophrenia.
Collapse
Affiliation(s)
| | | | | | - Stuart Green
- Department of Ophthalmology,Robert Wood Johnson University Hospital,New Brunswick, NJ,USA
| |
Collapse
|
13
|
Grønli J, Schmidt MA, Wisor JP. State-Dependent Modulation of Visual Evoked Potentials in a Rodent Genetic Model of Electroencephalographic Instability. Front Syst Neurosci 2018; 12:36. [PMID: 30158860 PMCID: PMC6104170 DOI: 10.3389/fnsys.2018.00036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/17/2018] [Indexed: 12/29/2022] Open
Abstract
Despite normal sleep timing and duration, Egr3-deficient (Egr3−/−) mice exhibit electroencephalographic (EEG) characteristics of reduced arousal, including elevated slow wave (1–4 Hz) activity during wakefulness. Here we show that these mice exhibit state-dependent instability in the EEG. Intermittent surges in EEG power were found in Egr3−/− mice during wakefulness and rapid eye movement sleep, most prominently in the beta (15–35 Hz) range compared to wild type (Egr3+/+) mice. Such surges did not coincide with sleep onset, as the surges were not associated with cessation of electromyographic tone. Cortical processing of sensory information by visual evoked responses (VEP) were found to vary as a function of vigilance state, being of higher magnitude during slow wave sleep (SWS) than wakefulness and rapid eye movement sleep. VEP responses were significantly larger during quiet wakefulness than active wakefulness, in both Egr3−/− mice and Egr3+/+ mice. EEG synchronization in the beta range, previously linked to the accumulation of sleep need over time, predicted VEP magnitude. Egr3−/− mice not only displayed elevated beta activity, but in quiet wake, this elevated beta activity coincides with an elevated evoked response similar to that of animals in SWS. These data confirm that (a) VEPs vary as a function of vigilance state, and (b) beta activity in the EEG is a predictor of state-dependent modulation of visual information processing. The phenotype of Egr3−/− mice indicates that Egr3 is a genetic regulator of these phenomena.
Collapse
Affiliation(s)
- Janne Grønli
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Michelle A Schmidt
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States.,Sleep and Performance Research Center, Washington State University, Spokane, WA, United States
| | - Jonathan P Wisor
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States.,Sleep and Performance Research Center, Washington State University, Spokane, WA, United States
| |
Collapse
|
14
|
Crosse MJ, Di Liberto GM, Bednar A, Lalor EC. The Multivariate Temporal Response Function (mTRF) Toolbox: A MATLAB Toolbox for Relating Neural Signals to Continuous Stimuli. Front Hum Neurosci 2016; 10:604. [PMID: 27965557 PMCID: PMC5127806 DOI: 10.3389/fnhum.2016.00604] [Citation(s) in RCA: 329] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/11/2016] [Indexed: 01/05/2023] Open
Abstract
Understanding how brains process sensory signals in natural environments is one of the key goals of twenty-first century neuroscience. While brain imaging and invasive electrophysiology will play key roles in this endeavor, there is also an important role to be played by noninvasive, macroscopic techniques with high temporal resolution such as electro- and magnetoencephalography. But challenges exist in determining how best to analyze such complex, time-varying neural responses to complex, time-varying and multivariate natural sensory stimuli. There has been a long history of applying system identification techniques to relate the firing activity of neurons to complex sensory stimuli and such techniques are now seeing increased application to EEG and MEG data. One particular example involves fitting a filter—often referred to as a temporal response function—that describes a mapping between some feature(s) of a sensory stimulus and the neural response. Here, we first briefly review the history of these system identification approaches and describe a specific technique for deriving temporal response functions known as regularized linear regression. We then introduce a new open-source toolbox for performing this analysis. We describe how it can be used to derive (multivariate) temporal response functions describing a mapping between stimulus and response in both directions. We also explain the importance of regularizing the analysis and how this regularization can be optimized for a particular dataset. We then outline specifically how the toolbox implements these analyses and provide several examples of the types of results that the toolbox can produce. Finally, we consider some of the limitations of the toolbox and opportunities for future development and application.
