1
|
He C, He J, Cui S, Fan X, Li S, Yang Y, Tan X, Zhang X, Mao J, Zhang L, Deng C. Novel Effective Photocatalytic Self-Cleaning Coatings: TiO 2-Polyfluoroalkoxy Coatings Prepared by Suspension Plasma Spraying. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3123. [PMID: 38133021 PMCID: PMC10745750 DOI: 10.3390/nano13243123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Photocatalytic coatings can degrade volatile organic compounds into non-toxic products, which has drawn the attention of scholars around the world. However, the pollution of dust on the coating adversely affects the photocatalytic efficiency and service life of the coating. Here, a series of TiO2-polyfluoroalkoxy (PFA) coatings with different contents of PFA were fabricated by suspension plasma spraying technology. The results demonstrate that the hybrid coatings contain a large number of circular and ellipsoidal nanoparticles and a porous micron-nano structure due to the inclusion of PFA. According to the optimized thermal spraying process parameters, TiO2 nanoparticles were partially melted to retain most of the anatase phases, whereas PFA did not undergo significant carbonization. As compared to the TiO2 coating, the static contact angle of the composite coating doped with 25 wt.% PFA increased from 28.2° to 134.1°. In addition, PFA strongly adsorbs methylene blue, resulting in a greater involvement of methylene blue molecules in the catalyst, where the catalytic rate of hybrid coatings is up to 95%. The presented nanocomposite coatings possess excellent photocatalytic and self-cleaning properties and are expected to find wider practical applications in the field of photocatalysis.
Collapse
Affiliation(s)
- Chunyan He
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- The Key Lab of Guangdong for Modern Surface Engineering Technology, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangdong Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510651, China
| | - Jialin He
- The Key Lab of Guangdong for Modern Surface Engineering Technology, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangdong Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510651, China
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Sainan Cui
- The Key Lab of Guangdong for Modern Surface Engineering Technology, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangdong Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510651, China
- Qingdao Haier Refrigerator Co., Ltd., Qingdao 266510, China
| | - Xiujuan Fan
- The Key Lab of Guangdong for Modern Surface Engineering Technology, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangdong Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510651, China
| | - Shuanjian Li
- The Key Lab of Guangdong for Modern Surface Engineering Technology, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangdong Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510651, China
| | - Yaqi Yang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- The Key Lab of Guangdong for Modern Surface Engineering Technology, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangdong Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510651, China
| | - Xi Tan
- The Key Lab of Guangdong for Modern Surface Engineering Technology, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangdong Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510651, China
| | - Xiaofeng Zhang
- The Key Lab of Guangdong for Modern Surface Engineering Technology, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangdong Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510651, China
| | - Jie Mao
- The Key Lab of Guangdong for Modern Surface Engineering Technology, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangdong Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510651, China
| | - Liuyan Zhang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Changguang Deng
- The Key Lab of Guangdong for Modern Surface Engineering Technology, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangdong Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510651, China
| |
Collapse
|
2
|
Meng M, Yang L, Yang J, Zhu Y, Li C, Xia H, Yuan H, Zhang M, Zhao Y, Tian F, Li J, Liu K, Wang L, Gan Z. Two-dimensional lateral anatase-rutile TiO 2 phase junctions with oxygen vacancies for robust photoelectrochemical water splitting. J Colloid Interface Sci 2023; 648:56-65. [PMID: 37295370 DOI: 10.1016/j.jcis.2023.05.193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Exploiting the photoelectrode materials with broad solar light response, high-efficient separation of photogenerated charges and abundant active sites is extremely vital yet enormously challenging. Herein, an innovative two-dimensional (2D) lateral anatase-rutile TiO2 phase junctions with controllable oxygen vacancies perpendicularly aligned on Ti mesh is presented. Our experimental observations and theoretical calculations corroborate explicitly that the 2D lateral phase junctions together with three-dimensional arrays not only exhibit the high-efficient photogenerated charges separation guaranteed by the build-in electric field at the side-to-side interface, but also furnish enriching active sites. Moreover, the interfacial oxygen vacancies generate new defect energy levels and serve as electron donors, hence extending visible light response and further accelerating the separation and transfer of photogenerated charges. Profiting from these merits, the optimized photoelectrode yield a pronounced photocurrent density of 1.2 mA/cm2 at 1.23 V vs. RHE with Faradic efficiency of 100%, which is approximately 2.4 times larger than that of pristine 2D TiO2 nanosheets. Furthermore, the incident photon to current conversion efficiency (IPCE) of the optimized photoelectrode is also boosted within both ultraviolet and visible light regions. This research is envisioned deliver the new insight in developing the novel 2D lateral phase junctions for PEC applications.
