1
|
Karam M, Aqel S, Haider MZ, Fathima A, Charafedine A, Daher MA, Shaito A, El-Sabban M, Saliba J. Beyond the Injury: How Does Smoking Impair Stem Cell-Mediated Repair Mechanisms? A Dual Review of Smoking-Induced Stem Cell Damage and Stem Cell-Based Therapeutic Applications. Stem Cell Rev Rep 2025:10.1007/s12015-025-10886-9. [PMID: 40279029 DOI: 10.1007/s12015-025-10886-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
While the literature on molecular and clinical effects of smoking on the lungs and other organs has been expansively reviewed, there is no comprehensive compilation of the effects of smoking on stem cell (SC) populations. Recent research has shown that tobacco exposure severely compromises the function of SC populations, particularly those involved in tissue regeneration: mesenchymal SCs (MSCs), neural progenitors, and hematopoietic SCs. SC-based therapies have emerged as a promising approach to counteract smoking-related damage. In particular, MSCs have been extensively studied for their immunomodulatory properties, demonstrating the ability to repair damaged tissues, reduce inflammation, and slow disease progression in conditions such as chronic obstructive pulmonary disease. Combination therapies, which integrate pharmaceuticals with SC treatments, have shown potential in enhancing regenerative outcomes. This review examines the impact of smoking on SC biology, describes the processes impairing SC-mediated repair mechanisms and highlights recent advancements in SC-based therapies in the treatment of smoking-induced diseases. This review has two prongs: (1) it attempts to explain potential smoking-related disease etiology, and (2) it addresses a gap in the literature on SC-mediated repair mechanisms in chronic smokers.
Collapse
Affiliation(s)
- Mario Karam
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Translational Cancer Medicine, Faculty of Medicine, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Helsinki, Finland
| | - Sarah Aqel
- Medical Research Center, Hamad Medical Corporation, Doha, Qatar
| | - Mohammad Z Haider
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Aseela Fathima
- Biomedical Research Center and Department of Biomedical Sciences at College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Adib Charafedine
- College Of Pharmacy, American University of Iraq-Baghdad, Baghdad, Iraq
| | - Mira Abou Daher
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Public Health, Faculty of Health Sciences, University of Balamand, Sin El Fil, PO Box: 55251, Beirut, Lebanon
| | - Abdullah Shaito
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
- Biomedical Research Center and Department of Biomedical Sciences at College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Jessica Saliba
- Department of Public Health, Faculty of Health Sciences, University of Balamand, Sin El Fil, PO Box: 55251, Beirut, Lebanon.
- Department of Biology, Faculty of Science, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
2
|
López Dávila E, Houbraken M, De Rop J, Wumbei A, Du Laing G, Romero Romero O, Spanoghe P. Pesticides residues in tobacco smoke: risk assessment study. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:615. [PMID: 32876774 DOI: 10.1007/s10661-020-08578-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Pesticides are not only used on food but also on non-food crops, such as tobacco, to control a range of unwanted animal, plant, and microbial, fungal pests. The residue levels in tobacco leaves are expected to decline up to harvest, during drying, and when the leaves are further processed. Additional pesticides may also be applied to the finished product and residue levels may remain present even when the tobacco is burned. Human exposure to pesticide residues on tobacco occurs when residues remaining in cigarette smoke are inhaled. Based on this assumption, the objectives of this research were (i) to determine the level of pesticides residues in harvested tobacco leaves and (ii) to assess the risk of human exposure to these residues in tobacco smoke. Pesticide residues were detected in all analysed tobacco samples. These detected residues represent ten different active ingredients (AI), three of these AIs (thiodicarb, alachlor, and endosulfan) are no longer allowed in Europe. A 54.7% of these residues were quantifiable. Furthermore, it was found that with the use of solid-phase extraction sorbent (SPE) as adsorbent and n-hexane as solvent, higher recoveries of the pesticide residues in the tobacco smoke from the amount spiked can be obtained. It was also found that cigarette filters help to reduce the intake of residues of pesticides that may be present in cigarettes. Finally, the study concluded that both active smoking and passive smoking populations are exposed to pesticide residues in the tobacco smoke.
Collapse
Affiliation(s)
- Edelbis López Dávila
- Study Centre of Energy and Industrial Process, Sancti Spíritus University, Avenida de los Mártires #360, Sancti Spíritus, Cuba.
- Department of Crop and Plants, Laboratory of Crop Protection Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium.
| | - Michael Houbraken
- Department of Crop and Plants, Laboratory of Crop Protection Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium
| | - Jasmine De Rop
- Department of Crop and Plants, Laboratory of Crop Protection Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium
| | - Abukari Wumbei
- Department of Crop and Plants, Laboratory of Crop Protection Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium
| | - Gijs Du Laing
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium
| | - Osvaldo Romero Romero
- Study Centre of Energy and Industrial Process, Sancti Spíritus University, Avenida de los Mártires #360, Sancti Spíritus, Cuba
- School of Technology , SRH - Hochschule Berlin Ernts Reuter Platz 10, Berlin, Germany
| | - Pieter Spanoghe
- Department of Crop and Plants, Laboratory of Crop Protection Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium
| |
Collapse
|