Collapse
Affiliation(s)
- Michael J Crosse
- School of Engineering, Trinity Centre for Bioengineering and Trinity College Institute of Neuroscience, Trinity College DublinDublin, Ireland; Department of Pediatrics and Department of Neuroscience, Albert Einstein College of MedicineThe Bronx, NY, USA
| | - Giovanni M Di Liberto
- School of Engineering, Trinity Centre for Bioengineering and Trinity College Institute of Neuroscience, Trinity College Dublin Dublin, Ireland
| | - Adam Bednar
- School of Engineering, Trinity Centre for Bioengineering and Trinity College Institute of Neuroscience, Trinity College DublinDublin, Ireland; Department of Biomedical Engineering and Department of Neuroscience, University of RochesterRochester, NY, USA
| | - Edmund C Lalor
- School of Engineering, Trinity Centre for Bioengineering and Trinity College Institute of Neuroscience, Trinity College DublinDublin, Ireland; Department of Biomedical Engineering and Department of Neuroscience, University of RochesterRochester, NY, USA
| |
Collapse
|
15
|
Grent-'t-Jong T, Rivolta D, Sauer A, Grube M, Singer W, Wibral M, Uhlhaas PJ. MEG-measured visually induced gamma-band oscillations in chronic schizophrenia: Evidence for impaired generation of rhythmic activity in ventral stream regions. Schizophr Res 2016; 176:177-185. [PMID: 27349815 DOI: 10.1016/j.schres.2016.06.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/14/2016] [Accepted: 06/04/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND Gamma-band oscillations are prominently impaired in schizophrenia, but the nature of the deficit and relationship to perceptual processes is unclear. METHODS 16 patients with chronic schizophrenia (ScZ) and 16 age-matched healthy controls completed a visual paradigm while magnetoencephalographic (MEG) data was recorded. Participants had to detect randomly occurring stimulus acceleration while viewing a concentric moving grating. MEG data were analyzed for spectral power (1-100Hz) at sensor- and source-level to examine the brain regions involved in aberrant rhythmic activity, and for contribution of differences in baseline activity towards the generation of low- and high-frequency power. RESULTS Our data show reduced gamma-band power at sensor level in schizophrenia patients during stimulus processing while alpha-band and baseline spectrum were intact. Differences in oscillatory activity correlated with reduced behavioral detection rates in the schizophrenia group and higher scores on the "Cognitive Factor" of the Positive and Negative Syndrome Scale. Source reconstruction revealed that extra-striate (fusiform/lingual gyrus), but not striate (cuneus), visual cortices contributed towards the reduced activity observed at sensor-level in ScZ patients. Importantly, differences in stimulus-related activity were not due to differences in baseline activity. CONCLUSIONS Our findings highlight that MEG-measured high-frequency oscillations during visual processing can be robustly identified in ScZ. Our data further suggest impairments that involve dysfunctions in ventral stream processing and a failure to increase gamma-band activity in a task-context. Implications of these findings are discussed in the context of current theories of cortical-subcortical circuit dysfunctions and perceptual processing in ScZ.
Collapse
Affiliation(s)
- Tineke Grent-'t-Jong
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom.
| | - Davide Rivolta
- Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt am Main 60528, Germany; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main 60528, Germany; School of Psychology, University of East London (UEL), London, United Kingdom
| | - Andreas Sauer
- Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt am Main 60528, Germany; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main 60528, Germany
| | - Michael Grube
- Department of Psychiatry and Psychotherapy - Psychosomatics, Municipal Clinic, Frankfurt am Main 65929, Germany
| | - Wolf Singer
- Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt am Main 60528, Germany; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main 60528, Germany; Frankfurt Institute for Advanced Studies (FIAS), Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Michael Wibral
- MEG Unit, Brain Imaging Centre (BIC), Johann Wolfgang Goethe University, Frankfurt am Main 60529, Germany
| | - Peter J Uhlhaas
- Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt am Main 60528, Germany; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main 60528, Germany; Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
16
|
Andrade GN, Butler JS, Peters GA, Molholm S, Foxe JJ. Atypical visual and somatosensory adaptation in schizophrenia-spectrum disorders. Transl Psychiatry 2016; 6:e804. [PMID: 27163205 PMCID: PMC5070065 DOI: 10.1038/tp.2016.63] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/11/2016] [Accepted: 03/05/2016] [Indexed: 12/12/2022] Open
Abstract
Neurophysiological investigations in patients with schizophrenia consistently show early sensory processing deficits in the visual system. Importantly, comparable sensory deficits have also been established in healthy first-degree biological relatives of patients with schizophrenia and in first-episode drug-naive patients. The clear implication is that these measures are endophenotypic, related to the underlying genetic liability for schizophrenia. However, there is significant overlap between patient response distributions and those of healthy individuals without affected first-degree relatives. Here we sought to develop more sensitive measures of sensory dysfunction in this population, with an eye to establishing endophenotypic markers with better predictive capabilities. We used a sensory adaptation paradigm in which electrophysiological responses to basic visual and somatosensory stimuli presented at different rates (ranging from 250 to 2550 ms interstimulus intervals, in blocked presentations) were compared. Our main hypothesis was that adaptation would be substantially diminished in schizophrenia, and that this would be especially prevalent in the visual system. High-density event-related potential recordings showed amplitude reductions in sensory adaptation in patients with schizophrenia (N=15 Experiment 1, N=12 Experiment 2) compared with age-matched healthy controls (N=15 Experiment 1, N=12 Experiment 2), and this was seen for both sensory modalities. At the individual participant level, reduced adaptation was more robust for visual compared with somatosensory stimulation. These results point to significant impairments in short-term sensory plasticity across sensory modalities in schizophrenia. These simple-to-execute measures may prove valuable as candidate endophenotypes and will bear follow-up in future work.
