1
|
Wang F, Zhang Y, Wang Z, Zhang H, Wu X, Bao C, Li J, Yu P, Zhou S. Ionic liquid gating induced self-intercalation of transition metal chalcogenides. Nat Commun 2023; 14:4945. [PMID: 37587106 PMCID: PMC10432556 DOI: 10.1038/s41467-023-40591-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
Ionic liquids provide versatile pathways for controlling the structures and properties of quantum materials. Previous studies have reported electrostatic gating of nanometer-thick flakes leading to emergent superconductivity, insertion or extraction of protons and oxygen ions in perovskite oxide films enabling the control of different phases and material properties, and intercalation of large-sized organic cations into layered crystals giving access to tailored superconductivity. Here, we report an ionic-liquid gating method to form three-dimensional transition metal monochalcogenides (TMMCs) by driving the metals dissolved from layered transition metal dichalcogenides (TMDCs) into the van der Waals gap. We demonstrate the successful self-intercalation of PdTe2 and NiTe2, turning them into high-quality PdTe and NiTe single crystals, respectively. Moreover, the monochalcogenides exhibit distinctive properties from dichalcogenides. For instance, the self-intercalation of PdTe2 leads to the emergence of superconductivity in PdTe. Our work provides a synthesis pathway for TMMCs by means of ionic liquid gating driven self-intercalation.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yang Zhang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Zhijie Wang
- Shenzhen Geim Graphene Center and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Haoxiong Zhang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Xi Wu
- Shenzhen Geim Graphene Center and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Changhua Bao
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jia Li
- Shenzhen Geim Graphene Center and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
| | - Pu Yu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, People's Republic of China.
- Frontier Science Center for Quantum Information, Beijing, 100084, People's Republic of China.
| | - Shuyun Zhou
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, People's Republic of China.
- Frontier Science Center for Quantum Information, Beijing, 100084, People's Republic of China.
| |
Collapse
|
2
|
Wang G, Hu T, Xiong Y, Liu X, Shen S, Wang J, Che M, Cui Z, Zhang Y, Yang L, Li Z, Lu Y, Tian M. Electric-field control of reversible electronic and magnetic transitions in two-dimensional oxide monolayer magnets. Sci Bull (Beijing) 2023; 68:1632-1639. [PMID: 37429776 DOI: 10.1016/j.scib.2023.06.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/27/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023]
Abstract
Atomically thin oxide magnetic materials are highly desirable due to the promising potential to integrate two-dimensional (2D) magnets into next-generation spintronics. Therefore, 2D oxide magnetism is expected to be effectively tuned by the magnetic and electrical fields, holding prospective for future low-dissipation electronic devices. However, the electric-field control of 2D oxide monolayer magnetism has rarely been reported. Here, we present the realization of 2D monolayer magnetism in oxide (SrRuO3)1/(SrTiO3)N (N = 1, 3) superlattices that shows an efficient and reversible phase transition through electric-field controlled proton (H+) evolution. By using ionic liquid gating to modulate the proton concentration in (SrRuO3)1/(SrTiO3)1 superlattice, an electric-field induced metal-insulator transition was observed, along with gradually suppressed magnetic ordering and modulated magnetic anisotropy. Theoretical analysis reveals that proton intercalation plays a crucial role in both electronic and magnetic phase transitions. Strikingly, SrTiO3 layers can act as a proton sieve, which have a significant influence on proton evolution. Our work stimulates the tuning functionality of 2D oxide monolayer magnetism by voltage control, providing potential for future energy-efficient electronics.
Collapse
Affiliation(s)
- Guopeng Wang
- School of Physics and Optoelectronics Engineering, Anhui University, Hefei 230601, China.
| | - Tao Hu
- School of Physics and Optoelectronics Engineering, Anhui University, Hefei 230601, China
| | - Yimin Xiong
- School of Physics and Optoelectronics Engineering, Anhui University, Hefei 230601, China; Hefei National Laboratory, Hefei 230028, China
| | - Xue Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Shengchun Shen
- Department of Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jianlin Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Mengqian Che
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Zhangzhang Cui
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China.