Collapse
Affiliation(s)
- Ming Meng
- School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466001, PR China.
| | - Lun Yang
- Institute for Advanced Materials, School of Physics and Electronic Science, Hubei Normal University, Huangshi 435002, PR China
| | - Jing Yang
- School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466001, PR China
| | - Yu Zhu
- School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466001, PR China
| | - Chunyang Li
- Henan Key Laboratory of Rare Earth Functional Materials, Zhoukou Normal University, Zhoukou 466001, PR China
| | - Hongjun Xia
- Henan Key Laboratory of Rare Earth Functional Materials, Zhoukou Normal University, Zhoukou 466001, PR China
| | - Honglei Yuan
- School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466001, PR China
| | - Meng Zhang
- Institute for Advanced Materials, School of Physics and Electronic Science, Hubei Normal University, Huangshi 435002, PR China
| | - You Zhao
- Institute for Advanced Materials, School of Physics and Electronic Science, Hubei Normal University, Huangshi 435002, PR China
| | - Fengshou Tian
- Henan Key Laboratory of Rare Earth Functional Materials, Zhoukou Normal University, Zhoukou 466001, PR China
| | - Jitao Li
- School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466001, PR China
| | - Kuili Liu
- School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466001, PR China
| | - Lei Wang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| | - Zhixing Gan
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
3
|
Wang Y, Liu J, Xu J, Hao X. Effect of acid treatment on boosting the photoelectrochemical performance of doped and codoped α-Fe 2O 3 photoanodes. RSC Adv 2023; 13:16765-16772. [PMID: 37284185 PMCID: PMC10240174 DOI: 10.1039/d3ra01576a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/21/2023] [Indexed: 06/08/2023] Open
Abstract
Acid treatment of Ti-doped α-Fe2O3 photoanode can reduce the onset potential and promote the photocurrent density for photoelectrochemical (PEC) water splitting reaction. However, the inner mechanism of how this occurs has not yet been clarified. This report compares the effect of HCl hydrothermal treatment on α-Fe2O3 photoanodes doped with Ge, Pt, Ti, and Sn or codoped with TiGe, TiPt, and TiSn. The findings show that the promotion effect of HCl hydrothermal treatment was far less significant on the Ge-, Pt-, and Sn-doped α-Fe2O3 than on the Ti-doped one. In contrast, the codoped photoanodes could realize a lift in the photocurrent of up to 39% at 1.23 VRHE (versus the reversible hydrogen electrode) and a reduction in the potential onset by ∼60 mV after HCl hydrothermal treatment. Anatase TiO2 was detected by Raman spectroscopy on the Ti-doped α-Fe2O3 with adequate treatment in HCl solution. Thus, the performance promotion by acid treatment was ascribed to the surface-concentrated Ti-O bonds acting as a passivation layer that could increase the charge-capture capacity and reduce the charge-transfer resistance, as demonstrated by the potential-modulated electrochemical impedance spectroscopy results. HCl treatment of the in situ-doped α-Fe2O3 and an excessive treatment time for the ex situ-doped α-Fe2O3 caused an inhibition in the PEC performance, which could be attributed to the adverse effect of lattice defects induced by acid corrosion. The application scope of HCl treatment on the doped α-Fe2O3 was determined by revealing its working mechanism.