Collapse
Affiliation(s)
- G N Andrade
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
- Departments of Psychology and Biology, The Graduate Center, City University of New York, New York, NY, USA
| | - J S Butler
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
- Trinity Centre for Bioengineering, Trinity College, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - G A Peters
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - S Molholm
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
- Departments of Psychology and Biology, The Graduate Center, City University of New York, New York, NY, USA
| | - J J Foxe
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
- Departments of Psychology and Biology, The Graduate Center, City University of New York, New York, NY, USA
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- The Ernest J. Del Monte Institute for Neuromedicine, Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
17
|
Abstract
Although the visual system has been extensively investigated, an integrated account of the spatiotemporal dynamics of long-range signal propagation along the human visual pathways is not completely known or validated. In this work, we used dynamic causal modeling approach to provide insights into the underlying neural circuit dynamics of pattern reversal visual-evoked potentials extracted from concurrent EEG-fMRI data. A recurrent forward-backward connectivity model, consisting of multiple interacting brain regions identified by EEG source localization aided by fMRI spatial priors, best accounted for the data dynamics. Sources were first identified in the thalamic area, primary visual cortex, as well as higher cortical areas along the ventral and dorsal visual processing streams. Consistent with hierarchical early visual processing, the model disclosed and quantified the neural temporal dynamics across the identified activity sources. This signal propagation is dominated by a feedforward process, but we also found weaker effective feedback connectivity. Using effective connectivity analysis, the optimal dynamic causal modeling revealed enhanced connectivity along the dorsal pathway but slightly suppressed connectivity along the ventral pathway. A bias was also found in favor of the right hemisphere consistent with functional attentional asymmetry. This study validates, for the first time, the long-range signal propagation timing in the human visual pathways. A similar modeling approach can potentially be used to understand other cognitive processes and dysfunctions in signal propagation in neurological and neuropsychiatric disorders. Significance statement: An integrated account of long-range visual signal propagation in the human brain is currently incomplete. Using computational neural modeling on our acquired concurrent EEG-fMRI data under a visual evoked task, we found not only a substantial forward propagation toward "higher-order" brain regions but also a weaker backward propagation. Asymmetry in our model's long-range connectivity accounted for the various observed activity biases. Importantly, the model disclosed the timing of signal propagation across these connectivity pathways and validates, for the first time, long-range signal propagation in the human visual system. A similar modeling approach could be used to identify neural pathways for other cognitive processes and their dysfunctions in brain disorders.
Collapse
|
18
|
González-Hernández JA, Pita-Alcorta C, Wolters CH, Padrón A, Finalé A, Galán-García L, Marot M, Lencer R. Specificity and sensitivity of visual evoked potentials in the diagnosis of schizophrenia: rethinking VEPs. Schizophr Res 2015; 166:231-4. [PMID: 26004691 DOI: 10.1016/j.schres.2015.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/14/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
Abstract
Alterations of the visual evoked potential (VEP) component P1 at the occipital region represent the most extended functional references of early visual dysfunctions in schizophrenia (SZ). However, P1 deficits are not reliable enough to be accepted as standard susceptibility markers for use in clinical psychiatry. We have previously reported a novel approach combining a standard checkerboard pattern-reversal stimulus, spectral resolution VEP, source detection techniques and statistical procedures which allowed the correct classification of all patients as SZ compared to controls. Here, we applied the same statistical approach but to a single surface VEP - in contrast to the complex EEG source analyses in our previous report. P1 and N1 amplitude differences among spectral resolution VEPs from a POz-F3 bipolar montage were computed for each component. The resulting F-values were then Z-transformed. Individual comparisons of each component of P1 and N1 showed that in 72% of patients, their individual Z-score deviated from the normal distribution of controls for at least one of the two components. Crossvalidation against the distribution in the SZ-group improved the detection rate to 93%. In all, six patients were misclassified. Clinical validation yielded striking positive (78.13%) and negative (92.69%) predictive values. The here presented procedure offers a potential clinical screening method for increased susceptibility to SZ which should then be followed by high density electrode array and source detection analyses. The most important aspect of this work is represented by the fact that this diagnostic technique is low-cost and involves equipment that is feasible to use in typical community clinics.
