1
|
Nakayama N, Nakahara T, Iwanaga H, Hashimoto M, Mitsudo T, Imamura Y, Kunitake H, Mizoguchi Y, Ueno T. Differential Effects of Electroconvulsive Therapy on Patients with Schizophrenia Versus Depressive Disorder: Clinical Distinction Between Antipsychotic and Antidepressant Effects of Electroconvulsive Therapy. Brain Sci 2025; 15:126. [PMID: 40002459 PMCID: PMC11852819 DOI: 10.3390/brainsci15020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
OBJECTIVE Electroconvulsive therapy (ECT) is utilized for treating psychiatric disorders, such as schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BD). We aimed to compare pre- and post-ECT treatment outcomes between patients with SCZ and a combined group of patients with MDD and BD (MDD+BD) to assess the distinction between the antipsychotic and antidepressant effects of ECT. METHODS ECT was administered to patients with SCZ (n = 17) and those with MDD+BD (n = 7). Symptoms were evaluated using the brief psychiatric rating scale (BPRS), clinical global impression scale (CGI), and global assessment of functioning (GAF). Plasma brain-derived neurotrophic factor (BDNF) levels were also measured. RESULTS The BPRS, CGI, and GAF scores significantly differed after ECT compared with those before ECT in each patient group. However, no significant differences were observed between the groups for each disorder. No significant differences were observed in plasma BDNF levels between the groups at baseline and during ECT. At baseline, only depression scores were more favorable in the SCZ group, whereas positive symptoms and disorganization scores were higher in the MDD+BD group. During treatment, positive symptoms, activation, and disorganization items were significantly more favorable in the MDD+BD group compared with the SCZ group. Total BPRS scores were not associated with plasma BDNF levels; however, rating scores of the several items related to activation, resistance, and disorganization were positively correlated with BDNF levels. CONCLUSION ECT effects on several clinical outcomes in the MDD+BD group were associated with plasma BDNF levels. These findings suggest that ECT may be more effective for treating MDD than SCZ.
Collapse
Affiliation(s)
- Naho Nakayama
- Department of Psychiatry, National Hospital Organization, Hizen Psychiatric Medical Center, 160 Mitsu, Yoshinogari, Kanzaki 842-0192, Saga, Japan; (N.N.); (T.N.); (H.I.); (M.H.); (T.M.)
| | - Tatsuo Nakahara
- Department of Psychiatry, National Hospital Organization, Hizen Psychiatric Medical Center, 160 Mitsu, Yoshinogari, Kanzaki 842-0192, Saga, Japan; (N.N.); (T.N.); (H.I.); (M.H.); (T.M.)
| | - Hideyuki Iwanaga
- Department of Psychiatry, National Hospital Organization, Hizen Psychiatric Medical Center, 160 Mitsu, Yoshinogari, Kanzaki 842-0192, Saga, Japan; (N.N.); (T.N.); (H.I.); (M.H.); (T.M.)
| | - Manabu Hashimoto
- Department of Psychiatry, National Hospital Organization, Hizen Psychiatric Medical Center, 160 Mitsu, Yoshinogari, Kanzaki 842-0192, Saga, Japan; (N.N.); (T.N.); (H.I.); (M.H.); (T.M.)
| | - Takako Mitsudo
- Department of Psychiatry, National Hospital Organization, Hizen Psychiatric Medical Center, 160 Mitsu, Yoshinogari, Kanzaki 842-0192, Saga, Japan; (N.N.); (T.N.); (H.I.); (M.H.); (T.M.)
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshiomi Imamura
- Department of Psychiatry, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan; (Y.I.); (H.K.); (Y.M.)
| | - Hiroko Kunitake
- Department of Psychiatry, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan; (Y.I.); (H.K.); (Y.M.)
| | - Yoshito Mizoguchi
- Department of Psychiatry, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan; (Y.I.); (H.K.); (Y.M.)
| | - Takefumi Ueno
- Department of Psychiatry, National Hospital Organization, Hizen Psychiatric Medical Center, 160 Mitsu, Yoshinogari, Kanzaki 842-0192, Saga, Japan; (N.N.); (T.N.); (H.I.); (M.H.); (T.M.)