| | - Yingying Zhang
- State Key Laboratory for New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Luyi Yang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Zhengcao Li
- State Key Laboratory for New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yalin Lu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Mingliang Tian
- School of Physics and Optoelectronics Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
3
|
Guo Y, Qiu D, Shao M, Song J, Wang Y, Xu M, Yang C, Li P, Liu H, Xiong J. Modulations in Superconductors: Probes of Underlying Physics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209457. [PMID: 36504310 DOI: 10.1002/adma.202209457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Indexed: 06/02/2023]
Abstract
The importance of modulations is elevated to an unprecedented level, due to the delicate conditions required to bring out exotic phenomena in quantum materials, such as topological materials, magnetic materials, and superconductors. Recently, state-of-the-art modulation techniques in material science, such as electric-double-layer transistor, piezoelectric-based strain apparatus, angle twisting, and nanofabrication, have been utilized in superconductors. They not only efficiently increase the tuning capability to the broader ranges but also extend the tuning dimensionality to unprecedented degrees of freedom, including quantum fluctuations of competing phases, electronic correlation, and phase coherence essential to global superconductivity. Here, for a comprehensive review, these techniques together with the established modulation methods, such as elemental substitution, annealing, and polarization-induced gating, are contextualized. Depending on the mechanism of each method, the modulations are categorized into stoichiometric manipulation, electrostatic gating, mechanical modulation, and geometrical design. Their recent advances are highlighted by applications in newly discovered superconductors, e.g., nickelates, Kagome metals, and magic-angle graphene. Overall, the review is to provide systematic modulations in emergent superconductors and serve as the coordinate for future investigations, which can stimulate researchers in superconductivity and other fields to perform various modulations toward a thorough understanding of quantum materials.
Collapse
Affiliation(s)
- Yehao Guo
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Dong Qiu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Mingxin Shao
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jingyan Song
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yang Wang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Minyi Xu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Chao Yang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Peng Li
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Haiwen Liu
- Department of Physics, Beijing Normal University, Beijing, 100875, China
| | - Jie Xiong
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
4
|
Hao L, Yi D, Wang M, Liu J, Yu P. Emergent quantum phenomena in atomically engineered iridate heterostructures. FUNDAMENTAL RESEARCH 2023; 3:313-321. [PMID: 38933764 PMCID: PMC11197666 DOI: 10.1016/j.fmre.2022.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022] Open
Abstract
Over the last few years, researches in iridates have developed into an exciting field with the discovery of numerous emergent phenomena, interesting physics, and intriguing functionalities. Among the studies, iridate-based artificial structures play a crucial role owing to their extreme flexibility and tunability in lattice symmetry, chemical composition, and crystal dimensionality. In this article, we present an overview of the recent progress regarding iridate-based artificial structures. We first explicitly introduce several essential concepts in iridates. Then, we illustrate important findings on representative SrIrO3/SrTiO3 superlattices, heterostructures comprised of SrIrO3 and magnetic oxides, and their response to external electric-field stimuli. Finally, we comment on existing problems and promising future directions in this exciting field.
Collapse
Affiliation(s)
- Lin Hao
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Di Yi
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Meng Wang
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | - Jian Liu
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Pu Yu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
| |
Collapse
|
5
|
Guo W, Li M, Wu X, Liu Y, Ou T, Xiao C, Qiu Z, Zheng Y, Wang Y. Nonvolatile n-Type Doping and Metallic State in Multilayer-MoS 2 Induced by Hydrogenation Using Ionic-Liquid Gating. NANO LETTERS 2022; 22:8957-8965. [PMID: 36342413 DOI: 10.1021/acs.nanolett.2c03159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Manipulation of the carrier density of layered transition-metal dichalcogenides (TMDs) is of fundamental significance for a wide range of electronic and optoelectronic applications. Herein, we applied the ionic-liquid-gating (ILG) method to inject the smallest ions, H+, into layered MoS2 to manipulate its carrier concentration. The measurements demonstrate that the injection of H+ realizes a nonvolatile n-type doping and metallic state in multilayer-MoS2 with a concentration of injection electron of ∼1.08 × 1013 cm-2 but has no effect on monolayer-MoS2, which clearly reveals that the H+ is injected into the interlayer of MoS2, not in the crystal lattice. The H+-injected multilayer-MoS2 was then used as the contact electrodes of a monolayer-MoS2 field effect transistor to improve the contact quality, and its performance has been enhanced. Our work deepens the understanding of the ILG technology and extends its application in TMDs.
