1
|
Freibüchler A, Seifert R. Analysis of clinical studies on clozapine from 2012-2022. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9745-9765. [PMID: 38918233 PMCID: PMC11582105 DOI: 10.1007/s00210-024-03209-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024]
Abstract
Clozapine has been considered the "gold standard" in the treatment of schizophrenia for many years. Clozapine has a superior effect, particularly in the treatment of negative symptoms and suicidal behaviour. However, due to its numerous adverse reactions, clozapine is mainly used for treatment-resistant schizophrenia. The aim of this paper is to analyze the results of clinical studies on clozapine from 2012-2022. PubMed was used as the database. Sixty-four studies were included and categorised by topic. The pharmacokinetic properties of clozapine tablets and a clozapine suspension solution did not differ markedly. Clozapine was superior to olanzapine and risperidone in reducing aggression and depression. A long-term study showed that metabolic parameters changed comparably with olanzapine and clozapine after 8 years. Risperidone and ziprasidone can be used as an alternative to clozapine. Scopolamine, atropine drops, and metoclopramide are effective in the treatment of clozapine-induced hypersalivation. Eight drugs, including liraglutide, exenatide, metformin, and orlistat, are potentially effective in the treatment of clozapine-induced weight gain. Ziprasidone, haloperidol, and aripiprazole showed a positive effect on symptoms when added to clozapine. No investigated drug was superior to clozapine for the treatment of schizophrenia. Ziprasidone and risperidone can also be used well for the treatment of schizophrenia. In the treatment of clozapine-induced hypersalivation and weight gain, some drugs proved to be effective.
Collapse
Affiliation(s)
- Anton Freibüchler
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany.
| |
Collapse
|
2
|
Tao Y, Zhao R, Yang B, Han J, Li Y. Dissecting the shared genetic landscape of anxiety, depression, and schizophrenia. J Transl Med 2024; 22:373. [PMID: 38637810 PMCID: PMC11025255 DOI: 10.1186/s12967-024-05153-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/01/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Numerous studies highlight the genetic underpinnings of mental disorders comorbidity, particularly in anxiety, depression, and schizophrenia. However, their shared genetic loci are not well understood. Our study employs Mendelian randomization (MR) and colocalization analyses, alongside multi-omics data, to uncover potential genetic targets for these conditions, thereby informing therapeutic and drug development strategies. METHODS We utilized the Consortium for Linkage Disequilibrium Score Regression (LDSC) and Mendelian Randomization (MR) analysis to investigate genetic correlations among anxiety, depression, and schizophrenia. Utilizing GTEx V8 eQTL and deCODE Genetics pQTL data, we performed a three-step summary-data-based Mendelian randomization (SMR) and protein-protein interaction analysis. This helped assess causal and comorbid loci for these disorders and determine if identified loci share coincidental variations with psychiatric diseases. Additionally, phenome-wide association studies, drug prediction, and molecular docking validated potential drug targets. RESULTS We found genetic correlations between anxiety, depression, and schizophrenia, and under a meta-analysis of MR from multiple databases, the causal relationships among these disorders are supported. Based on this, three-step SMR and colocalization analyses identified ITIH3 and CCS as being related to the risk of developing depression, while CTSS and DNPH1 are related to the onset of schizophrenia. BTN3A1, PSMB4, and TIMP4 were identified as comorbidity loci for both disorders. Molecules that could not be determined through colocalization analysis were also presented. Drug prediction and molecular docking showed that some drugs and proteins have good binding affinity and available structural data. CONCLUSIONS Our study indicates genetic correlations and shared risk loci between anxiety, depression, and schizophrenia. These findings offer insights into the underlying mechanisms of their comorbidities and aid in drug development.
Collapse
Affiliation(s)
- Yiming Tao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hankou, Wuhan, 430030, China
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250101, Shandong, China
| | - Rui Zhao
- Department of Laboratory Medicine, The First Afliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Bin Yang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hankou, Wuhan, 430030, China
| | - Jie Han
- Department of Emergency, School of Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China.
| | - Yongsheng Li
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hankou, Wuhan, 430030, China.
| |
Collapse
|
3
|
Khan SH, Perkins AJ, Jawaid S, Wang S, Lindroth H, Schmitt RE, Doles J, True JD, Gao S, Caplan GA, Twigg HL, Kesler K, Khan BA. Serum proteomic analysis in esophagectomy patients with postoperative delirium: A case-control study. Heart Lung 2024; 63:35-41. [PMID: 37748302 PMCID: PMC10843392 DOI: 10.1016/j.hrtlng.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Postoperative delirium occurs in up to 80% of patients undergoing esophagectomy. We performed an exploratory proteomic analysis to identify protein pathways that may be associated with delirium post-esophagectomy. OBJECTIVES Identify proteins associated with delirium and delirium severity in a younger and higher-risk surgical population. METHODS We performed a case-control study using blood samples collected from patients enrolled in a negative, randomized, double-blind clinical trial. English speaking adults aged 18 years or older, undergoing esophagectomy, who had blood samples obtained were included. Cases were defined by a positive delirium screen after surgery while controls were patients with negative delirium assessments. Delirium was assessed using Richmond Agitation Sedation Scale and Confusion Assessment Method for the Intensive Care Unit, and delirium severity was assessed by Delirium Rating Scale-Revised-98. Blood samples were collected pre-operatively and on post-operative day 1, and discovery proteomic analysis was performed. Between-group differences in median abundance ratios were reported using Wilcoxon-Mann-Whitney Odds (WMWodds1) test. RESULTS 52 (26 cases, 26 controls) patients were included in the study with a mean age of 64 (SD 9.6) years, 1.9% were females and 25% were African American. The median duration of delirium was 1 day (IQR: 1-2), and the median delirium/coma duration was 2.5 days (IQR: 2-4). Two proteins with greater relative abundance ratio in patients with delirium were: Coagulation factor IX (WMWodds: 1.89 95%CI: 1.0-4.2) and mannosyl-oligosaccharide 1,2-alpha-mannosidase (WMWodds: 2.4 95%CI: 1.03-9.9). Protein abundance ratios associated with mean delirium severity at postoperative day 1 were Complement C2 (Spearman rs = -0.31, 95%CI [-0.55, -0.02]) and Mannosyl-oligosaccharide 1,2-alpha-mannosidase (rs = 0.61, 95%CI = [0.29, 0.81]). CONCLUSIONS We identified changes in proteins associated with coagulation, inflammation, and protein handling; larger, follow-up studies are needed to confirm our hypothesis-generating findings.
