1
|
Topchiy I, Kocsis B. CB-1 receptor agonist drastically changes oscillatory activity, defining active sleep. Proc Natl Acad Sci U S A 2025; 122:e2411063122. [PMID: 40249784 PMCID: PMC12037043 DOI: 10.1073/pnas.2411063122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 03/01/2025] [Indexed: 04/20/2025] Open
Abstract
Brain oscillations in different behavioral states are essential for cognition, and oscillopathies contribute to cognitive dysfunction in neuropsychiatric diseases. Cannabis-1 receptor (CB1-R) activation was reported to suppress theta and fast gamma activities in rats during waking exploration, and here, we show that cannabis fundamentally alters network activity during sleep as well. Prominent theta rhythm is present in rapid eye movement sleep (REMS), whereas fast oscillations appear as regular sequences of sleep spindles during intermediate sleep (IS)-both implicated in dreaming and memory consolidation. The CB1-R agonist disrupted these mechanisms, restructuring IS-REMS episodes; IS lengthened sixfold and intruded REMS, where ongoing theta was drastically reduced. The spindle architecture was also affected; its amplitude increased, and its peak frequency downshifted into the theta range. Cannabis is known to induce psychotic-like conditions and cognitive deficits; thus, our results may help in understanding the dual effect of cannabis on cognitive states and the role of network oscillations in psychiatric pathology.
Collapse
Affiliation(s)
- Irina Topchiy
- Department Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department Psychiatry, Basic Neuroscience Division, McLean Hospital, Harvard Medical School, Boston, MA02478
| | - Bernat Kocsis
- Department Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| |
Collapse
|
2
|
Baran B, Lee EE. Age-Related Changes in Sleep and Its Implications for Cognitive Decline in Aging Persons With Schizophrenia: A Critical Review. Schizophr Bull 2025; 51:513-521. [PMID: 38713085 PMCID: PMC11908868 DOI: 10.1093/schbul/sbae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
BACKGROUND AND HYPOTHESIS Cognitive impairment is a core feature of schizophrenia that worsens with aging and interferes with quality of life. Recent work identifies sleep as an actionable target to alleviate cognitive deficits. Cardinal non-rapid eye movement (NREM) sleep oscillations such as sleep spindles and slow oscillations are critical for cognition. People living with schizophrenia (PLWS) and their first-degree relatives have a specific reduction in sleep spindles and an abnormality in their temporal coordination with slow oscillations that predict impaired memory consolidation. While NREM oscillatory activity is reduced in typical aging, it is not known how further disruption in these oscillations contributes to cognitive decline in older PLWS. Another understudied risk factor for cognitive deficits among older PLWS is obstructive sleep apnea (OSA) which may contribute to cognitive decline. STUDY DESIGN We conducted a narrative review to examine the published literature on aging, OSA, and NREM sleep oscillations in PLWS. STUDY RESULTS Spindles are propagated via thalamocortical feedback loops, and this circuitry shows abnormal hyperconnectivity in schizophrenia as revealed by structural and functional MRI studies. While the risk and severity of OSA increase with age, older PLWS are particularly vulnerable to OSA-related cognitive deficits because OSA is often underdiagnosed and undertreated, and OSA adds further damage to the circuitry that generates NREM sleep oscillations. CONCLUSIONS We highlight the critical need to study NREM sleep in older PWLS and propose that identifying and treating OSA in older PLWS will provide an avenue to potentially mitigate and prevent cognitive decline.
Collapse
Affiliation(s)
- Bengi Baran
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ellen E Lee
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Desert-Pacific Mental Illness Research Education and Clinical Center, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
3
|
Mylonas D, Patel R, Larson O, Zhu L, Vangel M, Baxter B, Manoach DS. Does fragmented sleep mediate the relationship between deficits in sleep spindles and memory consolidation in schizophrenia? SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2024; 6:zpae090. [PMID: 39811395 PMCID: PMC11725649 DOI: 10.1093/sleepadvances/zpae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/28/2024] [Indexed: 01/16/2025]
Abstract
Study Objectives Sleep spindles, defining electroencephalographic oscillations of nonrapid eye movement (NREM) stage 2 sleep (N2), mediate sleep-dependent memory consolidation (SDMC). Spindles are also thought to protect sleep continuity by suppressing thalamocortical sensory relay. Schizophrenia is characterized by spindle deficits and a correlated reduction of SDMC. We investigated whether this relationship is mediated by sleep fragmentation. Methods We detected spindles (12-15 Hz) during N2 at central electrodes in overnight polysomnography records from 56 participants with chronic schizophrenia and 59 healthy controls. Our primary measures of sleep continuity were the sleep fragmentation index and, in a subset of the data, visually scored arousals. SDMC was measured as overnight improvement on the finger-tapping motor sequence task. Results Participants with schizophrenia showed reductions of both spindle density (#/min) and SDMC in the context of normal sleep continuity and architecture. Spindle density predicted SDMC in both groups. In contrast, neither increased sleep fragmentation nor arousals predicted lower spindle density or worse SDMC in either group. Conclusions Our findings fail to support the hypothesis that sleep fragmentation accounts for spindle deficits, impaired SDMC, or their relationship in individuals with chronic schizophrenia. Instead, our findings are consistent with the hypothesis that spindle deficits directly impair memory consolidation in schizophrenia. Since sleep continuity and architecture are intact in this population, research aimed at developing interventions should instead focus on understanding dysfunction within the thalamocortical-hippocampal circuitry that both generates spindles and synchronizes them with other NREM oscillations to mediate SDMC.
Collapse
Affiliation(s)
- Dimitrios Mylonas
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Rudra Patel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Olivia Larson
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Zhu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark Vangel
- Department of Biostatistics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Bryan Baxter
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| |
Collapse
|
4
|
Mayeli A, Donati FL, Ferrarelli F. Altered Sleep Oscillations as Neurophysiological Biomarkers of Schizophrenia. ADVANCES IN NEUROBIOLOGY 2024; 40:351-383. [PMID: 39562451 DOI: 10.1007/978-3-031-69491-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Sleep spindles and slow waves are the two main oscillatory activities occurring during nonrapid eye movement (NREM) sleep. Here, we will first describe the electrophysiological characteristics of these sleep oscillations along with the neurophysiological and molecular mechanisms underlying their generation and synchronization in the healthy brain. We will then review the extant evidence of deficits in sleep spindles and, to a lesser extent, slow waves, including in slow wave-spindle coupling, in patients with Schizophrenia (SCZ) across the course of the disorder, from at-risk to chronic stages. Next, we will discuss how these sleep oscillatory deficits point to defects in neuronal circuits within the thalamocortical network as well as to alterations in molecular neurotransmission implicating the GABAergic and glutamatergic systems in SCZ. Finally, after explaining how spindle and slow waves may represent neurophysiological biomarkers with predictive, diagnostic, and prognostic potential, we will present novel pharmacological and neuromodulatory interventions aimed at restoring sleep oscillatory deficits in SCZ, which in turn may serve as target engagement biomarkers to ameliorate the clinical symptoms and the quality of life of individuals affected by this devastating brain disorder.