Collapse
Affiliation(s)
- Wenxuan Guo
- Department of Physics, Zhejiang Province Key Laboratory of Quantum Technology and Device & State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou310027, People's Republic of China
| | - Mengge Li
- Department of Physics, Zhejiang Province Key Laboratory of Quantum Technology and Device & State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou310027, People's Republic of China
| | - Xiaoxiang Wu
- Department of Physics, Zhejiang Province Key Laboratory of Quantum Technology and Device & State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou310027, People's Republic of China
| | - Yali Liu
- Department of Physics, Zhejiang Province Key Laboratory of Quantum Technology and Device & State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou310027, People's Republic of China
| | - Tianjian Ou
- Department of Physics, Zhejiang Province Key Laboratory of Quantum Technology and Device & State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou310027, People's Republic of China
| | - Cong Xiao
- Department of Physics, Zhejiang Province Key Laboratory of Quantum Technology and Device & State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou310027, People's Republic of China
| | - Zhanjie Qiu
- Department of Physics, Zhejiang Province Key Laboratory of Quantum Technology and Device & State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou310027, People's Republic of China
| | - Yuan Zheng
- Department of Physics, Zhejiang Province Key Laboratory of Quantum Technology and Device & State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou310027, People's Republic of China
| | - Yewu Wang
- Department of Physics, Zhejiang Province Key Laboratory of Quantum Technology and Device & State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou310027, People's Republic of China
- Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing210093, People's Republic of China
| |
Collapse
|
6
|
Liu Z, Han T, Liu M, Huang S, Zhang Z, Long M, Hou X, Shan L. Protonation enhanced superconductivity in PdTe 2. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:335603. [PMID: 35679850 DOI: 10.1088/1361-648x/ac7767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Electrochemical ionic liquid gating is an effective way to intercalate ions into layered materials and modulate the properties. Here we report an enhanced superconductivity in a topological superconductor candidate PdTe2through electrochemical gating procedure. The superconducting transition temperature was increased to approximately 3.2 K by ionic gating induced protonation at room temperature. Moreover, a further enhanced superconductivity of both superconducting transition temperature and superconducting volume fraction was observed after the gated samples were placed in a glove box for 2 months. This may be caused by the diffusion of protons in the gated single crystals, which is rarely reported in electrochemical ionic liquid gating experiments. Our results further the superconducting study of PdTe2and may reveal a common phenomenon in the electrochemical gating procedure.
Collapse
Affiliation(s)
- Zhen Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, People's Republic of China
| | - Tao Han
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, People's Republic of China
| | - Mengqin Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, People's Republic of China
| | - Shuting Huang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, People's Republic of China
| | - Zongyuan Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, People's Republic of China
| | - Mingsheng Long
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, People's Republic of China
| | - Xingyuan Hou
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, People's Republic of China
| | - Lei Shan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, People's Republic of China
| |
Collapse
|
7
|
Li HB, Kobayashi S, Zhong C, Namba M, Cao Y, Kato D, Kotani Y, Lin Q, Wu M, Wang WH, Kobayashi M, Fujita K, Tassel C, Terashima T, Kuwabara A, Kobayashi Y, Takatsu H, Kageyama H. Dehydration of Electrochemically Protonated Oxide: SrCoO 2 with Square Spin Tubes. J Am Chem Soc 2021; 143:17517-17525. [PMID: 34647722 DOI: 10.1021/jacs.1c07043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Controlling oxygen deficiencies is essential for the development of novel chemical and physical properties such as high-Tc superconductivity and low-dimensional magnetic phenomena. Among reduction methods, topochemical reactions using metal hydrides (e.g., CaH2) are known as the most powerful method to obtain highly reduced oxides including Nd0.8Sr0.2NiO2 superconductor, though there are some limitations such as competition with oxyhydrides. Here we demonstrate that electrochemical protonation combined with thermal dehydration can yield highly reduced oxides: SrCoO2.5 thin films are converted to SrCoO2 by dehydration of HSrCoO2.5 at 350 °C. SrCoO2 forms square (or four-legged) spin tubes composed of tetrahedra, in contrast to the conventional infinite-layer structure. Detailed analyses suggest the importance of the destabilization of the SrCoO2.5 precursor by electrochemical protonation that can greatly alter reaction energy landscape and its gradual dehydration (H1-xSrCoO2.5-x/2) for the SrCoO2 formation. Given the applicability of electrochemical protonation to a variety of transition metal oxides, this simple process widens possibilities to explore novel functional oxides.