Collapse
Affiliation(s)
- Sikandar H Khan
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; Indiana University Center for Aging Research, Regenstrief Institute, Indianapolis, Indiana, USA; Indiana University Center of Health Innovation and Implementation Science, Indianapolis, Indiana, USA.
| | - Anthony J Perkins
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Samreen Jawaid
- Indiana University Center for Aging Research, Regenstrief Institute, Indianapolis, Indiana, USA
| | - Sophia Wang
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Heidi Lindroth
- Department of Nursing, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Rebecca E Schmitt
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jason Doles
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jason D True
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Sujuan Gao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Gideon A Caplan
- Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia; Department of Geriatric Medicine, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Homer L Twigg
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kenneth Kesler
- Department of Cardiothoracic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Babar A Khan
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; Indiana University Center for Aging Research, Regenstrief Institute, Indianapolis, Indiana, USA; Indiana University Center of Health Innovation and Implementation Science, Indianapolis, Indiana, USA
| |
Collapse
|
4
|
Mukhopadhyay A, Deshpande SN, Bhatia T, Thelma BK. Significance of an altered lncRNA landscape in schizophrenia and cognition: clues from a case-control association study. Eur Arch Psychiatry Clin Neurosci 2023; 273:1677-1691. [PMID: 37009928 DOI: 10.1007/s00406-023-01596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/20/2023] [Indexed: 04/04/2023]
Abstract
Genetic etiology of schizophrenia is poorly understood despite large genome-wide association data. Long non-coding RNAs (lncRNAs) with a probable regulatory role are emerging as important players in neuro-psychiatric disorders including schizophrenia. Prioritising important lncRNAs and analyses of their holistic interaction with their target genes may provide insights into disease biology/etiology. Of the 3843 lncRNA SNPs reported in schizophrenia GWASs extracted using lincSNP 2.0, we prioritised n = 247 based on association strength, minor allele frequency and regulatory potential and mapped them to lncRNAs. lncRNAs were then prioritised based on their expression in brain using lncRBase, epigenetic role using 3D SNP and functional relevance to schizophrenia etiology. 18 SNPs were finally tested for association with schizophrenia (n = 930) and its endophenotypes-tardive dyskinesia (n = 176) and cognition (n = 565) using a case-control approach. Associated SNPs were characterised by ChIP seq, eQTL, and transcription factor binding site (TFBS) data using FeatSNP. Of the eight SNPs significantly associated, rs2072806 in lncRNA hsaLB_IO39983 with regulatory effect on BTN3A2 was associated with schizophrenia (p = 0.006); rs2710323 in hsaLB_IO_2331 with role in dysregulation of ITIH1 with tardive dyskinesia (p < 0.05); and four SNPs with significant cognition score reduction (p < 0.05) in cases. Two of these with two additional variants in eQTL were observed among controls (p < 0.05), acting likely as enhancer SNPs and/or altering TFBS of eQTL mapped downstream genes. This study highlights important lncRNAs in schizophrenia and provides a proof of concept of novel interactions of lncRNAs with protein-coding genes to elicit alterations in immune/inflammatory pathways of schizophrenia.
Collapse
Affiliation(s)
- Anirban Mukhopadhyay
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India
| | - Smita N Deshpande
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research-Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Triptish Bhatia
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research-Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - B K Thelma
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India.
| |
Collapse
|
5
|
Li IH, Liu TT, Chen YC, Hsiao SH, Hung HY, Fann LY, Shih JH. Therapeutic effects of methimazole on 3,4-methylenedioxymethamphetamine-induced hyperthermia and serotonergic neurotoxicity. Biomed Pharmacother 2023; 164:114880. [PMID: 37224751 DOI: 10.1016/j.biopha.2023.114880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023] Open
Abstract
3,4-methylenedioxymethamphetamine (MDMA) is a popular recreational drug, however over 200 studies demonstrate that acute (e.g. hyperthermia, rhabdomyolysis) and chronic (e.g. neurotoxicity) toxicity effects of MDMA were observed in different animals. Methimazole (MMI), an inhibitor of thyroid hormone synthesis, was found to significantly reduce the HSP72 expression of heat stress induced in fibroblasts. Hence, we attempted to understand the effects of MMI on MDMA induced changes in vivo. Male SD rats were randomly divided into four groups as follows:(a) water-saline (b) water-MDMA (c) MMI-saline and (d) MMI-MDMA group. In the temperature analysis test, MMI was found to alleviate MDMA-induced hyperthermia and increase the heat loss index (HLI), revealing its peripheral vasodilation effect. PET experiment suggested that MDMA induced elevated glucose uptake by skeletal muscles, which was resolved by MMI pretreatment. IHC staining (serotonin transporter, SERT) showed the evidence of neurotoxicity caused by MDMA (serotonin fiber loss), which was alleviated by MMI. Furthermore, the animal behaviour test (forced swimming test, FST) showed higher swimming time but lower immobility time in MMI-MDMA and MMI-saline groups. Taken together, treatment of MMI shows benefits such as lowered body temperature, alleviation of neurotoxicity and excited behaviour. However, further investigations should be conducted in the future to provide in-depth evidence for its clinical use.