Collapse
Affiliation(s)
- J A González-Hernández
- Department of Neurophysiology, "Hermanos-Ameijeiras" Hospital, University of Medical Science of Havana, Cuba; Department of Psychiatry, "Hermanos-Ameijeiras" Hospital, University of Medical Science of Havana, Cuba; Department of Psychiatry and Psychotherapy, University of Münster, Germany.
| | - C Pita-Alcorta
- Department of Psychiatry, "Manuel Fajardo" Hospital, University of Medical Science of Havana, Cuba
| | - C H Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Germany
| | - A Padrón
- Department of Neurophysiology, "Hermanos-Ameijeiras" Hospital, University of Medical Science of Havana, Cuba; Department of Psychiatry, "Hermanos-Ameijeiras" Hospital, University of Medical Science of Havana, Cuba
| | - A Finalé
- Department of Neurophysiology, "Hermanos-Ameijeiras" Hospital, University of Medical Science of Havana, Cuba; Department of Psychiatry, "Hermanos-Ameijeiras" Hospital, University of Medical Science of Havana, Cuba
| | - L Galán-García
- Department of Neurostatistics, Cuban Neuroscience Center, Havana, Cuba; Department of Neuroinformatics, Cuban Neuroscience Center, Havana, Cuba
| | - M Marot
- Department of Neurophysiology, "Hermanos-Ameijeiras" Hospital, University of Medical Science of Havana, Cuba; Department of Psychiatry, "Hermanos-Ameijeiras" Hospital, University of Medical Science of Havana, Cuba
| | - R Lencer
- Department of Psychiatry and Psychotherapy, University of Münster, Germany
| |
Collapse
|
19
|
Herzog MH, Brand A. Visual masking & schizophrenia. SCHIZOPHRENIA RESEARCH-COGNITION 2015; 2:64-71. [PMID: 29114454 PMCID: PMC5609636 DOI: 10.1016/j.scog.2015.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/30/2015] [Accepted: 04/07/2015] [Indexed: 11/28/2022]
Abstract
Visual masking is a frequently used tool in schizophrenia research. Visual masking has a very high sensitivity and specificity and masking paradigms have been proven to be endophenotypes. Whereas masking is a powerful technique to study schizophrenia, the underlying mechanisms are discussed controversially. For example, for more than 25 years, masking deficits of schizophrenia patients were mainly attributed to a deficient magno-cellular system (M-system). Here, we show that there is very little evidence that masking deficits are magno-cellular deficits. We will discuss the magno-cellular and other approaches in detail and highlight their pros and cons.
Collapse
Affiliation(s)
- Michael H Herzog
- Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Andreas Brand
- Klinikum Bremen-Ost, Bremen, Germany.,Institute of Psychology and Cognition Research, University of Bremen, Germany
| |
Collapse
|
20
|
Andrade GN, Butler JS, Mercier MR, Molholm S, Foxe JJ. Spatio-temporal dynamics of adaptation in the human visual system: a high-density electrical mapping study. Eur J Neurosci 2015; 41:925-39. [PMID: 25688539 DOI: 10.1111/ejn.12849] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/31/2014] [Indexed: 11/29/2022]
Abstract
When sensory inputs are presented serially, response amplitudes to stimulus repetitions generally decrease as a function of presentation rate, diminishing rapidly as inter-stimulus intervals (ISIs) fall below 1 s. This 'adaptation' is believed to represent mechanisms by which sensory systems reduce responsivity to consistent environmental inputs, freeing resources to respond to potentially more relevant inputs. While auditory adaptation functions have been relatively well characterized, considerably less is known about visual adaptation in humans. Here, high-density visual-evoked potentials (VEPs) were recorded while two paradigms were used to interrogate visual adaptation. The first presented stimulus pairs with varying ISIs, comparing VEP amplitude to the second stimulus with that of the first (paired-presentation). The second involved blocks of stimulation (N = 100) at various ISIs and comparison of VEP amplitude between blocks of differing ISIs (block-presentation). Robust VEP modulations were evident as a function of presentation rate in the block-paradigm, with strongest modulations in the 130-150 ms and 160-180 ms visual processing phases. In paired-presentations, with ISIs of just 200-300 ms, an enhancement of VEP was evident when comparing S2 with S1, with no significant effect of presentation rate. Importantly, in block-presentations, adaptation effects were statistically robust at the individual participant level. These data suggest that a more taxing block-presentation paradigm is better suited to engage visual adaptation mechanisms than a paired-presentation design. The increased sensitivity of the visual processing metric obtained in the block-paradigm has implications for the examination of visual processing deficits in clinical populations.