Collapse
Affiliation(s)
- Hao-Bo Li
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Shunsuke Kobayashi
- Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587, Japan
| | - Chengchao Zhong
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Morito Namba
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yu Cao
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Daichi Kato
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yoshinori Kotani
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Hyogo 679-5198, Japan
| | - Qianmei Lin
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Maokun Wu
- Department of Electronic Science and Engineering and Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Nankai University, Tianjin 300071, China
| | - Wei-Hua Wang
- Department of Electronic Science and Engineering and Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Nankai University, Tianjin 300071, China
| | - Masaki Kobayashi
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Koji Fujita
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Cédric Tassel
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Takahito Terashima
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Akihide Kuwabara
- Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587, Japan
| | - Yoji Kobayashi
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hiroshi Takatsu
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hiroshi Kageyama
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
8
|
Hu G, Shi M, Wang W, Zhu C, Sun Z, Cui J, Zhuo W, Yu F, Luo X, Chen X. Superconductivity at 40 K in Lithiation-Processed [(Fe,Al)(OH) 2][FeSe] 1.2 with a Layered Structure. Inorg Chem 2021; 60:3902-3908. [PMID: 33481576 DOI: 10.1021/acs.inorgchem.0c03686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Exploration of new superconductors has always been one of the research directions in condensed matter physics. We report here a new layered heterostructure of [(Fe,Al)(OH)2][FeSe]1.2, which is synthesized by the hydrothermal ion-exchange technique. The structure is suggested by a combination of X-ray powder diffraction and the electron diffraction (ED). [(Fe,Al)(OH)2][FeSe]1.2 is composed of the alternating stacking of a tetragonal FeSe layer and a hexagonal (Fe,Al)(OH)2 layer. In [(Fe,Al)(OH)2][FeSe]1.2, there exists a mismatch between the FeSe sublayer and the (Fe,Al)(OH)2 sublayer, and the lattice of the layered heterostructure is quasi-commensurate. The as-synthesized [(Fe,Al)(OH)2][FeSe]1.2 is nonsuperconducting due to the Fe vacancies in the FeSe layer. The superconductivity with a Tc of 40 K can be achieved after a lithiation process, which is due to the elimination of the Fe vacancies in the FeSe layer. The Tc is nearly the same as that of (Li,Fe)OHFeSe although the structure of [(Fe,Al)(OH)2][FeSe]1.2 is quite different from that of (Li,Fe)OHFeSe. The new layered heterostructure of [(Fe,Al)(OH)2][FeSe]1.2 contains an iron selenium tetragonal lattice interleaved with a hexagonal metal hydroxide lattice. These results indicate that the superconductivity is very robust for FeSe-based superconductors. It opens a path for exploring superconductivity in iron-base superconductors.