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
2
|
Liberona A, Jones N, Zúñiga K, Garrido V, Zelada MI, Silva H, Nieto RR. Brain-Derived Neurotrophic Factor (BDNF) as a Predictor of Treatment Response in Schizophrenia and Bipolar Disorder: A Systematic Review. Int J Mol Sci 2024; 25:11204. [PMID: 39456983 PMCID: PMC11508575 DOI: 10.3390/ijms252011204] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a potential biomarker of response to treatment in psychiatric disorders. As it plays a role in the pathophysiological development of schizophrenia and bipolar disorder, it is of interest to study its role in predicting therapeutic responses in both conditions. We carried out a systematic review of the literature, looking for differences in baseline BDNF levels and the Val66Met BDNF polymorphism in these disorders between responders and non-responders, and found information showing that the Val/Val genotype and higher baseline BDNF levels may be present in patients that respond successfully to pharmacological and non-pharmacological treatments. However, there is still limited evidence to support the role of the Val66Met polymorphism and baseline BDNF levels as predictors of treatment response.
Collapse
Affiliation(s)
- Andrés Liberona
- Escuela de Medicina, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Natalia Jones
- Escuela de Medicina, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Karen Zúñiga
- Escuela de Medicina, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Verónica Garrido
- Escuela de Medicina, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Mario Ignacio Zelada
- Escuela de Medicina, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Hernán Silva
- Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago 8380453, Chile
- Departamento de Psiquiatría y Salud Mental Norte, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Rodrigo R. Nieto
- Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago 8380453, Chile
- Departamento de Psiquiatría y Salud Mental Norte, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Departamento de Neurociencias, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| |
Collapse
|
3
|
Wang T, Yu M, Gu X, Liang X, Wang P, Peng W, Liu D, Chen D, Huang C, Tan Y, Liu K, Xiang B. Mechanism of electroconvulsive therapy in schizophrenia: a bioinformatics analysis study of RNA-seq data. Psychiatr Genet 2024; 34:54-60. [PMID: 38441120 DOI: 10.1097/ypg.0000000000000362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
OBJECTIVE The molecular mechanism of electroconvulsive therapy (ECT) for schizophrenia remains unclear. The aim of this study was to uncover the underlying biological mechanisms of ECT in the treatment of schizophrenia using a transcriptional dataset. METHODS The peripheral blood mRNA sequencing data of eight patients (before and after ECT) and eight healthy controls were analyzed by integrated co-expression network analysis and the differentially expressed genes were analyzed by cluster analysis. Gene set overlap analysis was performed using the hypergeometric distribution of phypfunction in R. Associations of these gene sets with psychiatric disorders were explored. Tissue-specific enrichment analysis, gene ontology enrichment analysis, and protein-protein interaction enrichment analysis were used for gene set organization localization and pathway analysis. RESULTS We found the genes of the green-yellow module were significantly associated with the effect of ECT treatment and the common gene variants of schizophrenia ( P = 0.0061; family-wise error correction). The genes of the green-yellow module are mainly enriched in brain tissue and mainly involved in the pathways of neurotrophin, mitogen-activated protein kinase and long-term potentiation. CONCLUSION Genes associated with the efficacy of ECT were predominantly enriched in neurotrophin, mitogen-activated protein kinase and long-term potentiation signaling pathways.