Collapse
Affiliation(s)
- Gizely N Andrade
- Departments of Pediatrics and Neuroscience, The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Albert Einstein College of Medicine, Van Etten Building - Wing 1C, 1225 Morris Park Avenue, Bronx, NY, 10461, USA; Departments of Psychology & Biology, The Graduate Center of the City University of New York, New York, NY, USA
| | | | | | | | | |
Collapse
|
21
|
González-Hernández JA, Pita-Alcorta C, Padrón A, Finalé A, Galán L, Martínez E, Díaz-Comas L, Samper-González JA, Lencer R, Marot M. Basic visual dysfunction allows classification of patients with schizophrenia with exceptional accuracy. Schizophr Res 2014; 159:226-33. [PMID: 25176497 DOI: 10.1016/j.schres.2014.07.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 07/28/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
Basic visual dysfunctions are commonly reported in schizophrenia; however their value as diagnostic tools remains uncertain. This study reports a novel electrophysiological approach using checkerboard visual evoked potentials (VEP). Sources of spectral resolution VEP-components C1, P1 and N1 were estimated by LORETA, and the band-effects (BSE) on these estimated sources were explored in each subject. BSEs were Z-transformed for each component and relationships with clinical variables were assessed. Clinical effects were evaluated by ROC-curves and predictive values. Forty-eight patients with schizophrenia (SZ) and 55 healthy controls participated in the study. For each of the 48 patients, the three VEP components were localized to both dorsal and ventral brain areas and also deviated from a normal distribution. P1 and N1 deviations were independent of treatment, illness chronicity or gender. Results from LORETA also suggest that deficits in thalamus, posterior cingulum, precuneus, superior parietal and medial occipitotemporal areas were associated with symptom severity. While positive symptoms were more strongly related to sensory processing deficits (P1), negative symptoms were more strongly related to perceptual processing dysfunction (N1). Clinical validation revealed positive and negative predictive values for correctly classifying SZ of 100% and 77%, respectively. Classification in an additional independent sample of 30 SZ corroborated these results. In summary, this novel approach revealed basic visual dysfunctions in all patients with schizophrenia, suggesting these visual dysfunctions represent a promising candidate as a biomarker for schizophrenia.
Collapse
Affiliation(s)
- J A González-Hernández
- Departments of Neurophysiology and Psychiatry, "Hermanos-Ameijeiras" Hospital, University of Medical Science of Havana, Cuba; Department of Psychiatry and Psychotherapy, University of Münster, Germany.
| | - C Pita-Alcorta
- Department of Psychiatry, "Manuel Fajardo" Hospital, University of Medical Science of Havana, Cuba
| | - A Padrón
- Departments of Neurophysiology and Psychiatry, "Hermanos-Ameijeiras" Hospital, University of Medical Science of Havana, Cuba
| | - A Finalé
- Departments of Neurophysiology and Psychiatry, "Hermanos-Ameijeiras" Hospital, University of Medical Science of Havana, Cuba
| | - L Galán
- Departments of Neurostatistics and Neuroinformatics, Cuban Neuroscience Center, Havana, Cuba
| | - E Martínez
- Departments of Neurostatistics and Neuroinformatics, Cuban Neuroscience Center, Havana, Cuba
| | - L Díaz-Comas
- Departments of Neurostatistics and Neuroinformatics, Cuban Neuroscience Center, Havana, Cuba
| | | | - R Lencer
- Department of Psychiatry and Psychotherapy, University of Münster, Germany
| | - M Marot
- Departments of Neurophysiology and Psychiatry, "Hermanos-Ameijeiras" Hospital, University of Medical Science of Havana, Cuba
| |
Collapse
|
22
|
de Boer-Schellekens L, Stekelenburg JJ, Maes JP, Van Gool AR, Vroomen J. Sound improves diminished visual temporal sensitivity in schizophrenia. Acta Psychol (Amst) 2014; 147:136-42. [PMID: 23896561 DOI: 10.1016/j.actpsy.2013.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 06/17/2013] [Accepted: 06/21/2013] [Indexed: 11/24/2022] Open
Abstract
Visual temporal processing and multisensory integration (MSI) of sound and vision were examined in individuals with schizophrenia using a visual temporal order judgment (TOJ) task. Compared to a non-psychiatric control group, persons with schizophrenia were less sensitive judging the temporal order of two successively presented visual stimuli. However, their sensitivity to visual temporal order improved as in the control group when two accessory sounds were added (temporal ventriloquism). These findings indicate that individuals with schizophrenia have diminished sensitivity to visual temporal order, but no deficits in the integration of low-level auditory and visual information.