Collapse
Affiliation(s)
- Yujie Wang
- School of Materials and Chemical Engineering, Chuzhou University Chuzhou Anhui 239000 China
| | - Jinlong Liu
- School of Materials and Chemical Engineering, Chuzhou University Chuzhou Anhui 239000 China
| | - Jie Xu
- School of Materials and Chemical Engineering, Chuzhou University Chuzhou Anhui 239000 China
| | - Xiaobin Hao
- School of Materials and Chemical Engineering, Chuzhou University Chuzhou Anhui 239000 China
| |
Collapse
|
4
|
Design of Ti-Pt Co-doped α-Fe 2O 3 photoanodes for enhanced performance of photoelectrochemical water splitting. J Colloid Interface Sci 2023; 641:91-104. [PMID: 36924549 DOI: 10.1016/j.jcis.2023.03.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
This study demonstrates Ti and Pt co-doping can synergistically improve the PEC performance of the α-Fe2O3 photoanode. By varying the doping methods, the sample with in-situ Ti ex-situ Pt doping (Tii-Pte) exhibits the best performance. It demonstrates that Ti doping in bulk facilities charge separation and Pt doping on the surface further accelerates charge transfer. In contrast, Ti doping on the surface inhibits charge separation, and Pt doping in bulk hinders charge separation and transfer. HCl treatment is used to minimize the onset potential further, while it is favorable for the ex-situ doped α-Fe2O3, which is more efficient on Tie than the Pte-doped ones. On the ex-situ Ti-doped α-Fe2O3 after HCl treatment, anatase TiO2 is probed, suggesting that Ti-O bonds accumulate when Fe-O bonds are partly removed, which enhances the charge transfer in surface states. Unfortunately, HCl treatment also induces lattice defects that are adverse to charge transport, inhibiting the performance of in-situ doped α-Fe2O3 and excessively treated ex-situ doped ones. Coupled with methanol solvothermal treatment and NiOOH/FeOOH cocatalysts loading, the optimized Ti-Pt/Fe2O3 photoanode exhibits an impressive photocurrent density of 2.81 mA cm-2 at 1.23 V vs. RHE and a low onset potential of 0.60 V vs. RHE.
Collapse
|
5
|
Li Y, Li S, Cui J, Yan J, Tan HH, Liu J, Wu Y. TiO 2 nanotubular arrays decorated with ultrafine Ag nanoseeds enabling a stable and dendrite-free lithium metal anode. NANOSCALE ADVANCES 2022; 4:4639-4647. [PMID: 36341294 PMCID: PMC9595180 DOI: 10.1039/d2na00526c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
To exploit next-generation high-energy Li metal batteries, it is vitally important to settle the issue of dendrite growth accompanied by interfacial instability of the Li anode. Applying 3D current collectors as hosts for Li deposition emerges as a prospective strategy to achieve uniform Li nucleation and suppress Li dendrites. Herein, well-aligned and spaced TiO2 nanotube arrays grown on Ti foil and surface decorated with dispersed Ag nanocrystals (Ag@TNTAs/Ti) were constructed and employed as a 3D host for regulating Li stripping/plating behaviors and suppressing Li dendrites, and also relieving volume fluctuation during repetitive Li plating/stripping. Uniform TiO2 nanotubular structures with a large surface allow fast electron/ion transport and uniform local current density distribution, leading to homogeneous Li growth on the nanotube surface. Moreover, Ag nanocrystals and TiO2 nanotubes have good Li affinity, which facilitates Li+ capture and reduces the Li nucleation barrier, achieving uniform nucleation and growth of Li metal over the 3D Ag@TNTAs/Ti host. As a result, the as-fabricated Ag@TNTAs/Ti electrode exhibits dendrite-free plating morphology and long-term cycle stability with coulombic efficiency maintained over 98.5% even after 1000 cycles at a current density of 1 mA cm-2 and cycling capacity of 1 mA h cm-2. In symmetric cells, the Ag@TNTAs/Ti-Li electrode shows a much lower hysteresis of 40 mV over an ultralong cycle period of 2600 h at a current density of 1 mA cm-2 and cycling capacity of 1 mA h cm-2. Moreover, the full cell with the Ag@TNTAs/Ti-Li anode and LiFePO4 cathode achieves a high capacity of 155.2 mA h g-1 at 0.5C and retains 77.9% capacity with an average CE of ≈99.7% over 200 cycles.