Collapse
Affiliation(s)
- Guobing Hu
- Key Laboratory of Strongly coupled Quantum Matter Physics, Chinese Academy of Sciences, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,Physical Science and Technology College, Yichun University, Yichun 336000, P. R. China
| | - Mengzhu Shi
- Key Laboratory of Strongly coupled Quantum Matter Physics, Chinese Academy of Sciences, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wenxiang Wang
- Key Laboratory of Strongly coupled Quantum Matter Physics, Chinese Academy of Sciences, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Changsheng Zhu
- Key Laboratory of Strongly coupled Quantum Matter Physics, Chinese Academy of Sciences, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zeliang Sun
- Key Laboratory of Strongly coupled Quantum Matter Physics, Chinese Academy of Sciences, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jianhua Cui
- Key Laboratory of Strongly coupled Quantum Matter Physics, Chinese Academy of Sciences, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Weizhuang Zhuo
- Key Laboratory of Strongly coupled Quantum Matter Physics, Chinese Academy of Sciences, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Fanghang Yu
- Key Laboratory of Strongly coupled Quantum Matter Physics, Chinese Academy of Sciences, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xigang Luo
- Key Laboratory of Strongly coupled Quantum Matter Physics, Chinese Academy of Sciences, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xianhui Chen
- Key Laboratory of Strongly coupled Quantum Matter Physics, Chinese Academy of Sciences, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.,CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050, P. R. China.,CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
9
|
A selective control of volatile and non-volatile superconductivity in an insulating copper oxide via ionic liquid gating. Sci Bull (Beijing) 2020; 65:1607-1613. [PMID: 36659036 DOI: 10.1016/j.scib.2020.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/24/2020] [Accepted: 05/14/2020] [Indexed: 01/21/2023]
Abstract
Manipulating the superconducting states of high transition temperature (high-Tc) cuprate superconductors in an efficient and reliable way is of great importance for their applications in next-generation electronics. Here, employing ionic liquid gating, a selective control of volatile and non-volatile superconductivity is achieved in pristine insulating Pr2CuO4±δ (PCO) films, based on two distinct mechanisms. Firstly, with positive electric fields, the film can be reversibly switched between superconducting and non-superconducting states, attributed to the carrier doping effect. Secondly, the film becomes more resistive by applying negative bias voltage up to - 4 V, but strikingly, a non-volatile superconductivity is achieved once the gate voltage is removed. Such phenomenon represents a distinctive route of manipulating superconductivity in PCO, resulting from the doping healing of oxygen vacancies in copper-oxygen planes as unravelled by high-resolution scanning transmission electron microscope and in situ X-ray diffraction experiments. The effective manipulation of volatile/non-volatile superconductivity in the same parent cuprate brings more functionalities to superconducting electronics, as well as supplies flexible samples for investigating the nature of quantum phase transitions in high-Tc superconductors.
Collapse
|
10
|
Zhang H, Rousuli A, Shen S, Zhang K, Wang C, Luo L, Wang J, Wu Y, Xu Y, Duan W, Yao H, Yu P, Zhou S. Enhancement of superconductivity in organic-inorganic hybrid topological materials. Sci Bull (Beijing) 2020; 65:188-193. [PMID: 36659171 DOI: 10.1016/j.scib.2019.11.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/01/2019] [Accepted: 11/11/2019] [Indexed: 01/21/2023]
Abstract
Inducing or enhancing superconductivity in topological materials is an important route toward topological superconductivity. Reducing the thickness of transition metal dichalcogenides (e.g. WTe2 and MoTe2) has provided an important pathway to engineer superconductivity in topological matters. However, such monolayer sample is difficult to obtain, unstable in air, and with extremely low Tc. Here we report an experimentally convenient approach to control the interlayer coupling to achieve tailored topological properties, enhanced superconductivity and good sample stability through organic-cation intercalation of the Weyl semimetals MoTe2 and WTe2. The as-formed organic-inorganic hybrid crystals are weak topological insulators with enhanced Tc of 7.0 K for intercalated MoTe2 (0.25 K for pristine crystal) and 2.3 K for intercalated WTe2 (2.8 times compared to monolayer WTe2). Such organic-cation intercalation method can be readily applied to many other layered crystals, providing a new pathway for manipulating their electronic, topological and superconducting properties.
Collapse
Affiliation(s)
- Haoxiong Zhang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Awabaikeli Rousuli
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Shengchun Shen
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Kenan Zhang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Chong Wang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China; Institute for Advanced Study, Tsinghua University, Beijing 100084, China
| | - Laipeng Luo
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Jizhang Wang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Yang Wu
- Department of Mechanical Engineering and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China
| | - Yong Xu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Wenhui Duan
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China; Frontier Science Center for Quantum Information, Beijing 100084, China
| | - Hong Yao
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China; Frontier Science Center for Quantum Information, Beijing 100084, China; Institute for Advanced Study, Tsinghua University, Beijing 100084, China
| | - Pu Yu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China; Frontier Science Center for Quantum Information, Beijing 100084, China.