Collapse
Affiliation(s)
- Ahmad Mayeli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Weighall A, Kellar I. Sleep and memory consolidation in healthy, neurotypical children, and adults: a summary of systematic reviews and meta-analyses. Emerg Top Life Sci 2023; 7:513-524. [PMID: 39288097 DOI: 10.1042/etls20230110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 09/19/2024]
Abstract
This review systematically assesses the impact of sleep on memory and cognition in healthy individuals across different life stages. It specifically examines how sleep affects memory processes in children, adults, and older adults. The methodology involved a comprehensive literature search, starting with 46 known papers. Keywords and Mesh terms related to sleep and memory consolidation were derived using the Word Frequency Analysis tool in SR Accelerator and Mesh on Demand. A detailed search on PubMed yielded a large set of records. Classifier training on 4854 decisions, these were narrowed down to 1437 papers for full-text screening, culminating in 19 systematic reviews and meta-analyses. Sleep enhances memory consolidation, especially for complex declarative information. While the role of sleep in procedural memory consolidation in children remains less robust compared to declarative memory, findings suggest potential but inconsistent benefits. Sleep improves prospective memory consolidation and aids in complex associative memory tasks. Memory reactivation during sleep, specifically slow-wave sleep, and spindles are implicated in memory consolidation. Meta-analytic evidence suggests that while sleep benefits both emotional and neutral memory consolidation, there is no strong preferential effect of sleep on emotional memory in comparison to neutral memory. In older adults, there is a noticeable reduction in sleep-dependent memory consolidation, particularly for declarative memory, likely linked to a decline in slow-wave sleep. This suggests a decrease in the benefits of sleep for memory consolidation with aging. Overall, the review underscores the importance of sleep in memory processes across all ages, highlighting variations in its impact on different types of memory and across age groups. It points to future research directions for enhancing understanding and practical applications in clinical and educational settings.
Collapse
Affiliation(s)
- Anna Weighall
- School of Education, The University of Sheffield, Sheffield, U.K
| | - Ian Kellar
- Department of Psychology, The University of Sheffield, Sheffield, U.K
| |
Collapse
|
6
|
Gardner KJ, Wang W, Klerman EB. Altered sleep architecture in children and adolescents with Down syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2023; 193:e32073. [PMID: 37870492 PMCID: PMC10905642 DOI: 10.1002/ajmg.c.32073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
OBJECTIVE Children with Down syndrome (DS) may experience changes in sleep architecture (i.e., different sleep stages) that then affect waketime functioning, including learning, mood, and disruptive behavior. For designing and testing interventions, it is important to document any differences in sleep architecture in children with DS with and without co-occurring diagnoses, including neuropsychiatric diagnoses and obstructive sleep apnea (OSA). METHODS A retrospective cohort study was performed at Massachusetts General Hospital for children and adolescents with DS who underwent polysomnography (PSG) between August 2016 and July 2022. Patient data collected from the electronic medical record included diagnoses, age at PSG, and PSG report. Statistical analysis included unpaired T tests to test hypotheses about differences in sleep architecture within age groups, and differences between children with DS and a co-occurring diagnosis. One way ANOVA was used to determine statistical significance of OSA severity within patients with DS. RESULTS When compared by age group, those with DS had negative changes in sleep architecture (e.g., less sleep and more wake) when compared to normative data. Within this cohort, having a co-occurring diagnosis of autism resulted in further, negative effects on sleep architecture. 89% of those with DS had diagnosed OSA but only those with severe OSA experienced negative effects on sleep architecture. CONCLUSION Age is an important covariate when studying the sleep of children with DS and neurotypical children. Studies are needed to test whether minimizing the observed differences in sleep architecture will translate to improved learning, mood, and behavioral outcomes, and how treating OSA affects sleep architecture.
Collapse
Affiliation(s)
- Kelly J Gardner
- Massachusetts General Hospital/MassGeneral for Children, Boston, Massachusetts, USA
| | - Wei Wang
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth B Klerman
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Baxter BS, Mylonas D, Kwok KS, Talbot CE, Patel R, Zhu L, Vangel M, Stickgold R, Manoach DS. The effects of closed-loop auditory stimulation on sleep oscillatory dynamics in relation to motor procedural memory consolidation. Sleep 2023; 46:zsad206. [PMID: 37531587 PMCID: PMC11009689 DOI: 10.1093/sleep/zsad206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/13/2023] [Indexed: 08/04/2023] Open
Abstract
STUDY OBJECTIVES Healthy aging and many disorders show reduced sleep-dependent memory consolidation and corresponding alterations in non-rapid eye movement sleep oscillations. Yet sleep physiology remains a relatively neglected target for improving memory. We evaluated the effects of closed-loop auditory stimulation during sleep (CLASS) on slow oscillations (SOs), sleep spindles, and their coupling, all in relation to motor procedural memory consolidation. METHODS Twenty healthy young adults had two afternoon naps: one with auditory stimulation during SO upstates and another with no stimulation. Twelve returned for a third nap with stimulation at variable times in relation to SO upstates. In all sessions, participants trained on the motor sequence task prior to napping and were tested afterward. RESULTS Relative to epochs with no stimulation, upstate stimuli disrupted sleep and evoked SOs, spindles, and SO-coupled spindles. Stimuli that successfully evoked oscillations were delivered closer to the peak of the SO upstate and when spindle power was lower than stimuli that failed to evoke oscillations. Across conditions, participants showed similar significant post-nap performance improvement that correlated with the density of SO-coupled spindles. CONCLUSIONS Despite its strong effects on sleep physiology, CLASS failed to enhance motor procedural memory. Our findings suggest methods to overcome this failure, including better sound calibration to preserve sleep continuity and the use of real-time predictive algorithms to more precisely target SO upstates and to avoid disrupting endogenous SO-coupled spindles and their mnemonic function. They motivate continued development of CLASS as an intervention to manipulate sleep oscillatory dynamics and improve memory.