Collapse
Affiliation(s)
- Yulei Li
- Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Engineering Research Center of Advanced Composite Materials Design & Application of Anhui Province, Key Laboratory of Advanced Functional Materials & Devices of Anhui Province, Hefei University of Technology Hefei 230009 China
| | - Shenhao Li
- Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Engineering Research Center of Advanced Composite Materials Design & Application of Anhui Province, Key Laboratory of Advanced Functional Materials & Devices of Anhui Province, Hefei University of Technology Hefei 230009 China
| | - Jiewu Cui
- Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Engineering Research Center of Advanced Composite Materials Design & Application of Anhui Province, Key Laboratory of Advanced Functional Materials & Devices of Anhui Province, Hefei University of Technology Hefei 230009 China
| | - Jian Yan
- Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Engineering Research Center of Advanced Composite Materials Design & Application of Anhui Province, Key Laboratory of Advanced Functional Materials & Devices of Anhui Province, Hefei University of Technology Hefei 230009 China
| | - Hark Hoe Tan
- Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University Canberra ACT 2601 Australia
| | - Jiaqin Liu
- Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Engineering Research Center of Advanced Composite Materials Design & Application of Anhui Province, Key Laboratory of Advanced Functional Materials & Devices of Anhui Province, Hefei University of Technology Hefei 230009 China
| | - Yucheng Wu
- Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Engineering Research Center of Advanced Composite Materials Design & Application of Anhui Province, Key Laboratory of Advanced Functional Materials & Devices of Anhui Province, Hefei University of Technology Hefei 230009 China
| |
Collapse
|
6
|
Wang X, Gao C, Low J, Mao K, Duan D, Chen S, Ye R, Qiu Y, Ma J, Zheng X, Long R, Wu X, Song L, Zhu J, Xiong Y. Efficient photoelectrochemical CO 2 conversion for selective acetic acid production. Sci Bull (Beijing) 2021; 66:1296-1304. [PMID: 36654151 DOI: 10.1016/j.scib.2021.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/18/2021] [Accepted: 03/29/2021] [Indexed: 01/20/2023]
Abstract
Amidst the development of photoelectrochemical (PEC) CO2 conversion toward practical application, the production of high-value chemicals beyond C1 compounds under mild conditions is greatly desired yet challenging. Here, through rational PEC device design by combining Au-loaded and N-doped TiO2 plate nanoarray photoanode with Zn-doped Cu2O dark cathode, efficient conversion of CO2 to CH3COOH has been achieved with an outstanding Faradaic efficiency up to 58.1% (91.5% carbon selectivity) at 0.5 V vs. Ag/AgCl. Temperature programmed desorption and in situ Raman spectra reveal that the Zn-dopant in Cu2O plays multiple roles in selective catalytic CO2 conversion, including local electronic structure manipulation and active site modification, which together promote the formation of intermediate *CH2/*CH3 for C-C coupling. Apart from that, it is also unveiled that the sufficient electron density provided by the Au-loaded and N-doped TiO2 plate nanoarray photoanode plays an equally important role by initiating multi-electron CO2 reduction. This work provides fresh insights into the PEC system design to reach the multi-electron reduction reaction and facilitate the C-C coupling reaction toward high-value multicarbon (C2+) chemical production via CO2 conversion.
Collapse
Affiliation(s)
- Xiaonong Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China; Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| | - Chao Gao
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Jingxiang Low
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Keke Mao
- School of Energy and Environment Science, Anhui University of Technology, Maanshan 243032, China
| | - Delong Duan
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Shuangming Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Run Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Yunrui Qiu
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Jun Ma
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Xusheng Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Ran Long
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China.
| | - Xiaojun Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Li Song
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Junfa Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Yujie Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China; Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China.
| |
Collapse
|
7
|
Lin J, Zhang Z, Chai J, Cao B, Deng X, Wang W, Liu X, Li G. Highly Efficient InGaN Nanorods Photoelectrode by Constructing Z-scheme Charge Transfer System for Unbiased Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006666. [PMID: 33350056 DOI: 10.1002/smll.202006666] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Unbiased photoelectrochemical water splitting for the promising InGaN nanorods photoelectrode is highly desirable, but it is practically hindered by the serious recombination of charge carrier in bulk and surface of InGaN nanorods. Herein, an unbiased Z-scheme InGaN nanorods/Cu2 O nanoparticles heterostructured system with boosted interfacial charge transfer is constructed for the first time. The introduced Cu2 O nanoparticles pose double-sided effect on photoelectrochemical (PEC) performance of InGaN nanorods, which enables a robust hybrid structure and induces weakened light absorption capability simultaneously. As a result, the optimized InGaN/Cu2 O-1.5C photoelectrode with the uniform morphology exhibits an enhanced photocurrent density of ≈170 µA cm-2 at 0 V versus Pt, with 8.5-fold enhancement compared with pure InGaN nanorods. Comprehensive investigations into experimental results and theoretical calculations reveal that the electrons accumulation and holes depletion of Cu2 O facilitate to form a typical Z-scheme band alignment, thus providing a large photovoltage to drive unbiased water splitting and enhancing the stability of Cu2 O. This work provides a novel and facile strategy to achieve InGaN nanorods and other catalyst-based PEC water splitting without external bias, and to relieve the bottlenecks of charge transfer dynamics at the electrode bulk and electrode/electrolyte interface by constructing Z-scheme heterostructure.