Collapse
Affiliation(s)
- I-Hsun Li
- Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan; School of Pharmacy, National Defense Medical Center, Taipei, Taiwan; Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Tsung-Ta Liu
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan; Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Ying-Chen Chen
- Department of Pharmacy, Fu Jen Catholic University Hospital, New Taipei City, Taiwan
| | | | - Hao-Yuan Hung
- Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan; Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Li-Yun Fann
- Department of Nursing, Taipei City Hospital, Taipei, Taiwan
| | - Jui-Hu Shih
- Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan; School of Pharmacy, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
6
|
Zhou J, Li X, Gao X, Wei Y, Ye L, Liu S, Ye J, Qiu Y, Zheng X, Chen C, Wang J, Kraus VB, Lv Y, Mao C, Shi X. Leisure Activities, Genetic Risk, and Frailty: Evidence from the Chinese Adults Aged 80 Years or Older. Gerontology 2023; 69:961-971. [PMID: 37075711 PMCID: PMC10791136 DOI: 10.1159/000530665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/04/2023] [Indexed: 04/21/2023] Open
Abstract
INTRODUCTION About half of adults aged ≥80 years suffer from frailty. Exercise is considered effective in preventing frailty but may be inapplicable to adults aged ≥80 years due to physical limitations. As an alternative, we aimed to explore the association of leisure activities with frailty and identify potential interaction with established polygenic risk score (PRS) among adults aged ≥80 years. METHODS Analyses were performed in a prospective cohort study of 7,471 community-living older adults aged ≥80 years who were recruited between 2002 and 2014 from 23 provinces in China. Leisure activity was assessed using a seven-question leisure activity index and frailty was defined as a frailty index ≥0.25 using a validated 39-item health-related scale. The PRS was constructed using 59 single-nucleotide polymorphisms associated with frailty in a subsample of 2,541 older adults. Cox proportional hazards models were used to explore the associations of leisure activities, PRS with frailty. RESULTS The mean age of participants was 89.4 ± 6.6 years (range: 80-116). In total, 2,930 cases of frailty were identified during 42,216 person-years of follow-up. Each 1 unit increase in the leisure activity index was associated with 12% lower risk of frailty (hazard ratio: 0.88 [95% confidence interval, 0.85-0.91]). Participants with high genetic risk (PRS >2.47 × 10-4) suffered from 26% higher risk of frailty. Interaction between leisure activity and genetic risk was not observed. CONCLUSION Evidence is presented for the independent association of leisure activities and genetic risk with frailty. Engagement in leisure activities is suggested to be associated with lower risk of frailty across all levels of genetic risk among adults aged ≥80 years.
Collapse
Affiliation(s)
- Jinhui Zhou
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xinwei Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Xiang Gao
- Department of Nutrition and Food Hygiene, School of Public Health, Fudan University, Shanghai, China
| | - Yuan Wei
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Lihong Ye
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Sixin Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiaming Ye
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Yidan Qiu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou, China
| | - Xulin Zheng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chen Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Virginia Byers Kraus
- Duke Molecular Physiology Institute and Division of Rheumatology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Yuebin Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chen Mao
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Jiao S, Cao T, Cai H. Peripheral biomarkers of treatment-resistant schizophrenia: Genetic, inflammation and stress perspectives. Front Pharmacol 2022; 13:1005702. [PMID: 36313375 PMCID: PMC9597880 DOI: 10.3389/fphar.2022.1005702] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Treatment-resistant schizophrenia (TRS) often results in severe disability and functional impairment. Currently, the diagnosis of TRS is largely exclusionary and emphasizes the improvement of symptoms that may not be detected early and treated according to TRS guideline. As the gold standard, clozapine is the most prescribed selection for TRS. Therefore, how to predict TRS in advance is critical for forming subsequent treatment strategy especially clozapine is used during the early stage of TRS. Although mounting studies have identified certain clinical factors and neuroimaging characteristics associated with treatment response in schizophrenia, the predictors for TRS remain to be explored. Biomarkers, particularly for peripheral biomarkers, show great potential in predicting TRS in view of their predictive validity, noninvasiveness, ease of testing and low cost that would enable their widespread use. Recent evidence supports that the pathogenesis of TRS may be involved in abnormal neurotransmitter systems, inflammation and stress. Due to the heterogeneity of TRS and the lack of consensus in diagnostic criteria, it is difficult to compare extensive results among different studies. Based on the reported neurobiological mechanisms that may be associated with TRS, this paper narratively reviews the updates of peripheral biomarkers of TRS, from genetic and other related perspectives. Although current evidence regarding biomarkers in TRS remains fragmentary, when taken together, it can help to better understand the neurobiological interface of clinical phenotypes and psychiatric symptoms, which will enable individualized prediction and therapy for TRS in the long run.