Collapse
Affiliation(s)
- Bryan S Baxter
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Dimitrios Mylonas
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Kristi S Kwok
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christine E Talbot
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rudra Patel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lin Zhu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark Vangel
- Department of Biostatistics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| |
Collapse
|
8
|
Zeng G, Zhou Y, Yang Y, Ruan L, Tan L, Luo H, Ruan J. Neural oscillations after acute large artery atherosclerotic cerebral infarction during resting state and sleep spindles. J Sleep Res 2023; 32:e13889. [PMID: 36944554 DOI: 10.1111/jsr.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023]
Abstract
Electroencephalogram-microstate analysis was conducted using low-resolution electromagnetic tomography (LORETA)-KEY to evaluate dynamic brain network changes in patients with acute large artery atherosclerotic cerebral infarction (LAACI) during the rest and sleep stages. This study included 35 age- and sex-matched healthy controls and 34 patients with acute LAACI. Each participant performed a 3-h, 19-channel video electroencephalogram test. Subsequently, 20 epochs of 2-s sleep spindles during stage N2 sleep and five epochs of 10-s electroencephalogram data in the resting state for each participant were obtained. In both the resting state and sleep spindles, patients with LAACI displayed altered neural oscillations. The parameters of microstate A (coverage, occurrence, and duration) increased during the resting state in the patients with LAACI compared with healthy controls. The coverage and occurrence of microstate B and D were reduced in the LAACI group compared with the healthy controls (p < 0.05). Moreover, during sleep spindles, the duration of microstate A and the transition probability from microstate A and B to C decreased, but the coverage of microstate B and the transition rate from microstate B to D increased (p < 0.05) in the LAACI group compared with the healthy controls. These results enable better understanding of how neural oscillations are modified in patients with LAACI during the resting state and sleep spindles. Following LAACI, the dynamic brain network undergoes changes during sleep spindles and the resting state. Continued long-term investigations are required to determine how well these changes in brain dynamics reflect the clinical characteristics of patients with LAACI.
Collapse
Affiliation(s)
- Guoli Zeng
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Neurology, Luzhou People's Hospital, Luzhou, China
| | - Yan Zhou
- Department of Neurology, Jianyang People's Hospital, Jianyang, China
| | - Yushu Yang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Lili Ruan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Linjie Tan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Hua Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Jianghai Ruan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| |
Collapse
|
9
|
Dimitriades ME, Markovic A, Gefferie SR, Buckley A, Driver DI, Rapoport JL, Nosadini M, Rostasy K, Sartori S, Suppiej A, Kurth S, Franscini M, Walitza S, Huber R, Tarokh L, Bölsterli BK, Gerstenberg M. Sleep spindles across youth affected by schizophrenia or anti- N-methyl-D-aspartate-receptor encephalitis. Front Psychiatry 2023; 14:1055459. [PMID: 37377467 PMCID: PMC10292628 DOI: 10.3389/fpsyt.2023.1055459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Background Sleep disturbances are intertwined with the progression and pathophysiology of psychotic symptoms in schizophrenia. Reductions in sleep spindles, a major electrophysiological oscillation during non-rapid eye movement sleep, have been identified in patients with schizophrenia as a potential biomarker representing the impaired integrity of the thalamocortical network. Altered glutamatergic neurotransmission within this network via a hypofunction of the N-methyl-D-aspartate receptor (NMDAR) is one of the hypotheses at the heart of schizophrenia. This pathomechanism and the symptomatology are shared by anti-NMDAR encephalitis (NMDARE), where antibodies specific to the NMDAR induce a reduction of functional NMDAR. However, sleep spindle parameters have yet to be investigated in NMDARE and a comparison of these rare patients with young individuals with schizophrenia and healthy controls (HC) is lacking. This study aims to assess and compare sleep spindles across young patients affected by Childhood-Onset Schizophrenia (COS), Early-Onset Schizophrenia, (EOS), or NMDARE and HC. Further, the potential relationship between sleep spindle parameters in COS and EOS and the duration of the disease is examined. Methods Sleep EEG data of patients with COS (N = 17), EOS (N = 11), NMDARE (N = 8) aged 7-21 years old, and age- and sex-matched HC (N = 36) were assessed in 17 (COS, EOS) or 5 (NMDARE) electrodes. Sleep spindle parameters (sleep spindle density, maximum amplitude, and sigma power) were analyzed. Results Central sleep spindle density, maximum amplitude, and sigma power were reduced when comparing all patients with psychosis to all HC. Between patient group comparisons showed no differences in central spindle density but lower central maximum amplitude and sigma power in patients with COS compared to patients with EOS or NMDARE. Assessing the topography of spindle density, it was significantly reduced over 15/17 electrodes in COS, 3/17 in EOS, and 0/5 in NMDARE compared to HC. In the pooled sample of COS and EOS, a longer duration of illness was associated with lower central sigma power. Conclusions Patients with COS demonstrated more pronounced impairments of sleep spindles compared to patients with EOS and NMDARE. In this sample, there is no strong evidence that changes in NMDAR activity are related to spindle deficits.
Collapse
Affiliation(s)
- Maria E. Dimitriades
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Andjela Markovic
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Silvano R. Gefferie
- Stichting Epilepsie Instellingen Nederland, Heemstede, Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Ashura Buckley
- Pediatrics and Neurodevelopmental Neuroscience, National Institute of Mental Health, Bethesda, MD, United States
| | - David I. Driver
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Judith L. Rapoport
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Margherita Nosadini
- Paediatric Neurology and Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
- Neuroimmunology Group, Paediatric Research Institute Città della Speranza, Padova, Italy
| | - Kevin Rostasy
- Department of Pediatric Neurology, Children's Hospital Datteln, Witten/Herdecke University, Datteln, Germany
| | - Stefano Sartori
- Paediatric Neurology and Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
- Neuroimmunology Group, Paediatric Research Institute Città della Speranza, Padova, Italy
| | - Agnese Suppiej
- Department of Medical Sciences, Pediatric Section, University of Ferrara, Ferrara, Italy
| | - Salome Kurth
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Maurizia Franscini
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Reto Huber
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Leila Tarokh
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Bigna K. Bölsterli
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Department of Pediatric Neurology, University Children's Hospital Zurich, Zurich, Switzerland
- Department of Pediatric Neurology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Miriam Gerstenberg
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Lee EE, Adamowicz DH, Frangou S. An NIMH Workshop on Non-Affective Psychosis in Midlife and Beyond: Research Agenda on Phenomenology, Clinical Trajectories, Underlying Mechanisms, and Intervention Targets. Am J Geriatr Psychiatry 2023; 31:353-365. [PMID: 36858928 PMCID: PMC10990076 DOI: 10.1016/j.jagp.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/05/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
We present a review of the state of the research in the phenomenology, clinical trajectories, biological mechanisms, aging biomarkers, and treatments for middle-aged and older people with schizophrenia (PwS) discussed at the NIMH sponsored workshop "Non-affective Psychosis in Midlife and Beyond." The growing population of PwS has specific clinical needs that require tailored and mechanistically derived interventions. Differentiating between the effects of aging and disease progression is a key challenge of studying older PwS. This review of the workshop highlights the recent findings in this understudied clinical population and the critical gaps in knowledge and consensus for research priorities. This review showcases the major challenges and opportunities for research to advance clinical care for this growing and understudied population.