Collapse
|
23
|
Tan HRM, Lana L, Uhlhaas PJ. High-frequency neural oscillations and visual processing deficits in schizophrenia. Front Psychol 2013; 4:621. [PMID: 24130535 PMCID: PMC3793130 DOI: 10.3389/fpsyg.2013.00621] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/23/2013] [Indexed: 12/30/2022] Open
Abstract
Visual information is fundamental to how we understand our environment, make predictions, and interact with others. Recent research has underscored the importance of visuo-perceptual dysfunctions for cognitive deficits and pathophysiological processes in schizophrenia. In the current paper, we review evidence for the relevance of high frequency (beta/gamma) oscillations towards visuo-perceptual dysfunctions in schizophrenia. In the first part of the paper, we examine the relationship between beta/gamma band oscillations and visual processing during normal brain functioning. We then summarize EEG/MEG-studies which demonstrate reduced amplitude and synchrony of high-frequency activity during visual stimulation in schizophrenia. In the final part of the paper, we identify neurobiological correlates as well as offer perspectives for future research to stimulate further inquiry into the role of high-frequency oscillations in visual processing impairments in the disorder.
Collapse
Affiliation(s)
- Heng-Ru May Tan
- Institute of Neuroscience and Psychology, College of Science and Engineering and College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, UK
| | | | | |
Collapse
|
24
|
Stephen JM, Coffman BA, Jung RE, Bustillo JR, Aine CJ, Calhoun VD. Using joint ICA to link function and structure using MEG and DTI in schizophrenia. Neuroimage 2013; 83:418-30. [PMID: 23777757 DOI: 10.1016/j.neuroimage.2013.06.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 06/05/2013] [Accepted: 06/07/2013] [Indexed: 11/19/2022] Open
Abstract
In this study we employed joint independent component analysis (jICA) to perform a novel multivariate integration of magnetoencephalography (MEG) and diffusion tensor imaging (DTI) data to investigate the link between function and structure. This model-free approach allows one to identify covariation across modalities with different temporal and spatial scales [temporal variation in MEG and spatial variation in fractional anisotropy (FA) maps]. Healthy controls (HC) and patients with schizophrenia (SP) participated in an auditory/visual multisensory integration paradigm to probe cortical connectivity in schizophrenia. To allow direct comparisons across participants and groups, the MEG data were registered to an average head position and regional waveforms were obtained by calculating the local field power of the planar gradiometers. Diffusion tensor images obtained in the same individuals were preprocessed to provide FA maps for each participant. The MEG/FA data were then integrated using the jICA software (http://mialab.mrn.org/software/fit). We identified MEG/FA components that demonstrated significantly different (p<0.05) covariation in MEG/FA data between diagnostic groups (SP vs. HC) and three components that captured the predominant sensory responses in the MEG data. Lower FA values in bilateral posterior parietal regions, which include anterior/posterior association tracts, were associated with reduced MEG amplitude (120-170 ms) of the visual response in occipital sensors in SP relative to HC. Additionally, increased FA in a right medial frontal region was linked with larger amplitude late MEG activity (300-400 ms) in bilateral central channels for SP relative to HC. Step-wise linear regression provided evidence that right temporal, occipital and late central components were significant predictors of reaction time and cognitive performance based on the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) cognitive assessment battery. These results point to dysfunction in a posterior visual processing network in schizophrenia, with reduced MEG amplitude, reduced FA and poorer overall performance on the MATRICS. Interestingly, the spatial location of the MEG activity and the associated FA regions are spatially consistent with white matter regions that subserve these brain areas. This novel approach provides evidence for significant pairing between function (neurophysiology) and structure (white matter integrity) and demonstrates that this multivariate, multimodal integration technique is sensitive to group differences in function and structure.