Collapse
Affiliation(s)
- Shimeng Jiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
- *Correspondence: Hualin Cai,
| |
Collapse
|
8
|
de Bartolomeis A, Vellucci L, Barone A, Manchia M, De Luca V, Iasevoli F, Correll CU. Clozapine's multiple cellular mechanisms: What do we know after more than fifty years? A systematic review and critical assessment of translational mechanisms relevant for innovative strategies in treatment-resistant schizophrenia. Pharmacol Ther 2022; 236:108236. [PMID: 35764175 DOI: 10.1016/j.pharmthera.2022.108236] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/21/2022]
Abstract
Almost fifty years after its first introduction into clinical care, clozapine remains the only evidence-based pharmacological option for treatment-resistant schizophrenia (TRS), which affects approximately 30% of patients with schizophrenia. Despite the long-time experience with clozapine, the specific mechanism of action (MOA) responsible for its superior efficacy among antipsychotics is still elusive, both at the receptor and intracellular signaling level. This systematic review is aimed at critically assessing the role and specific relevance of clozapine's multimodal actions, dissecting those mechanisms that under a translational perspective could shed light on molecular targets worth to be considered for further innovative antipsychotic development. In vivo and in vitro preclinical findings, supported by innovative techniques and methods, together with pharmacogenomic and in vivo functional studies, point to multiple and possibly overlapping MOAs. To better explore this crucial issue, the specific affinity for 5-HT2R, D1R, α2c, and muscarinic receptors, the relatively low occupancy at dopamine D2R, the interaction with receptor dimers, as well as the potential confounder effects resulting in biased ligand action, and lastly, the role of the moiety responsible for lipophilic and alkaline features of clozapine are highlighted. Finally, the role of transcription and protein changes at the synaptic level, and the possibility that clozapine can directly impact synaptic architecture are addressed. Although clozapine's exact MOAs that contribute to its unique efficacy and some of its severe adverse effects have not been fully understood, relevant information can be gleaned from recent mechanistic understandings that may help design much needed additional therapeutic strategies for TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy.
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Felice Iasevoli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Christoph U Correll
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA; Charité Universitätsmedizin Berlin, Department of Child and Adolescent Psychiatry, Berlin, Germany
| |
Collapse
|
9
|
Jiang J, Zhao J, Wang Y, Liu D, Zhang M. Urine inter‐alpha‐trypsin inhibitor family‐related proteins may serve as biomarkers for disease activity of lupus. J Clin Lab Anal 2022; 36:e24622. [PMID: 35870194 PMCID: PMC9459346 DOI: 10.1002/jcla.24622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/22/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
Background Systemic lupus erythematosus (SLE) is a chronic inflammatory disease involving multiple tissues. Inter‐Alpha‐Trypsin Inhibitor (ITI) family proteins have a role in maintaining tissue homeostasis, but their possible clinical significance in the SLE patients has not been reported. The aim of this study was to analyze and verify the expression of ITI‐related proteins in the urine of SLE patients, further explore the features of these proteins in disease activity. Methods Based on label‐free proteomics technology and bioinformatics technology, we analyzed the expression of ITI family‐related proteins in the urine of lupus. Subsequently, Western‐blot and targeted proteomics were used to qualitatively and quantitatively verify the expression of these proteins, respectively. Results A total of seven ITI family‐related proteins were screened and identified; and six of these proteins were differentially expressed in the urine of SLE patients. Further quantitative analysis showed that the expressions of ITIH2, ECM1, and ITIH5 in urine between active SLE group and stable SLE group were consistent with the preliminary screening results. The expression of ITIH2 and ECM1 in the renal damage group were also consistent with the screening results. Moreover, ITIH2 and ECM1 have a good correlation with disease activity and have a certain correlation with renal damage. Conclusions In this exploratory study, we evaluated the expression of ITI family‐related proteins in the urine of SLE and found that urine ITIH2 and ECM1 were closely related to SLE activity, especially kidney damage, providing an experimental basis for further exploration of the potential roles in monitoring lupus and lupus nephritis activity.
Collapse
Affiliation(s)
- Jun Jiang
- Clinical Laboratory Medicine Peking University Ninth School of Clinical Medicine Beijing China
| | - Jin Zhao
- Clinical Laboratory Medicine, Beijing Shijitan Hospital Capital Medical University Beijing China
| | - Yuhua Wang
- Department of Rheumatology and Clinical Immunology, Beijing Shijitan Hospital Capital Medical University Beijing China
| | - Dan Liu
- Clinical Laboratory Medicine Peking University Ninth School of Clinical Medicine Beijing China
| | - Man Zhang
- Clinical Laboratory Medicine Peking University Ninth School of Clinical Medicine Beijing China
- Clinical Laboratory Medicine, Beijing Shijitan Hospital Capital Medical University Beijing China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics Beijing China
| |
Collapse
|
10
|
Li Y, Ma C, Li S, Wang J, Li W, Yang Y, Li X, Liu J, Yang J, Liu Y, Li K, Li J, Huang D, Chen R, Lv L, Xiao X, Li M, Luo X. Regulatory Variant rs2535629 in ITIH3 Intron Confers Schizophrenia Risk By Regulating CTCF Binding and SFMBT1 Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104786. [PMID: 34978167 PMCID: PMC8867204 DOI: 10.1002/advs.202104786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Genome-wide association studies have identified 3p21.1 as a robust risk locus for schizophrenia. However, the underlying molecular mechanisms remain elusive. Here a functional regulatory variant (rs2535629) is identified that disrupts CTCF binding at 3p21.1. It is confirmed that rs2535629 is also significantly associated with schizophrenia in Chinese population and the regulatory effect of rs2535629 is validated. Expression quantitative trait loci analysis indicates that rs2535629 is associated with the expression of three distal genes (GLT8D1, SFMBT1, and NEK4) in the human brain, and CRISPR-Cas9-mediated genome editing confirmed the regulatory effect of rs2535629 on GLT8D1, SFMBT1, and NEK4. Interestingly, differential expression analysis of GLT8D1, SFMBT1, and NEK4 suggested that rs2535629 may confer schizophrenia risk by regulating SFMBT1 expression. It is further demonstrated that Sfmbt1 regulates neurodevelopment and dendritic spine density, two key pathological characteristics of schizophrenia. Transcriptome analysis also support the potential role of Sfmbt1 in schizophrenia pathogenesis. The study identifies rs2535629 as a plausibly causal regulatory variant at the 3p21.1 risk locus and demonstrates the regulatory mechanism and biological effect of this functional variant, indicating that this functional variant confers schizophrenia risk by altering CTCF binding and regulating expression of SFMBT1, a distal gene which plays important roles in neurodevelopment and synaptic morphogenesis.