Collapse
Affiliation(s)
- Ellen E Lee
- Department of Psychiatry (EEL, DA), University of California San Diego, La Jolla, CA; Sam and Rose Stein Institute for Research on Aging (EEL, DA), University of California San Diego, La Jolla, CA; Desert-Pacific Mental Illness Research Education and Clinical Center, Veterans Affairs San Diego Healthcare System (EEL), San Diego, CA.
| | - David H Adamowicz
- Department of Psychiatry (EEL, DA), University of California San Diego, La Jolla, CA; Sam and Rose Stein Institute for Research on Aging (EEL, DA), University of California San Diego, La Jolla, CA
| | - Sophia Frangou
- Department of Psychiatry (SF), University of British Columbia, Vancouver, British Columbia, Canada; Icahn School of Medicine at Mount Sinai (SF), New York, NY
| |
Collapse
|
11
|
The Feature of Sleep Spindle Deficits in Patients With Schizophrenia With and Without Auditory Verbal Hallucinations. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:331-342. [PMID: 34380082 DOI: 10.1016/j.bpsc.2021.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/10/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Previous sleep electroencephalography studies have detected abnormalities in sleep architecture and sleep spindle deficits in schizophrenia (SCZ), but the consistency of these results was not robust, which might be due to the small sample size and the influence of clinical factors such as the various medication therapies and symptom heterogeneity. This study aimed to regard auditory verbal hallucinations (AVHs) as a pointcut to downscale the heterogeneity of SCZ and explore whether some sleep architecture and spindle parameters were more severely impaired in SCZ patients with AVHs compared with those without AVHs. METHODS A total of 90 SCZ patients with AVHs, 92 SCZ patients without AVHs, and 91 healthy control subjects were recruited, and parameters of sleep architecture and spindle activities were compared between groups. The correlation between significant sleep parameters and clinical indicators was analyzed. RESULTS Deficits of sleep spindle activities at prefrontal electrodes and intrahemispheric spindle coherence were observed in both AVH and non-AVH groups, several of which were more serious in the AVH group. In addition, deficits of spindle activities at central and occipital electrodes and interhemispheric spindle coherence mainly manifested accompanying AVH symptoms, most of which were retained in the medication-naive first-episode patients, and were associated with Auditory Hallucination Rating Scale scores. CONCLUSIONS Our results suggest that the underlying mechanism of spindle deficits might be different between SCZ patients with and without AVHs. In the future, the sleep feature of SCZ patients with different symptoms and the influence of clinical factors, such as medication therapy, should be further illustrated.
Collapse
|
12
|
Meram ED, Baajour S, Chowdury A, Kopchick J, Thomas P, Rajan U, Khatib D, Zajac-Benitez C, Haddad L, Amirsadri A, Stanley JA, Diwadkar VA. The topology, stability, and instability of learning-induced brain network repertoires in schizophrenia. Netw Neurosci 2023; 7:184-212. [PMID: 37333998 PMCID: PMC10270714 DOI: 10.1162/netn_a_00278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/05/2022] [Indexed: 07/21/2023] Open
Abstract
There is a paucity of graph theoretic methods applied to task-based data in schizophrenia (SCZ). Tasks are useful for modulating brain network dynamics, and topology. Understanding how changes in task conditions impact inter-group differences in topology can elucidate unstable network characteristics in SCZ. Here, in a group of patients and healthy controls (n = 59 total, 32 SCZ), we used an associative learning task with four distinct conditions (Memory Formation, Post-Encoding Consolidation, Memory Retrieval, and Post-Retrieval Consolidation) to induce network dynamics. From the acquired fMRI time series data, betweenness centrality (BC), a metric of a node's integrative value was used to summarize network topology in each condition. Patients showed (a) differences in BC across multiple nodes and conditions; (b) decreased BC in more integrative nodes, but increased BC in less integrative nodes; (c) discordant node ranks in each of the conditions; and (d) complex patterns of stability and instability of node ranks across conditions. These analyses reveal that task conditions induce highly variegated patterns of network dys-organization in SCZ. We suggest that the dys-connection syndrome that is schizophrenia, is a contextually evoked process, and that the tools of network neuroscience should be oriented toward elucidating the limits of this dys-connection.
Collapse
Affiliation(s)
- Emmanuel D. Meram
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| | - Shahira Baajour
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| | - Asadur Chowdury
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| | - John Kopchick
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| | - Patricia Thomas
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| | - Usha Rajan
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dalal Khatib
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| | - Caroline Zajac-Benitez
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| | - Luay Haddad
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| | - Alireza Amirsadri
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeffrey A. Stanley
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| | - Vaibhav A. Diwadkar
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
13
|
Okadome T, Yamaguchi T, Mukaino T, Sakata A, Ogata K, Shigeto H, Isobe N, Uehara T. The effect of interictal epileptic discharges and following spindles on motor sequence learning in epilepsy patients. Front Neurol 2022; 13:979333. [PMID: 36438951 PMCID: PMC9686303 DOI: 10.3389/fneur.2022.979333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/25/2022] [Indexed: 09/05/2023] Open
Abstract
PURPOSE Interictal epileptic discharges (IEDs) are known to affect cognitive function in patients with epilepsy, but the mechanism has not been elucidated. Sleep spindles appearing in synchronization with IEDs were recently demonstrated to impair memory consolidation in rat, but this has not been investigated in humans. On the other hand, the increase of sleep spindles at night after learning is positively correlated with amplified learning effects during sleep for motor sequence learning. In this study, we examined the effects of IEDs and IED-coupled spindles on motor sequence learning in patients with epilepsy, and clarified their pathological significance. MATERIALS AND METHODS Patients undergoing long-term video-electroencephalography (LT-VEEG) at our hospital from June 2019 to November 2021 and age-matched healthy subjects were recruited. Motor sequence learning consisting of a finger-tapping task was performed before bedtime and the next morning, and the improvement rate of performance was defined as the sleep-dependent learning effect. We searched for factors associated with the changes in learning effect observed between the periods of when antiseizure medications (ASMs) were withdrawn for LT-VEEG and when they were returned to usual doses after LT-VEEG. RESULTS Excluding six patients who had epileptic seizures at night after learning, nine patients and 11 healthy subjects were included in the study. In the patient group, there was no significant learning effect when ASMs were withdrawn. The changes in learning effect of the patient group during ASM withdrawal were not correlated with changes in sleep duration or IED density; however, they were significantly negatively correlated with changes in IED-coupled spindle density. CONCLUSION We found that the increase of IED-coupled spindles correlated with the decrease of sleep-dependent learning effects of procedural memory. Pathological IED-coupled sleep spindles could hinder memory consolidation, that is dependent on physiological sleep spindles, resulting in cognitive dysfunction in patients with epilepsy.