Collapse
Affiliation(s)
- J M Stephen
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd NE, Albuquerque, NM 87106, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Shaw A, Brealy J, Richardson H, Muthukumaraswamy SD, Edden RA, John Evans C, Puts NAJ, Singh KD, Keedwell PA. Marked reductions in visual evoked responses but not γ-aminobutyric acid concentrations or γ-band measures in remitted depression. Biol Psychiatry 2013. [PMID: 23200528 DOI: 10.1016/j.biopsych.2012.09.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Magnetic resonance spectroscopy (MRS) studies have consistently demonstrated reduced cortical γ-aminobutyric acid (GABA) concentrations in individuals with major depression. However, evidence for a persistent deficit during remission, which would suggest that GABA dysfunction is a possible trait marker of depression, is equivocal. Although MRS measures total concentration of GABA, magneto-encephalography provides direct measures of neural activity, with cortical γ oscillations shaped by the activity of GABAergic inhibitory interneurons. In this study we investigated whether γ oscillations and GABA concentrations would differ in individuals with remitted depression (RD) compared with never depressed control subjects (ND). METHODS Thirty-seven healthy, unmedicated female volunteers (n = 19 RD, and n = 18 ND) were recruited. The γ oscillation frequencies and amplitudes in the visual cortex, induced by simple grating stimuli, were quantified with time-frequency analyses. Distinct GABA/glutamate + glutamine MRS peaks were resolved from MEGA-PRESS difference spectra in prefrontal, occipital, and subcortical volumes. RESULTS The RD and ND individuals did not differ in the frequency of subclinical depressive symptoms. The ND were slightly older (mean = 23 years vs. 21 years), but age did not correlate with dependent measures. There were no group differences in GABA levels or induced cortical γ measures, but RD individuals had markedly reduced M80 (C1) components of the pattern-onset evoked response (46% reduction, Cohen's d = 1.01, p = .006). CONCLUSIONS Both MRS and magneto-encephalography measures of the GABA system are normal in RD. However, the early visual evoked response is a potential trait marker of the disorder.
Collapse
Affiliation(s)
- Alexander Shaw
- Institute of Neuroscience and Mental Health, MRC Centre for Neuropsychiatric Genetics and Genomics, Henry Wellcome Building, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Changes in the visual-evoked P1 potential as a function of schizotypy and background color in healthy young adults. J Psychiatr Res 2013; 47:542-7. [PMID: 23369336 DOI: 10.1016/j.jpsychires.2012.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/19/2012] [Accepted: 12/20/2012] [Indexed: 11/21/2022]
Abstract
Research has suggested a hypoactive visual magnocellular (M) pathway in individuals with schizophrenia-spectrum disorders and traits, along with a unique response of this pathway to red light. As these abnormalities only appear in a subset of these samples, they may reflect unknown subtypes with unique etiologies and corresponding neuropathologies. The P1 transient visual-evoked component has been found to be influenced by M-pathway activity; therefore, the current study assessed the P1 component in response to a 64% contrast checker stimulus on white, red, and green background conditions. The sample consisted of 28 undergraduate participants (61% male) who endorsed a continuous range of total scores from the Schizotypal Personality Questionnaire (SPQ). Participants with higher total SPQ scores had a reduced P1 mean amplitude with the white (baseline) background, which was primarily related to the SPQ Magical Thinking subscale score. In addition, while participants with lower total SPQ scores showed the expected reduction in P1 amplitude to the red (vs. green) background, participants with higher total SPQ scores showed no change, which was primarily related to the SPQ Ideas of Reference subscale. This differential change to the red background remained after covarying for the P1 amplitude to the green background, thus representing a relatively independent effect. Further confirmation of these early visual processing relationships to particular clusters of symptoms in related psychiatric samples may assist in revealing unique, currently unknown, subtypes of particular psychiatric disorders such as schizophrenia. This can direct treatment efforts toward more homogeneous neuropathology targets.