Collapse
Affiliation(s)
| | - Minglan Yu
- Medical Laboratory Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province
| | - Xiaochu Gu
- Clinical Laboratory, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu Province
| | | | | | | | - Dongmei Liu
- Department of Psychiatry, Yibin Fourth People's Hospital, Yibin
| | - Dechao Chen
- Department of Psychiatry, Yibin Fourth People's Hospital, Yibin
| | | | - Youguo Tan
- Department of Psychiatry, Zigong Mental Health Center, Zigong, Sichuan Province, China
| | | | | |
Collapse
|
4
|
Gliwińska A, Czubilińska-Łada J, Więckiewicz G, Świętochowska E, Badeński A, Dworak M, Szczepańska M. The Role of Brain-Derived Neurotrophic Factor (BDNF) in Diagnosis and Treatment of Epilepsy, Depression, Schizophrenia, Anorexia Nervosa and Alzheimer's Disease as Highly Drug-Resistant Diseases: A Narrative Review. Brain Sci 2023; 13:brainsci13020163. [PMID: 36831706 PMCID: PMC9953867 DOI: 10.3390/brainsci13020163] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) belongs to the family of neurotrophins, which are growth factors with trophic effects on neurons. BDNF is the most widely distributed neurotrophin in the central nervous system (CNS) and is highly expressed in the prefrontal cortex (PFC) and hippocampus. Its distribution outside the CNS has also been demonstrated, but most studies have focused on its effects in neuropsychiatric disorders. Despite the advances in medicine in recent decades, neurological and psychiatric diseases are still characterized by high drug resistance. This review focuses on the use of BDNF in the developmental assessment, treatment monitoring, and pharmacotherapy of selected diseases, with a particular emphasis on epilepsy, depression, anorexia, obesity, schizophrenia, and Alzheimer's disease. The limitations of using a molecule with such a wide distribution range and inconsistent method of determination are also highlighted.
Collapse
Affiliation(s)
- Aleksandra Gliwińska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
- Correspondence: ; Tel.: +48-32-370-43-05; Fax: +48-32-370-42-92
| | - Justyna Czubilińska-Łada
- Department of Neonatal Intensive Care, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Gniewko Więckiewicz
- Department of Psychiatry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Andrzej Badeński
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Marta Dworak
- Department of Pediatric Nephrology with Dialysis Division for Children, Independent Public Clinical Hospital No. 1, 41-800 Zabrze, Poland
| | - Maria Szczepańska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
5
|
Dąbkowska M, Łuczkowska K, Rogińska D, Sobuś A, Wasilewska M, Ulańczyk Z, Machaliński B. Novel design of (PEG-ylated)PAMAM-based nanoparticles for sustained delivery of BDNF to neurotoxin-injured differentiated neuroblastoma cells. J Nanobiotechnology 2020; 18:120. [PMID: 32867843 PMCID: PMC7457365 DOI: 10.1186/s12951-020-00673-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is essential for the development and function of human neurons, therefore it is a promising target for neurodegenerative disorders treatment. Here, we studied BDNF-based electrostatic complex with dendrimer nanoparticles encapsulated in polyethylene glycol (PEG) in neurotoxin-treated, differentiated neuroblastoma SH-SY5Y cells, a model of neurodegenerative mechanisms. PEG layer was adsorbed at dendrimer-protein core nanoparticles to decrease their cellular uptake and to reduce BDNF-other proteins interactions for a prolonged time. Cytotoxicity and confocal microscopy analysis revealed PEG-ylated BDNF-dendrimer nanoparticles can be used for continuous neurotrophic factor delivery to the neurotoxin-treated cells over 24 h without toxic effect. We offer a reliable electrostatic route for efficient encapsulation and controlled transport of fragile therapeutic proteins without any covalent cross-linker; this could be considered as a safe drug delivery system. Understanding the polyvalent BDNF interactions with dendrimer core nanoparticles offers new possibilities for design of well-ordered protein drug delivery systems.
Collapse
Affiliation(s)
- Maria Dąbkowska
- Department of Medical Chemistry, Pomeranian Medical University, Rybacka 1, 70-204, Szczecin, Poland.
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, Rybacka 1, 70-204, Szczecin, Poland
| | - Dorota Rogińska
- Department of General Pathology, Pomeranian Medical University, Rybacka 1, 70-204, Szczecin, Poland
| | - Anna Sobuś
- Department of General Pathology, Pomeranian Medical University, Rybacka 1, 70-204, Szczecin, Poland
| | - Monika Wasilewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239, Cracow, Poland
| | - Zofia Ulańczyk
- Department of General Pathology, Pomeranian Medical University, Rybacka 1, 70-204, Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Rybacka 1, 70-204, Szczecin, Poland.
| |
Collapse
|