Collapse
Affiliation(s)
- Toshiki Okadome
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Yamaguchi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiko Mukaino
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ayumi Sakata
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Katsuya Ogata
- Department of Pharmacy, School of Pharmaceutical Sciences at Fukuoka, International University of Health and Welfare, Okawa, Japan
| | - Hiroshi Shigeto
- Division of Medical Technology, Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taira Uehara
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Neurology, School of Medicine, International University of Health and Welfare Narita Hospital, Narita, Japan
| |
Collapse
|
14
|
Czekus C, Steullet P, Orero López A, Bozic I, Rusterholz T, Bandarabadi M, Do KQ, Gutierrez Herrera C. Alterations in TRN-anterodorsal thalamocortical circuits affect sleep architecture and homeostatic processes in oxidative stress vulnerable Gclm -/- mice. Mol Psychiatry 2022; 27:4394-4406. [PMID: 35902628 PMCID: PMC9734061 DOI: 10.1038/s41380-022-01700-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022]
Abstract
Schizophrenia is associated with alterations of sensory integration, cognitive processing and both sleep architecture and sleep oscillations in mouse models and human subjects, possibly through changes in thalamocortical dynamics. Oxidative stress (OxS) damage, including inflammation and the impairment of fast-spiking gamma-aminobutyric acid neurons have been hypothesized as a potential mechanism responsible for the onset and development of schizophrenia. Yet, the link between OxS and perturbation of thalamocortical dynamics and sleep remains unclear. Here, we sought to investigate the effects of OxS on sleep regulation by characterizing the dynamics of thalamocortical networks across sleep-wake states in a mouse model with a genetic deletion of the modifier subunit of glutamate-cysteine ligase (Gclm knockout, KO) using high-density electrophysiology in freely-moving mice. We found that Gcml KO mice exhibited a fragmented sleep architecture and impaired sleep homeostasis responses as revealed by the increased NREM sleep latencies, decreased slow-wave activities and spindle rate after sleep deprivation. These changes were associated with altered bursting activity and firing dynamics of neurons from the thalamic reticularis nucleus, anterior cingulate and anterodorsal thalamus. Administration of N-acetylcysteine (NAC), a clinically relevant antioxidant, rescued the sleep fragmentation and spindle rate through a renormalization of local neuronal dynamics in Gclm KO mice. Collectively, these findings provide novel evidence for a link between OxS and the deficits of frontal TC network dynamics as a possible mechanism underlying sleep abnormalities and impaired homeostatic responses observed in schizophrenia.
Collapse
Affiliation(s)
- Christina Czekus
- Center for Experimental Neurology, Department of Neurology, Inselspital University Hospital, Bern, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Site de Cery, CH-1008, Prilly-Lausanne, Switzerland
| | - Albert Orero López
- Center for Experimental Neurology, Department of Neurology, Inselspital University Hospital, Bern, Switzerland
| | - Ivan Bozic
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Thomas Rusterholz
- Center for Experimental Neurology, Department of Neurology, Inselspital University Hospital, Bern, Switzerland
| | - Mojtaba Bandarabadi
- Center for Experimental Neurology, Department of Neurology, Inselspital University Hospital, Bern, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Site de Cery, CH-1008, Prilly-Lausanne, Switzerland
| | - Carolina Gutierrez Herrera
- Center for Experimental Neurology, Department of Neurology, Inselspital University Hospital, Bern, Switzerland.
- Department for Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
15
|
Stokes PA, Rath P, Possidente T, He M, Purcell S, Manoach DS, Stickgold R, Prerau MJ. Transient oscillation dynamics during sleep provide a robust basis for electroencephalographic phenotyping and biomarker identification. Sleep 2022; 46:6701543. [PMID: 36107467 PMCID: PMC9832519 DOI: 10.1093/sleep/zsac223] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/30/2022] [Indexed: 01/19/2023] Open
Abstract
Transient oscillatory events in the sleep electroencephalogram represent short-term coordinated network activity. Of particular importance, sleep spindles are transient oscillatory events associated with memory consolidation, which are altered in aging and in several psychiatric and neurodegenerative disorders. Spindle identification, however, currently contains implicit assumptions derived from what waveforms were historically easiest to discern by eye, and has recently been shown to select only a high-amplitude subset of transient events. Moreover, spindle activity is typically averaged across a sleep stage, collapsing continuous dynamics into discrete states. What information can be gained by expanding our view of transient oscillatory events and their dynamics? In this paper, we develop a novel approach to electroencephalographic phenotyping, characterizing a generalized class of transient time-frequency events across a wide frequency range using continuous dynamics. We demonstrate that the complex temporal evolution of transient events during sleep is highly stereotyped when viewed as a function of slow oscillation power (an objective, continuous metric of depth-of-sleep) and phase (a correlate of cortical up/down states). This two-fold power-phase representation has large intersubject variability-even within healthy controls-yet strong night-to-night stability for individuals, suggesting a robust basis for phenotyping. As a clinical application, we then analyze patients with schizophrenia, confirming established spindle (12-15 Hz) deficits as well as identifying novel differences in transient non-rapid eye movement events in low-alpha (7-10 Hz) and theta (4-6 Hz) ranges. Overall, these results offer an expanded view of transient activity, describing a broad class of events with properties varying continuously across spatial, temporal, and phase-coupling dimensions.
Collapse
Affiliation(s)
- Patrick A Stokes
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
| | - Preetish Rath
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA,Department of Computer Science, Tufts University, Medford, MA, USA
| | - Thomas Possidente
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
| | - Mingjian He
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA,Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA,Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Shaun Purcell
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA, USA
| | - Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Michael J Prerau
- Corresponding author. Michael J. Prerau, Brigham and Women's Hospital, Division of Sleep and Circadian Disorders, 221 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
16
|
Mylonas D, Sjøgård M, Shi Z, Baxter B, Hämäläinen M, Manoach DS, Khan S. A Novel Approach to Estimating the Cortical Sources of Sleep Spindles Using Simultaneous EEG/MEG. Front Neurol 2022; 13:871166. [PMID: 35785365 PMCID: PMC9243385 DOI: 10.3389/fneur.2022.871166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/18/2022] [Indexed: 11/15/2022] Open
Abstract
Sleep spindles, defining oscillations of stage II non-rapid eye movement sleep (N2), mediate sleep-dependent memory consolidation. Spindles are disrupted in several neurodevelopmental, neuropsychiatric, and neurodegenerative disorders characterized by cognitive impairment. Increasing spindles can improve memory suggesting spindles as a promising physiological target for the development of cognitive enhancing therapies. This effort would benefit from more comprehensive and spatially precise methods to characterize spindles. Spindles, as detected with electroencephalography (EEG), are often widespread across electrodes. Available evidence, however, suggests that they act locally to enhance cortical plasticity in the service of memory consolidation. Here, we present a novel method to enhance the spatial specificity of cortical source estimates of spindles using combined EEG and magnetoencephalography (MEG) data constrained to the cortex based on structural MRI. To illustrate this method, we used simultaneous EEG and MEG recordings from 25 healthy adults during a daytime nap. We first validated source space spindle detection using only EEG data by demonstrating strong temporal correspondence with sensor space EEG spindle detection (gold standard). We then demonstrated that spindle source estimates using EEG alone, MEG alone and combined EEG/MEG are stable across nap sessions. EEG detected more source space spindles than MEG and each modality detected non-overlapping spindles that had distinct cortical source distributions. Source space EEG was more sensitive to spindles in medial frontal and lateral prefrontal cortex, while MEG was more sensitive to spindles in somatosensory and motor cortices. By combining EEG and MEG data this method leverages the differential spatial sensitivities of the two modalities to obtain a more comprehensive and spatially specific source estimation of spindles than possible with either modality alone.