Collapse
|
27
|
Silverstein SM, Wang Y, Keane BP. Cognitive and neuroplasticity mechanisms by which congenital or early blindness may confer a protective effect against schizophrenia. Front Psychol 2013; 3:624. [PMID: 23349646 PMCID: PMC3552473 DOI: 10.3389/fpsyg.2012.00624] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 12/31/2012] [Indexed: 12/12/2022] Open
Abstract
Several authors have noted that there are no reported cases of people with schizophrenia who were born blind or who developed blindness shortly after birth, suggesting that congenital or early (C/E) blindness may serve as a protective factor against schizophrenia. By what mechanisms might this effect operate? Here, we hypothesize that C/E blindness offers protection by strengthening cognitive functions whose impairment characterizes schizophrenia, and by constraining cognitive processes that exhibit excessive flexibility in schizophrenia. After briefly summarizing evidence that schizophrenia is fundamentally a cognitive disorder, we review areas of perceptual and cognitive function that are both impaired in the illness and augmented in C/E blindness, as compared to healthy sighted individuals. We next discuss: (1) the role of neuroplasticity in driving these cognitive changes in C/E blindness; (2) evidence that C/E blindness does not confer protective effects against other mental disorders; and (3) evidence that other forms of C/E sensory loss (e.g., deafness) do not reduce the risk of schizophrenia. We conclude by discussing implications of these data for designing cognitive training interventions to reduce schizophrenia-related cognitive impairment, and perhaps to reduce the likelihood of the development of the disorder itself.
Collapse
Affiliation(s)
- Steven M. Silverstein
- University Behavioral HealthCare, University of Medicine and Dentistry of New JerseyPiscataway, NJ, USA
- Department of Psychiatry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical SchoolPiscataway, NJ, USA
| | - Yushi Wang
- University Behavioral HealthCare, University of Medicine and Dentistry of New JerseyPiscataway, NJ, USA
| | - Brian P. Keane
- University Behavioral HealthCare, University of Medicine and Dentistry of New JerseyPiscataway, NJ, USA
- Department of Psychiatry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical SchoolPiscataway, NJ, USA
- Rutgers University Center for Cognitive SciencePiscataway, NJ, USA
| |
Collapse
|
28
|
Foxe JJ, Yeap S, Leavitt VM. Brief monocular deprivation as an assay of short-term visual sensory plasticity in schizophrenia - "the binocular effect". Front Psychiatry 2013; 4:164. [PMID: 24381563 PMCID: PMC3865422 DOI: 10.3389/fpsyt.2013.00164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 11/25/2013] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Visual sensory processing deficits are consistently observed in schizophrenia, with clear amplitude reduction of the visual evoked potential (VEP) during the initial 50-150 ms of processing. Similar deficits are seen in unaffected first-degree relatives and drug-naïve first-episode patients, pointing to these deficits as potential endophenotypic markers. Schizophrenia is also associated with deficits in neural plasticity, implicating dysfunction of both glutamatergic and GABAergic systems. Here, we sought to understand the intersection of these two domains, asking whether short-term plasticity during early visual processing is specifically affected in schizophrenia. METHODS Brief periods of monocular deprivation (MD) induce relatively rapid changes in the amplitude of the early VEP - i.e., short-term plasticity. Twenty patients and 20 non-psychiatric controls participated. VEPs were recorded during binocular viewing, and were compared to the sum of VEP responses during brief monocular viewing periods (i.e., Left-eye + Right-eye viewing). RESULTS Under monocular conditions, neurotypical controls exhibited an effect that patients failed to demonstrate. That is, the amplitude of the summed monocular VEPs was robustly greater than the amplitude elicited binocularly during the initial sensory processing period. In patients, this "binocular effect" was absent. LIMITATIONS Patients were all medicated. Ideally, this study would also include first-episode unmedicated patients. CONCLUSION These results suggest that short-term compensatory mechanisms that allow healthy individuals to generate robust VEPs in the context of MD are not effectively activated in patients with schizophrenia. This simple assay may provide a useful biomarker of short-term plasticity in the psychotic disorders and a target endophenotype for therapeutic interventions.
Collapse
Affiliation(s)
- John J Foxe
- The Cognitive Neurophysiology Laboratory, Nathan S. Kline Institute for Psychiatric Research , Orangeburg, NY , USA ; The Cognitive Neurophysiology Laboratory, St. Vincent's Hospital , Dublin , Ireland ; Program in Neuropsychology, Department of Psychology, Queens College, The City University of New York , Flushing, NY , USA ; The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Children's Evaluation and Rehabilitation Center (CERC), Albert Einstein College of Medicine , Bronx, NY , USA
| | - Sherlyn Yeap
- The Cognitive Neurophysiology Laboratory, St. Vincent's Hospital , Dublin , Ireland
| | - Victoria M Leavitt
- The Cognitive Neurophysiology Laboratory, Nathan S. Kline Institute for Psychiatric Research , Orangeburg, NY , USA ; Program in Neuropsychology, Department of Psychology, Queens College, The City University of New York , Flushing, NY , USA
| |
Collapse
|