| | - Shuyun Zhou
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China; Frontier Science Center for Quantum Information, Beijing 100084, China
| |
Collapse
|
11
|
Li Z, Shen S, Tian Z, Hwangbo K, Wang M, Wang Y, Bartram FM, He L, Lyu Y, Dong Y, Wan G, Li H, Lu N, Zang J, Zhou H, Arenholz E, He Q, Yang L, Luo W, Yu P. Reversible manipulation of the magnetic state in SrRuO 3 through electric-field controlled proton evolution. Nat Commun 2020; 11:184. [PMID: 31924767 PMCID: PMC6954193 DOI: 10.1038/s41467-019-13999-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 11/29/2019] [Indexed: 11/09/2022] Open
Abstract
Ionic substitution forms an essential pathway to manipulate the structural phase, carrier density and crystalline symmetry of materials via ion-electron-lattice coupling, leading to a rich spectrum of electronic states in strongly correlated systems. Using the ferromagnetic metal SrRuO3 as a model system, we demonstrate an efficient and reversible control of both structural and electronic phase transformations through the electric-field controlled proton evolution with ionic liquid gating. The insertion of protons results in a large structural expansion and increased carrier density, leading to an exotic ferromagnetic to paramagnetic phase transition. Importantly, we reveal a novel protonated compound of HSrRuO3 with paramagnetic metallic as ground state. We observe a topological Hall effect at the boundary of the phase transition due to the proton concentration gradient across the film-depth. We envision that electric-field controlled protonation opens up a pathway to explore novel electronic states and material functionalities in protonated material systems.
Collapse
Affiliation(s)
- Zhuolu Li
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, 100084, Beijing, China
| | - Shengchun Shen
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, 100084, Beijing, China
| | - Zijun Tian
- Key Laboratory of Artificial Structures and Quantum Control, School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Kyle Hwangbo
- Department of Physics, University of Toronto, Toronto, ON, M5S 1A7, Canada
| | - Meng Wang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, 100084, Beijing, China
| | - Yujia Wang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, 100084, Beijing, China
| | - F Michael Bartram
- Department of Physics, University of Toronto, Toronto, ON, M5S 1A7, Canada
| | - Liqun He
- Department of Physics, University of Toronto, Toronto, ON, M5S 1A7, Canada
| | - Yingjie Lyu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, 100084, Beijing, China
| | - Yongqi Dong
- Advanced Photon Source, Argonne National Lab, Argonne, IL, 60439, USA
- Materials Science Division, Argonne National Lab, Argonne, IL, 60439, USA
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Gang Wan
- Materials Science Division, Argonne National Lab, Argonne, IL, 60439, USA
| | - Haobo Li
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, 100084, Beijing, China
| | - Nianpeng Lu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, 100084, Beijing, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, 100190, Beijing, China
| | - Jiadong Zang
- Department of Physics and Astronomy, University of New Hampshire, Durham, NH, 03824, USA
| | - Hua Zhou
- Advanced Photon Source, Argonne National Lab, Argonne, IL, 60439, USA
| | - Elke Arenholz
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Qing He
- Department of Physics, Durham University, Durham, DH13LE, United Kingdom
| | - Luyi Yang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, 100084, Beijing, China.
- Department of Physics, University of Toronto, Toronto, ON, M5S 1A7, Canada.
- Frontier Science Center for Quantum Information, 100084, Beijing, China.
| | - Weidong Luo
- Key Laboratory of Artificial Structures and Quantum Control, School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, 200240, Shanghai, China.
- Collaborative Innovation Center of Advanced Microstructures, 210093, Nanjing, China.
| | - Pu Yu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, 100084, Beijing, China.
- Frontier Science Center for Quantum Information, 100084, Beijing, China.
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-198, Japan.
| |
Collapse
|
12
|
Li H, Lou F, Wang Y, Zhang Y, Zhang Q, Wu D, Li Z, Wang M, Huang T, Lyu Y, Guo J, Chen T, Wu Y, Arenholz E, Lu N, Wang N, He Q, Gu L, Zhu J, Nan C, Zhong X, Xiang H, Yu P. Electric Field-Controlled Multistep Proton Evolution in H x SrCoO 2.5 with Formation of H-H Dimer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901432. [PMID: 31637170 PMCID: PMC6794722 DOI: 10.1002/advs.201901432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/16/2019] [Indexed: 05/30/2023]
Abstract
Ionic evolution-induced phase transformation can lead to wide ranges of novel material functionalities with promising applications. Here, using the gating voltage during ionic liquid gating as a tuning knob, the brownmillerite SrCoO2.5 is transformed into a series of protonated H x SrCoO2.5 phases with distinct hydrogen contents. The unexpected electron to charge-neutral doping crossover along with the increase of proton concentration from x = 1 to 2 suggests the formation of exotic charge neutral H-H dimers for higher proton concentration, which is directly visualized at the vacant tetrahedron by scanning transmission electron microscopy and then further supported by first principles calculations. Although the H-H dimers cause no change of the valency of Co2+ ions, they result in clear enhancement of electronic bandgap and suppression of magnetization through lattice expansion. These results not only reveal a hydrogen chemical state beyond anion and cation within the complex oxides, but also suggest an effective pathway to design functional materials through tunable ionic evolution.