Collapse
Affiliation(s)
- Dimitrios Mylonas
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
| | - Martin Sjøgård
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
| | - Zhaoyue Shi
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
- Carle Illinois Advanced Imaging Center, Carle Foundation Hospital, Urbana, IL, United States
| | - Bryan Baxter
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
| | - Matti Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Dara S. Manoach
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
| | - Sheraz Khan
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
17
|
Suhas S, Mehta UM. A redux of schizophrenia research in 2021. Schizophr Res 2022; 243:458-461. [PMID: 35300898 PMCID: PMC8919807 DOI: 10.1016/j.schres.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Satish Suhas
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore 560029, India
| | - Urvakhsh Meherwan Mehta
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore 560029, India.
| |
Collapse
|
18
|
Mylonas D, Machado S, Larson O, Patel R, Cox R, Vangel M, Maski K, Stickgold R, Manoach DS. Dyscoordination of non-rapid eye movement sleep oscillations in autism spectrum disorder. Sleep 2022; 45:6505127. [DOI: 10.1093/sleep/zsac010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/13/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Study Objectives
Converging evidence from neuroimaging, sleep, and genetic studies suggest that dysregulation of thalamocortical interactions mediated by the thalamic reticular nucleus (TRN) contribute to autism spectrum disorder (ASD). Sleep spindles assay TRN function, and their coordination with cortical slow oscillations (SOs) indexes thalamocortical communication. These oscillations mediate memory consolidation during sleep. In the present study, we comprehensively characterized spindles and their coordination with SOs in relation to memory and age in children with ASD.
Methods
Nineteen children and adolescents with ASD, without intellectual disability, and 18 typically developing (TD) peers, aged 9–17, completed a home polysomnography study with testing on a spatial memory task before and after sleep. Spindles, SOs, and their coordination were characterized during stages 2 (N2) and 3 (N3) non-rapid eye movement sleep.
Results
ASD participants showed disrupted SO-spindle coordination during N2 sleep. Spindles peaked later in SO upstates and their timing was less consistent. They also showed a spindle density (#/min) deficit during N3 sleep. Both groups showed significant sleep-dependent memory consolidation, but their relations with spindle density differed. While TD participants showed the expected positive correlations, ASD participants showed the opposite.
Conclusions
The disrupted SO-spindle coordination and spindle deficit provide further evidence of abnormal thalamocortical interactions and TRN dysfunction in ASD. The inverse relations of spindle density with memory suggest a different function for spindles in ASD than TD. We propose that abnormal sleep oscillations reflect genetically mediated disruptions of TRN-dependent thalamocortical circuit development that contribute to the manifestations of ASD and are potentially treatable.
Collapse
Affiliation(s)
- Dimitrios Mylonas
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Sasha Machado
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Olivia Larson
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA,USA
| | - Rudra Patel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Roy Cox
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam,The Netherlands
| | - Mark Vangel
- Department of Biostatistics, Massachusetts General Hospital, Harvard Medical School, Boston, MA,USA
| | - Kiran Maski
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| |
Collapse
|
19
|
Becker LA, Penagos H, Flores FJ, Manoach DS, Wilson MA, Varela C. Eszopiclone and Zolpidem Produce Opposite Effects on Hippocampal Ripple Density. Front Pharmacol 2022; 12:792148. [PMID: 35087405 PMCID: PMC8787044 DOI: 10.3389/fphar.2021.792148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/13/2021] [Indexed: 12/03/2022] Open
Abstract
Clinical populations have memory deficits linked to sleep oscillations that can potentially be treated with sleep medications. Eszopiclone and zolpidem (two non-benzodiazepine hypnotics) both enhance sleep spindles. Zolpidem improved sleep-dependent memory consolidation in humans, but eszopiclone did not. These divergent results may reflect that the two drugs have different effects on hippocampal ripple oscillations, which correspond to the reactivation of neuronal ensembles that represent previous waking activity and contribute to memory consolidation. We used extracellular recordings in the CA1 region of rats and systemic dosing of eszopiclone and zolpidem to test the hypothesis that these two drugs differentially affect hippocampal ripples and spike activity. We report evidence that eszopiclone makes ripples sparser, while zolpidem increases ripple density. In addition, eszopiclone led to a drastic decrease in spike firing, both in putative pyramidal cells and interneurons, while zolpidem did not substantially alter spiking. These results provide an explanation of the different effects of eszopiclone and zolpidem on memory in human studies and suggest that sleep medications can be used to regulate hippocampal ripple oscillations, which are causally linked to sleep-dependent memory consolidation.
Collapse
Affiliation(s)
- Logan A Becker
- Department of Neuroscience and Behavior, Stony Brook University, Stony Brook, NY, United States.,Department of Neuroscience, University of Texas at Austin, Austin, TX, United States.,Psychology Department, Florida Atlantic University, Boca Raton, FL, United States
| | - Hector Penagos
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States.,Center for Brains Minds and Machines, Massachusetts Institute of Technology, Boston, MA, United States
| | - Francisco J Flores
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States.,Center for Brains Minds and Machines, Massachusetts Institute of Technology, Boston, MA, United States.,Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
| | - Matthew A Wilson
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States.,Center for Brains Minds and Machines, Massachusetts Institute of Technology, Boston, MA, United States
| | - Carmen Varela
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States.,Center for Brains Minds and Machines, Massachusetts Institute of Technology, Boston, MA, United States.,Psychology Department, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
20
|
Lai M, Hegde R, Kelly S, Bannai D, Lizano P, Stickgold R, Manoach DS, Keshavan M. Investigating sleep spindle density and schizophrenia: A meta-analysis. Psychiatry Res 2022; 307:114265. [PMID: 34922240 DOI: 10.1016/j.psychres.2021.114265] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 11/26/2022]
Abstract
Sleep abnormalities are an early feature of schizophrenia (SZ) characterized by reductions in sleep spindles that are associated with deficits in brain connectivity and cognitive function. This study investigated sleep spindle density (SSD) differences between SZ, first episode psychosis (FEP), and family high-risk (FHR) populations and matched healthy controls (HC) by investigating recent studies via a meta-analysis. We collected experimental, demographic, and methodological metrics from eligible studies across multiple online databases. 14 total studies survived the inclusion and exclusion criteria for a total of 337 patients and relatives and 339 HC. R-Studio was used to run the meta-analysis via the meta and metaphor packages. A heterogeneity score of I2 = 80% was calculated and thus a random effects model was chosen. We report a large effect size for SSD in patients compared to controls. Furthermore, illness duration was significantly associated with SSD. Our next step to understanding sleep spindles would be to investigate SSD's use as a predictor for SZ or attempt to normalize SSD deficits as a therapeutic option.