Collapse
Affiliation(s)
- Yifan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Changguo Ma
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases & Yunnan Stem Cell Translational Research CenterKunming UniversityKunmingYunnan650214China
| | - Shiwu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Junyang Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Wenqiang Li
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangHenan453002China
- Henan Key Lab of Biological PsychiatryInternational Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangHenan453002China
| | - Yongfeng Yang
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangHenan453002China
- Henan Key Lab of Biological PsychiatryInternational Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangHenan453002China
| | - Xiaoyan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of EducationInstitutes of Physical Science and Information TechnologyAnhui UniversityHefeiAnhui230601China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
| | - Jinfeng Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Yixing Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Kaiqin Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Jiao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Di Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
| | - Rui Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Luxian Lv
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangHenan453002China
- Henan Key Lab of Biological PsychiatryInternational Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangHenan453002China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
| | - Xiong‐Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingYunnan650204China
- KIZ‐CUHK Joint Laboratory of Bioresources and Molecular Research in Common DiseasesKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
| |
Collapse
|
11
|
Barowsky S, Jung JY, Nesbit N, Silberstein M, Fava M, Loggia ML, Smoller JW, Lee PH. Cross-Disorder Genomics Data Analysis Elucidates a Shared Genetic Basis Between Major Depression and Osteoarthritis Pain. Front Genet 2021; 12:687687. [PMID: 34603368 PMCID: PMC8481820 DOI: 10.3389/fgene.2021.687687] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/23/2021] [Indexed: 11/24/2022] Open
Abstract
Osteoarthritis (OA) and major depression (MD) are two debilitating disorders that frequently co-occur and affect millions of the elderly each year. Despite the greater symptom severity, poorer clinical outcomes, and increased mortality of the comorbid conditions, we have a limited understanding of their etiologic relationships. In this study, we conducted the first cross-disorder investigations of OA and MD, using genome-wide association data representing over 247K cases and 475K controls. Along with significant positive genome-wide genetic correlations (r g = 0.299 ± 0.026, p = 9.10 × 10-31), Mendelian randomization (MR) analysis identified a bidirectional causal effect between OA and MD (βOA → MD = 0.09, SE = 0.02, z-score p-value < 1.02 × 10-5; βMD → OA = 0.19, SE = 0.026, p < 2.67 × 10-13), indicating genetic variants affecting OA risk are, in part, shared with those influencing MD risk. Cross-disorder meta-analysis of OA and MD identified 56 genomic risk loci (P meta ≤ 5 × 10-8), which show heightened expression of the associated genes in the brain and pituitary. Gene-set enrichment analysis highlighted "mechanosensory behavior" genes (GO:0007638; P gene_set = 2.45 × 10-8) as potential biological mechanisms that simultaneously increase susceptibility to these mental and physical health conditions. Taken together, these findings show that OA and MD share common genetic risk mechanisms, one of which centers on the neural response to the sensation of mechanical stimulus. Further investigation is warranted to elaborate the etiologic mechanisms of the pleiotropic risk genes, as well as to develop early intervention and integrative clinical care of these serious conditions that disproportionally affect the aging population.
Collapse
Affiliation(s)
- Sophie Barowsky
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Jae-Yoon Jung
- Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Nicholas Nesbit
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Micah Silberstein
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Maurizio Fava
- Department of Psychiatry, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
| | - Marco L. Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Jordan W. Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Phil H. Lee
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
12
|
Lord MS, Melrose J, Day AJ, Whitelock JM. The Inter-α-Trypsin Inhibitor Family: Versatile Molecules in Biology and Pathology. J Histochem Cytochem 2020; 68:907-927. [PMID: 32639183 DOI: 10.1369/0022155420940067] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Inter-α-trypsin inhibitor (IαI) family members are ancient and unique molecules that have evolved over several hundred million years of vertebrate evolution. IαI is a complex containing the proteoglycan bikunin to which heavy chain proteins are covalently attached to the chondroitin sulfate chain. Besides its matrix protective activity through protease inhibitory action, IαI family members interact with extracellular matrix molecules and most notably hyaluronan, inhibit complement, and provide cell regulatory functions. Recent evidence for the diverse roles of the IαI family in both biology and pathology is reviewed and gives insight into their pivotal roles in tissue homeostasis. In addition, the clinical uses of these molecules are explored, such as in the treatment of inflammatory conditions including sepsis and Kawasaki disease, which has recently been associated with severe acute respiratory syndrome coronavirus 2 infection in children.