Collapse
Affiliation(s)
- Hao‐Bo Li
- State Key Laboratory of Low Dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijing100084China
| | - Feng Lou
- Key Laboratory of Computational Physical Sciences (Ministry of Education)State Key Laboratory of Surface Physics, and Department of PhysicsFudan UniversityShanghai200433China
| | - Yujia Wang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijing100084China
| | - Yang Zhang
- National Center for Electron Microscopy in BeijingKey Laboratory of Advanced Materials (MOE)Beijing100084China
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Collaborative Innovation Center of Quantum MatterBeijing100084China
| | - Dong Wu
- Collaborative Innovation Center of Quantum MatterBeijing100084China
- International Center for Quantum MaterialsSchool of PhysicsPeking UniversityBeijing100871China
| | - Zhuolu Li
- State Key Laboratory of Low Dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijing100084China
| | - Meng Wang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijing100084China
- Collaborative Innovation Center of Quantum MatterBeijing100084China
| | - Tongtong Huang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijing100084China
| | - Yingjie Lyu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijing100084China
| | - Jingwen Guo
- State Key Laboratory of Low Dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijing100084China
| | - Tianzhe Chen
- State Key Laboratory of Low Dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijing100084China
| | - Yang Wu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijing100084China
- Department of Mechanical EngineeringTsinghua UniversityBeijing100084China
| | - Elke Arenholz
- Advanced Light SourceLawrence Berkeley National LaboratoryBerkeley94720CAUSA
| | - Nianpeng Lu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijing100084China
| | - Nanlin Wang
- International Center for Quantum MaterialsSchool of PhysicsPeking UniversityBeijing100871China
| | - Qing He
- Department of PhysicsDurham UniversityDurhamDH13LEUK
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Collaborative Innovation Center of Quantum MatterBeijing100084China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jing Zhu
- National Center for Electron Microscopy in BeijingKey Laboratory of Advanced Materials (MOE)Beijing100084China
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| | - Ce‐Wen Nan
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| | - Xiaoyan Zhong
- National Center for Electron Microscopy in BeijingKey Laboratory of Advanced Materials (MOE)Beijing100084China
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| | - Hongjun Xiang
- Key Laboratory of Computational Physical Sciences (Ministry of Education)State Key Laboratory of Surface Physics, and Department of PhysicsFudan UniversityShanghai200433China
- Collaborative Innovation Center of Advanced MicrostructuresNanjing210093China
| | - Pu Yu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijing100084China
- Collaborative Innovation Center of Quantum MatterBeijing100084China
- RIKEN Center for Emergent Matter Science (CEMS)Saitama351‐0198Japan
| |
Collapse
|
13
|
Wang M, Sui X, Wang Y, Juan YH, Lyu Y, Peng H, Huang T, Shen S, Guo C, Zhang J, Li Z, Li HB, Lu N, N'Diaye AT, Arenholz E, Zhou S, He Q, Chu YH, Duan W, Yu P. Manipulate the Electronic and Magnetic States in NiCo 2 O 4 Films through Electric-Field-Induced Protonation at Elevated Temperature. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900458. [PMID: 30811706 DOI: 10.1002/adma.201900458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Indexed: 05/25/2023]
Abstract
Ionic-liquid-gating- (ILG-) induced proton evolution has emerged as a novel strategy to realize electron doping and manipulate the electronic and magnetic ground states in complex oxides. While the study of a wide range of systems (e.g., SrCoO2.5 , VO2 , WO3 , etc.) has demonstrated important opportunities to incorporate protons through ILG, protonation remains a big challenge for many others. Furthermore, the mechanism of proton intercalation from the ionic liquid/solid interface to whole film has not yet been revealed. Here, with a model system of inverse spinel NiCo2 O4 , an increase in system temperature during ILG forms a single but effective method to efficiently achieve protonation. Moreover, the ILG induces a novel phase transformation in NiCo2 O4 from ferrimagnetic metallic into antiferromagnetic insulating with protonation at elevated temperatures. This study shows that environmental temperature is an efficient tuning knob to manipulate ILG-induced ionic evolution.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Xuelei Sui
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Yujia Wang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Yung-Hsiang Juan
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Yingjie Lyu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Huining Peng