Collapse
Affiliation(s)
- Matthew Lai
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Boston, MA, United States
| | - Rachal Hegde
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Boston, MA, United States
| | - Sinead Kelly
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
| | - Deepthi Bannai
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Boston, MA, United States
| | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Dara S Manoach
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
21
|
Hoang D, Lizano P, Lutz O, Zeng V, Raymond N, Miewald J, Montrose D, Keshavan M. Thalamic, Amygdalar, and hippocampal nuclei morphology and their trajectories in first episode psychosis: A preliminary longitudinal study ✰. Psychiatry Res Neuroimaging 2021; 309:111249. [PMID: 33484937 PMCID: PMC7904670 DOI: 10.1016/j.pscychresns.2021.111249] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/20/2020] [Accepted: 01/06/2021] [Indexed: 11/19/2022]
Abstract
The thalamus, amygdala, and hippocampus play important pathophysiologic roles in psychosis. Few studies have prospectively examined subcortical nuclei in relation to predicting clinical outcomes after a first-episode of psychosis (FEP). Here, we examined volumetric differences and trajectories among subcortical nuclei in FEP patients and their associations with illness severity. Clinical and brain volume measures were collected using a 1.5T MRI scanner and processed using FreeSurfer 6.0 from a prospective study of antipsychotic-naïve FEP patients of FEP-schizophrenia (FEP-SZ) (baseline, n = 38; follow-up, n = 17), FEP non-schizophrenia (FEP-NSZ) (baseline, n = 23; follow-up, n = 13), and healthy controls (HCs) (baseline, n = 47; follow-up, n = 29). Compared to FEP-NSZ and HCs, FEP-SZ had significantly smaller thalamic anterior nuclei volume at baseline. Longitudinally, FEP-SZ showed a positive rate of change in the amygdala compared to controls or FEP-NSZ, as well as in the basal, central and accessory basal nuclei compared to FEP-NSZ. Enlargement in the thalamic anterior nuclei predicted a worsening in overall psychosis symptoms. Baseline thalamic anterior nuclei alterations further specify key subcortical regions associated with FEP-SZ pathophysiology. Longitudinally, anterior nuclei volume enlargement may signal symptomatic worsening. The amygdala and thalamus structures may show diagnostic differences between schizophrenia and non-schizophrenia psychoses, while the thalamus changes may reflect disease or treatment related changes in clinical outcome.
Collapse
Affiliation(s)
- Dung Hoang
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States.
| | - Olivia Lutz
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Victor Zeng
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Nicolas Raymond
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Jean Miewald
- Western Psychiatric Institute and Clinic, University of Pittsburgh, Pittsburgh, PA, United States
| | - Deborah Montrose
- Western Psychiatric Institute and Clinic, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
22
|
Focal Sleep Spindle Deficits Reveal Focal Thalamocortical Dysfunction and Predict Cognitive Deficits in Sleep Activated Developmental Epilepsy. J Neurosci 2021; 41:1816-1829. [PMID: 33468567 DOI: 10.1523/jneurosci.2009-20.2020] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/16/2020] [Accepted: 11/16/2020] [Indexed: 01/08/2023] Open
Abstract
Childhood epilepsy with centrotemporal spikes (CECTS) is the most common focal epilepsy syndrome, yet the cause of this disease remains unknown. Now recognized as a mild epileptic encephalopathy, children exhibit sleep-activated focal epileptiform discharges and cognitive difficulties during the active phase of the disease. The association between the abnormal electrophysiology and sleep suggests disruption to thalamocortical circuits. Thalamocortical circuit dysfunction resulting in pathologic epileptiform activity could hinder the production of sleep spindles, a brain rhythm essential for memory processes. Despite this pathophysiologic connection, the relationship between spindles and cognitive symptoms in epileptic encephalopathies has not been previously evaluated. A significant challenge limiting such work has been the poor performance of available automated spindle detection methods in the setting of sharp activities, such as epileptic spikes. Here, we validate a robust new method to accurately measure sleep spindles in patients with epilepsy. We then apply this detector to a prospective cohort of male and female children with CECTS with combined high-density EEGs during sleep and cognitive testing at varying time points of disease. We show that: (1) children have a transient, focal deficit in spindles during the symptomatic phase of disease; (2) spindle rate anticorrelates with spike rate; and (3) spindle rate, but not spike rate, predicts performance on cognitive tasks. These findings demonstrate focal thalamocortical circuit dysfunction and provide a pathophysiological explanation for the shared seizures and cognitive symptoms in CECTS. Further, this work identifies sleep spindles as a potential treatment target of cognitive dysfunction in this common epileptic encephalopathy.SIGNIFICANCE STATEMENT Childhood epilepsy with centrotemporal spikes is the most common idiopathic focal epilepsy syndrome, characterized by self-limited focal seizures and cognitive symptoms. Here, we provide the first evidence that focal thalamocortical circuit dysfunction underlies the shared seizures and cognitive dysfunction observed. In doing so, we identify sleep spindles as a mechanistic biomarker, and potential treatment target, of cognitive dysfunction in this common developmental epilepsy and provide a novel method to reliably quantify spindles in brain recordings from patients with epilepsy.