Collapse
Affiliation(s)
- Megan S Lord
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - James Melrose
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and University of Sydney, St. Leonards, NSW, Australia.,Sydney Medical School, Northern, Sydney University, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research and Lydia Becker Institute of Immunology and Inflammation, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - John M Whitelock
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Stem Cell Extracellular Matrix & Glycobiology, Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Faculty of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
13
|
Yoshida K, Müller DJ. Pharmacogenetics of Antipsychotic Drug Treatment: Update and Clinical Implications. MOLECULAR NEUROPSYCHIATRY 2020; 5:1-26. [PMID: 32399466 PMCID: PMC7206586 DOI: 10.1159/000492332] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/20/2018] [Indexed: 12/24/2022]
Abstract
Numerous genetic variants have been shown to be associated with antipsychotic response and adverse effects of schizophrenia treatment. However, the clinical application of these findings is limited. The aim of this narrative review is to summarize the most recent publications and recommendations related to the genetics of antipsychotic treatment and shed light on the clinical utility of pharmacogenetics/pharmacogenomics (PGx). We reviewed the literature on PGx studies with antipsychotic drugs (i.e., antipsychotic response and adverse effects) and commonly used commercial PGx tools for clinical practice. Publications and reviews were included with emphasis on articles published between January 2015 and April 2018. We found 44 studies focusing on antipsychotic response and 45 studies on adverse effects (e.g., antipsychotic-induced weight gain, movement disorders, hormonal abnormality, and clozapine-induced agranulocytosis/granulocytopenia), albeit with mixed results. Overall, several gene variants related to antipsychotic response and adverse effects in the treatment of patients with schizophrenia have been reported, and several commercial pharmacogenomic tests have become available. However, further well-designed investigations and replication studies in large and well-characterized samples are needed to facilitate the application of PGx findings to clinical practice.
Collapse
Affiliation(s)
- Kazunari Yoshida
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Daniel J. Müller
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Xie X, Meng H, Wu H, Hou F, Chen Y, Zhou Y, Xue Q, Zhang J, Gong J, Li L, Song R. Integrative analyses indicate an association between ITIH3 polymorphisms with autism spectrum disorder. Sci Rep 2020; 10:5223. [PMID: 32251353 PMCID: PMC7089985 DOI: 10.1038/s41598-020-62189-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/24/2020] [Indexed: 12/18/2022] Open
Abstract
It is challenge to pinpoint the functional variants among numerous genetic variants. Investigating the spatial dynamics of the human brain transcriptome for genes and exploring the expression quantitative trait loci data may provide the potential direction to identify the functional variants among autism spectrum disorders (ASD) patients. In order to explore the association of ITIH3 with ASD, the present study included three components: identifying the spatial-temporal expression of ITIH3 in the developing human brain using the expression data from the Allen Institute for Brain Science; examining the cis-acting regulatory effect of SNPs on the ITIH3 expression using UK Brain Expression Consortium database; validating the effect of identified SNPs using a case-control study with samples of 602 cases and 604 controls. The public expression data showed that ITIH3 may have a role in the development of human brain and suggested a cis-eQTL effect for rs2535629 and rs3617 on ITIH3 in the hippocampus. Genetic analysis of the above two SNPs suggested that the over-dominant model of rs2535629 was significantly associated with decreased risk of ASD. Convergent lines of evidence supported ITIH3 rs25352629 as a susceptibility variant for ASD.
Collapse
Affiliation(s)
- Xinyan Xie
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Heng Meng
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hao Wu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fang Hou
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, 518019, China
| | - Yanlin Chen
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, 518019, China
| | - Yu Zhou
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Xue
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiajia Zhang
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Jianhua Gong
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, 518019, China
| | - Li Li
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, 518019, China.
| | - Ranran Song
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
15
|
Kim B, De La Monte S, Hovanesian V, Patra A, Chen X, Chen RH, Miller MC, Pinar MH, Lim YP, Stopa EG, Stonestreet BS. Ontogeny of inter-alpha inhibitor protein (IAIP) expression in human brain. J Neurosci Res 2019; 98:869-887. [PMID: 31797408 DOI: 10.1002/jnr.24565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022]
Abstract
Inter-alpha inhibitor proteins (IAIPs) are naturally occurring immunomodulatory molecules found in most tissues. We have reported ontogenic changes in the expression of IAIPs in brain during development in sheep and abundant expression of IAIPs in fetal and neonatal rodent brain in a variety of cellular types and brain regions. Although a few studies identified bikunin, light chain of IAIPs, in adult human brain, the presence of the complete endogenous IAIP protein complex has not been reported in human brain. In this study, we examined the immunohistochemical expression of endogenous IAIPs in human cerebral cortex from early in development through the neonatal period and in adults using well-preserved postmortem brains. We examined total, nuclear, and cytoplasmic staining of endogenous IAIPs and their expression in neurofilament light polypeptide-positive neurons and glial fibrillary acidic protein (GFAP)-positive astrocytes. IAIPs were ubiquitously detected for the first time in cerebral cortical cells at 24-26, 27-28, 29-36, and 37-40 weeks of gestation and in adults. Quantitative analyses revealed that IAIPs were predominately localized in the nucleus in all age groups, but cytoplasmic IAIP expression was more abundant in adult than in the younger ages. Immunoreactivity of IAIPs was expressed in neurons and astrocytes in all age groups. In addition, IAIP co-localization with GFAP-positive astrocytes was more abundant in adults than in the developing brain. We conclude that IAIPs exhibit ubiquitous expression, and co-localize with neurons and astrocytes in the developing and adult human brain suggesting a potential role for IAIPs in development and endogenous neuroprotection.