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Tongtong Huang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Shengchun Shen
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Chenguang Guo
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Jianbing Zhang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Zhuolu Li
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Hao-Bo Li
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Nianpeng Lu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Alpha T N'Diaye
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Elke Arenholz
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Shuyun Zhou
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Qing He
- Department of Physics, Durham University, Durham, DH13LE, UK
| | - Ying-Hao Chu
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Wenhui Duan
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100084, China
| | - Pu Yu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100084, China
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-198, Japan
| |
Collapse
|
14
|
Zhao S, Zhou Z, Li C, Peng B, Hu Z, Liu M. Low-Voltage Control of (Co/Pt) x Perpendicular Magnetic Anisotropy Heterostructure for Flexible Spintronics. ACS NANO 2018; 12:7167-7173. [PMID: 29870657 DOI: 10.1021/acsnano.8b03097] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The trend of mobile Internet requires portable and wearable devices as bio-device interfaces. Electric field control of magnetism is a promising approach to achieve compact, light-weight, and energy-efficient wearable devices. Within a flexible sandwich heterostructure, perpendicular magnetic anisotropy switching was achieved via low-voltage gating control of an ionic gel in mica/Ta/(Pt/Co) x/Pt/ionic gel/Pt, where (Pt/Co) x acted as a functional layer. By conducting in situ VSM, EPR, and MOKE measurements, a 1098 Oe magnetic anisotropy field change was determined at the bending state with tensile strain, corresponding to a magnetic anisotropy energy change of 3.16 × 105 J/m3 and a giant voltage tunability coefficient of 0.79 × 105 J/m3·V. The low voltage and strain dual control of magnetism on mica substrates enables tunable flexible spintronic devices with an increased degree of manipulation.
Collapse
Affiliation(s)
- Shishun Zhao
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Ziyao Zhou
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Chunlei Li
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Bin Peng
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Zhongqiang Hu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Ming Liu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering , Xi'an Jiaotong University , Xi'an 710049 , China
| |
Collapse
|
15
|
Huang Y, Sutter E, Wu LM, Xu H, Bao L, Gao HJ, Zhou XJ, Sutter P. Thick Layered Semiconductor Devices with Water Top-Gates: High On-Off Ratio Field-Effect Transistors and Aqueous Sensors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:23198-23207. [PMID: 29926723 DOI: 10.1021/acsami.8b05932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Layered semiconductors show promise as channel materials for field-effect transistors (FETs). Usually, such devices incorporate solid back or top gate dielectrics. Here, we explore deionized (DI) water as a solution top-gate for field-effect switching of layered semiconductors including SnS2, MoS2, and black phosphorus. The DI water gate is easily fabricated, can sustain rapid bias changes, and its efficient coupling to layered materials provides high on-off current ratios, near-ideal subthreshold swing, and enhanced short-channel behavior even for FETs with thick, bulk-like channels, where such control is difficult to realize with conventional back gating. Screening by the high-k solution gate eliminates hysteresis due to surface and interface trap states and substantially enhances the field-effect mobility. The onset of water electrolysis sets the ultimate limit to DI water gating at large negative gate bias. Measurements in this regime show promise for aqueous sensing, demonstrated here by the amperometric detection of glucose in aqueous solution. DI water gating of layered semiconductors can be harnessed in research on novel materials and devices, and it may with further development find broad applications in microelectronics and sensing.
Collapse
Affiliation(s)
- Yuan Huang
- Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
| | | | - Liang Mei Wu
- Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
| | - Hong Xu
- Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
| | - LiHong Bao
- Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
| | - Hong-Jun Gao
- Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
| | - Xing-Jiang Zhou
- Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
| | | |
Collapse
|
16
|
Affiliation(s)
- Hideo Hosono
- Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama 226-8503, Japan.
| |
Collapse
|