Collapse
|
23
|
The effects of eszopiclone on sleep spindles and memory consolidation in schizophrenia: a randomized clinical trial. Neuropsychopharmacology 2020; 45:2189-2197. [PMID: 32919407 PMCID: PMC7785021 DOI: 10.1038/s41386-020-00833-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/15/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022]
Abstract
Sleep spindles, defining oscillations of stage 2 non-rapid eye movement sleep (N2), mediate memory consolidation. Schizophrenia is characterized by reduced spindle activity that correlates with impaired sleep-dependent memory consolidation. In a small, randomized, placebo-controlled pilot study of schizophrenia, eszopiclone (Lunesta®), a nonbenzodiazepine sedative hypnotic, increased N2 spindle density (number/minute) but did not significantly improve memory. This larger double-blind crossover study that included healthy controls investigated whether eszopiclone could both increase N2 spindle density and improve memory. Twenty-six medicated schizophrenia outpatients and 29 healthy controls were randomly assigned to have a placebo or eszopiclone (3 mg) sleep visit first. Each visit involved two consecutive nights of high density polysomnography with training on the Motor Sequence Task (MST) on the second night and testing the following morning. Patients showed a widespread reduction of spindle density and, in both groups, eszopiclone increased spindle density but failed to enhance sleep-dependent procedural memory consolidation. Follow-up analyses revealed that eszopiclone also affected cortical slow oscillations: it decreased their amplitude, increased their duration, and rendered their phase locking with spindles more variable. Regardless of group or visit, the density of coupled spindle-slow oscillation events predicted memory consolidation significantly better than spindle density alone, suggesting that they are a better biomarker of memory consolidation. In conclusion, sleep oscillations are promising targets for improving memory consolidation in schizophrenia, but enhancing spindles is not enough. Effective therapies also need to preserve or enhance cortical slow oscillations and their coordination with thalamic spindles, an interregional dialog that is necessary for sleep-dependent memory consolidation.
Collapse
|
24
|
González-Rodríguez A, Labad J, Seeman MV. Sleep Disturbances in Patients with Persistent Delusions: Prevalence, Clinical Associations, and Therapeutic Strategies. Clocks Sleep 2020; 2:399-415. [PMID: 33118525 PMCID: PMC7711969 DOI: 10.3390/clockssleep2040030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 11/17/2022] Open
Abstract
Sleep disturbances accompany almost all mental illnesses, either because sound sleep and mental well-being share similar requisites, or because mental problems lead to sleep problems, or vice versa. The aim of this narrative review was to examine sleep in patients with delusions, particularly in those diagnosed with delusional disorder. We did this in sequence, first for psychiatric illness in general, then for psychotic illnesses where delusions are prevalent symptoms, and then for delusional disorder. The review also looked at the effect on sleep parameters of individual symptoms commonly seen in delusional disorder (paranoia, cognitive distortions, suicidal thoughts) and searched the evidence base for indications of antipsychotic drug effects on sleep. It subsequently evaluated the influence of sleep therapies on psychotic symptoms, particularly delusions. The review's findings are clinically important. Delusional symptoms and sleep quality influence one another reciprocally. Effective treatment of sleep problems is of potential benefit to patients with persistent delusions, but may be difficult to implement in the absence of an established therapeutic relationship and an appropriate pharmacologic regimen. As one symptom can aggravate another, comorbidities in patients with serious mental illness all need to be treated, a task that requires close liaison among medical specialties.
Collapse
Affiliation(s)
- Alexandre González-Rodríguez
- Department of Mental Health, Parc Tauli University Hospital, Autonomous University of Barcelona (UAB), I3PT, Sabadell, 08280 Barcelona, Spain;
| | - Javier Labad
- Department of Psychiatry, Hospital of Mataró, Consorci Sanitari del Maresme, Institut d’Investigació i Innovació Parc Tauli (I3PT), CIBERSAM, Mataró, 08304 Barcelona, Spain;
| | - Mary V. Seeman
- Department of Psychiatry, University of Toronto, #605 260 Heath St. West, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
25
|
Sleep-related memory consolidation in the psychosis spectrum phenotype. Neurobiol Learn Mem 2020; 174:107273. [PMID: 32659349 DOI: 10.1016/j.nlm.2020.107273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/19/2020] [Accepted: 07/03/2020] [Indexed: 11/23/2022]
Abstract
Sleep and memory processing impairments range from mild to severe in the psychosis spectrum. Relationships between memory processing and sleep characteristics have been described for schizophrenia, including unaffected first-degree relatives, but they are less clear across other high-risk groups within the psychosis spectrum. In this study, we investigated high-risk individuals with accumulated risk-factors for psychosis and subthreshold symptoms. Out of 1898 screened individuals, 44 age- and sex-matched participants were sub-grouped into those with substantial environmental risk factors for psychosis and subthreshold psychotic symptoms (high-risk group) and those without these phenotypes (low-risk controls). Four groups (high/low risk, morning/evening training) were trained and tested in the laboratory for sustained attention, motor skill memory (finger-tapping task) and declarative memory (word-pair learning task) immediately after training, again after a night of EEG-recorded sleep at home or a period of daytime wakefulness, and again after 24 h from training. No differences in sustained attention or in memory consolidation of declarative and motor skill memory were found between groups for any time period tested. However, a group difference was found for rapid-eye movement (REM) sleep in relation to motor skill memory: the longer the total sleep time, particularly longer REM sleep, the greater the performance gain, which occurred only in high-risk individuals. In conclusion, our results suggest a gain in motor skill performance with sufficient sleep opportunity for longer REM sleep in high-risk individuals with subthreshold psychotic symptoms. Declarative memory did not benefit from sleep consolidation above or beyond that of the control group.
Collapse
|
26
|
Ferrarelli F. Sleep disturbances in schizophrenia and psychosis. Schizophr Res 2020; 221:1-3. [PMID: 32471787 PMCID: PMC7316597 DOI: 10.1016/j.schres.2020.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 01/12/2023]
|
27
|
Varela C, Wilson MA. mPFC spindle cycles organize sparse thalamic activation and recently active CA1 cells during non-REM sleep. eLife 2020; 9:48881. [PMID: 32525480 PMCID: PMC7319772 DOI: 10.7554/elife.48881] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/11/2020] [Indexed: 12/26/2022] Open
Abstract
Sleep oscillations in the neocortex and hippocampus are critical for the integration of new memories into stable generalized representations in neocortex. However, the role of the thalamus in this process is poorly understood. To determine the thalamic contribution to non-REM oscillations (sharp-wave ripples, SWRs; slow/delta; spindles), we recorded units and local field potentials (LFPs) simultaneously in the limbic thalamus, mPFC, and CA1 in rats. We report that the cycles of neocortical spindles provide a key temporal window that coordinates CA1 SWRs with sparse but consistent activation of thalamic units. Thalamic units were phase-locked to delta and spindles in mPFC, and fired at consistent lags with other thalamic units within spindles, while CA1 units that were active during spatial exploration were engaged in SWR-coupled spindles after behavior. The sparse thalamic firing could promote an incremental integration of recently acquired memory traces into neocortical schemas through the interleaved activation of thalamocortical cells.
Collapse
Affiliation(s)
- Carmen Varela
- Massachusetts Institute of Technology, Cambridge, United States.,Florida Atlantic University, Boca Raton, United States
| | | |
Collapse
|