Collapse
Affiliation(s)
- Boram Kim
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Suzanne De La Monte
- Department of Neurology and Neurosurgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | | | - Aparna Patra
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Xiaodi Chen
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Ray H Chen
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Miles C Miller
- Department of Pathology and Neurosurgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Mehmet Halit Pinar
- Department of Pathology & Laboratory Medicine, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Yow-Pin Lim
- Department of Pathology & Laboratory Medicine, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA.,ProThera Biologics, Inc., Providence, RI, USA
| | - Edward G Stopa
- Department of Pathology and Neurosurgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Barbara S Stonestreet
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| |
Collapse
|
16
|
Numata S, Umehara H, Ohmori T, Hashimoto R. Clozapine Pharmacogenetic Studies in Schizophrenia: Efficacy and Agranulocytosis. Front Pharmacol 2018; 9:1049. [PMID: 30319405 PMCID: PMC6169204 DOI: 10.3389/fphar.2018.01049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022] Open
Abstract
Clozapine is an efficacious atypical antipsychotic for treatment-refractory schizophrenia. Clinical response and appearance of adverse events vary among individual patients receiving clozapine, with genetic and non-genetic factors potentially contributing to individual variabilities. Pharmacogenetic studies investigate associations between genetic variants and drug efficacy and toxicity. To date, most pharmacogenetic studies of clozapine have been conducted through candidate gene approaches. A recent advance in technology made it possible to perform comprehensive genetic mapping underlying clinical phenotypes and outcomes, which allow novel findings beyond biological hypotheses based on current knowledge. In this paper, we will summarize the studies on clozapine pharmacogenetics that have extensively examined clinical response and agranulocytosis. While there is still limited evidence on clozapine efficacy, recent genome-wide studies provide further evidence of the involvement of the human leukocyte antigen (HLA) region in clozapine-induced agranulocytosis.
Collapse
Affiliation(s)
- Shusuke Numata
- Department of Psychiatry, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Hidehiro Umehara
- Department of Psychiatry, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Tetsuro Ohmori
- Department of Psychiatry, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Ryota Hashimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan.,Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW To examine recent literature regarding the pharmacogenomics of clozapine (CLZ) efficacy, pharmacokinetics, and agranulocytosis. RECENT FINDINGS Several genetic loci (FKBP5, NR3C1, BDNF, NTRK2) along the hypothalamic pituitary adrenal axis have been investigated as targets for CLZ response. Homozygous FKBP5-rs1360780, homozygous NTRK2-rs1778929, and homozygous NTRK2-rs10465180 conferred significant risks for CLZ nonresponse - 2.11x risk [95% confidence interval (CI) 1.22-3.64], 1.7x risk (95% CI 1.13-2.59), and 2.15x risk (95% CI 1.3-3.55), respectively. BDNF and NR3C1 had no significant associations with CLZ response. Candidate genes within neurotransmitter pathways continue to be explored including dopaminergic (DRD1-4, COMT) and glutamatergic pathways (GRIN2B, SLC1A2, SLC6A9, GRIA1, GAD1). Despite promising trending data, no significant associations between CLZ response and glutamatergic system variants have been found. Synergistic effect of catecholamine O-methyltransferase (COMT) Met and dopamine receptor-4 (DRD4) single 120 bp duplicate associated with improved CLZ response odds ratio (OR) 0.15 (95% CI 0.03-0.62) while COMT Val/Val confer a risk of CLZ nonresponse OR 4.34 (95% CI 0.98-23.9). Diagnostic performance testing continues through human leukocyte antigen (HLA) and other genetic loci but have yet to find statistically or clinically meaningful results. SUMMARY Current landscape of pharmacogenomic research in CLZ continues to be limited by small sample sizes and low power. However, many promising candidate genes have been discovered and should be further investigated with larger cohorts.
Collapse
|
18
|
Samanaite R, Gillespie A, Sendt KV, McQueen G, MacCabe JH, Egerton A. Biological Predictors of Clozapine Response: A Systematic Review. Front Psychiatry 2018; 9:327. [PMID: 30093869 PMCID: PMC6070624 DOI: 10.3389/fpsyt.2018.00327] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/29/2018] [Indexed: 01/04/2023] Open
Abstract
Background: Clozapine is the recommended antipsychotic for treatment-resistant schizophrenia (TRS) but there is significant variability between patients in the degree to which clozapine will improve symptoms. The biological basis of this variability is unknown. Although clozapine has efficacy in TRS, it can elicit adverse effects and initiation is often delayed. Identification of predictive biomarkers of clozapine response may aid initiation of clozapine treatment, as well as understanding of its mechanism of action. In this article we systematically review prospective or genetic studies of biological predictors of response to clozapine. Methods: We searched the PubMed database until 20th January 2018 for studies investigating "clozapine" AND ("response" OR "outcome") AND "schizophrenia." Inclusion required that studies examined a biological variable in relation to symptomatic response to clozapine. For all studies except genetic-studies, inclusion required that biological variables were measured before clozapine initiation. Results: Ninety-eight studies met the eligibility criteria and were included in the review, including neuroimaging, blood-based, cerebrospinal fluid (CSF)-based, and genetic predictors. The majority (70) are genetic studies, collectively investigating 379 different gene variants, however only three genetic variants (DRD3 Ser9Gly, HTR2A His452Tyr, and C825T GNB3) have independently replicated significant findings. Of the non-genetic variables, the most consistent predictors of a good response to clozapine are higher prefrontal cortical structural integrity and activity, and a lower ratio of the dopamine and serotonin metabolites, homovanillic acid (HVA): 5-hydroxyindoleacetic acid (5-HIAA) in CSF. Conclusions: Recommendations include that future studies should ensure adequate clozapine trial length and clozapine plasma concentrations, and may include multivariate models to increase predictive accuracy.
Collapse
Affiliation(s)
- Ruta Samanaite
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Amy Gillespie
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Kyra-Verena Sendt
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Grant McQueen
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - James H. MacCabe
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Alice Egerton
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW This review highlights recent advances in the investigation of genetic factors for antipsychotic response and side effects. RECENT FINDINGS Antipsychotics prescribed to treat psychotic symptoms are variable in efficacy and propensity for causing side effects. The major side effects include tardive dyskinesia, antipsychotic-induced weight gain (AIWG), and clozapine-induced agranulocytosis (CIA). Several promising associations of polymorphisms in genes including HSPG2, CNR1, and DPP6 with tardive dyskinesia have been reported. In particular, a functional genetic polymorphism in SLC18A2, which is a target of recently approved tardive dyskinesia medication valbenazine, was associated with tardive dyskinesia. Similarly, several consistent findings primarily from genes modulating energy homeostasis have also been reported (e.g. MC4R, HTR2C). CIA has been consistently associated with polymorphisms in the HLA genes (HLA-DQB1 and HLA-B). The association findings between glutamate system genes and antipsychotic response require additional replications. SUMMARY The findings to date are promising and provide us a better understanding of the development of side effects and response to antipsychotics. However, more comprehensive investigations in large, well characterized samples will bring us closer to clinically actionable findings.
Collapse
|
20
|
Wang M, Huang J, Liu Y, Ma L, Potash JB, Han S. COMBAT: A Combined Association Test for Genes Using Summary Statistics. Genetics 2017; 207:883-891. [PMID: 28878002 PMCID: PMC5676236 DOI: 10.1534/genetics.117.300257] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 08/30/2017] [Indexed: 11/18/2022] Open
Abstract
Genome-wide association studies (GWAS) have been widely used for identifying common variants associated with complex diseases. Traditional analysis of GWAS typically examines one marker at a time, usually single nucleotide polymorphisms (SNPs), to identify individual variants associated with a disease. However, due to the small effect sizes of common variants, the power to detect individual risk variants is generally low. As a complementary approach to SNP-level analysis, a variety of gene-based association tests have been proposed. However, the power of existing gene-based tests is often dependent on the underlying genetic models, and it is not known a priori which test is optimal. Here we propose a combined association test (COMBAT) for genes, which incorporates strengths from existing gene-based tests and shows higher overall performance than any individual test. Our method does not require raw genotype or phenotype data, but needs only SNP-level P-values and correlations between SNPs from ancestry-matched samples. Extensive simulations showed that COMBAT has an appropriate type I error rate, maintains higher power across a wide range of genetic models, and is more robust than any individual gene-based test. We further demonstrated the superior performance of COMBAT over several other gene-based tests through reanalysis of the meta-analytic results of GWAS for bipolar disorder. Our method allows for the more powerful application of gene-based analysis to complex diseases, which will have broad use given that GWAS summary results are increasingly publicly available.
Collapse
Affiliation(s)
- Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Jianfei Huang
- Department of Psychiatry, University of Iowa, Iowa City, Iowa 52242
- College of Mathematical Sciences, Yangzhou University, 225002, China
| | - Yiyuan Liu
- Joan & Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742
| | - James B Potash
- Department of Psychiatry, University of Iowa, Iowa City, Iowa 52242
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa 52242
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21287
| | - Shizhong Han
- Department of Psychiatry, University of Iowa, Iowa City, Iowa 52242
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa 52242
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21287
| |
Collapse
|
21
|
Abstract
Schizophrenia is a devastating illness that affects up to 1% of the population; it is characterized by a combination of positive symptoms, negative symptoms, and cognitive impairment. Currently, treatment consists of one class of medications known as antipsychotics, which include typical (first-generation) and atypical (second-generation) agents. Unfortunately, antipsychotic medications have limited efficacy, with up to a third of patients lacking a full response. Clozapine, the first atypical antipsychotic developed, is the only medication shown to be superior to all other antipsychotics. However, owing to several life-threatening side effects and required enrollment in a registry with routine blood monitoring, clozapine is greatly underutilized in the US. Developing a medication as efficacious as clozapine with limited side effects would likely become the first-line therapy for schizophrenia and related disorders. In this review, we discuss the history of clozapine, landmark studies, and its clinical advantages and disadvantages. We further discuss the hypotheses for clozapine's superior efficacy based on neuroreceptor binding, and the limitations of a receptor-based approach to antipsychotic development. We highlight some of the advances from pharmacogenetic studies on clozapine and then focus on studies of clozapine using unbiased approaches such as pharmacogenomics and gene expression profiling. Finally, we examine how these approaches could provide insights into clozapine's mechanism of action and side-effect profile, and lead to novel and improved therapeutics.
Collapse
Affiliation(s)
- Frederick C Nucifora
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | - Brian J Lee
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|