Collapse
Affiliation(s)
- Jing Lin
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Zhijie Zhang
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jixing Chai
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Ben Cao
- Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Xi Deng
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Wenliang Wang
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
- Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xingjiang Liu
- Science and Technology on Power Sources Laboratory, Tianjin Institute of Power Sources, Tianjin, 300384, China
| | - Guoqiang Li
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
- Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
8
|
Gao S, Lu R, Wang X, Chou J, Wang N, Huai X, Wang C, Zhao Y, Chen S. Immune response of macrophages on super-hydrophilic TiO2 nanotube arrays. J Biomater Appl 2020; 34:1239-1253. [DOI: 10.1177/0885328220903249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Shang Gao
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Ran Lu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Xin Wang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Joshua Chou
- Advanced Tissue Regeneration and Drug Delivery Group, School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Na Wang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Xiaochen Huai
- Laboratory of Advanced Functional Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Caiyun Wang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Yu Zhao
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Su Chen
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Haryński Ł, Grochowska K, Karczewski J, Ryl J, Siuzdak K. Scalable Route toward Superior Photoresponse of UV-Laser-Treated TiO 2 Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3225-3235. [PMID: 31840971 DOI: 10.1021/acsami.9b19206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Titanium dioxide nanotubes gain considerable attention as a photoactive material due to chemical stability, photocorrosion resistance, or low-cost manufacturing method. This work presents scalable pulsed laser modification of TiO2 nanotubes resulting in enhanced photoactivity in a system equipped with a motorized table, which allows for modifications of both precisely selected and any-large sample area. Images obtained from scanning electron microscopy along with Raman and UV-vis spectra of laser-treated samples in a good agreement indicate the presence of additional laser-induced shallow states within band gap via degradation of crystalline structure. However, X-ray photoelectron spectroscopy spectra revealed no change of chemical nature of the modified sample surface. Photoelectrochemical measurements demonstrate superior photoresponse of laser-treated samples up to 1.45-fold for an energy beam fluence of 40 mJ/cm2 compared to that of calcined one. According to the obtained results, optimal processing parameters were captured. Mott-Schottky analysis obtained from impedance measurements indicates an enormous (over an order of magnitude) increase of donor density along with a +0.74 V positive shift of flat band potential. Such changes in electronic structure are most likely responsible for enhanced photoactivity. Thus, the elaborated method of laser nanostructuring can be successfully employed to the large-scale modification of titania nanotubes resulting in their superior photoactivity. According to that, the results of our work provide a contribution to wider applications of materials based on titania nanotubes.
Collapse
Affiliation(s)
- Łukasz Haryński
- Centre for Plasma and Laser Engineering , The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences , Fiszera 14 Street , 80-231 Gdańsk , Poland
| | - Katarzyna Grochowska
- Centre for Plasma and Laser Engineering , The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences , Fiszera 14 Street , 80-231 Gdańsk , Poland
| | | | | | - Katarzyna Siuzdak
- Centre for Plasma and Laser Engineering , The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences , Fiszera 14 Street , 80-231 Gdańsk , Poland
| |
Collapse
|
10
|
A short review on electrochemically self-doped TiO2 nanotube arrays: Synthesis and applications. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0365-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Chen J, Ling Y, Lu Z, Huai X, Qin F, Zhang Z. Sandwich-like NiOx/NiCo2O4/Co3O4 nanoflakes enable efficient oxygen evolution electrocatalysis. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134753] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting. Sci Bull (Beijing) 2019; 64:1348-1380. [PMID: 36659664 DOI: 10.1016/j.scib.2019.07.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 01/21/2023]
Abstract
Solar energy driven photoelectrochemical (PEC) water splitting is a clean and powerful approach for renewable hydrogen production. The design and construction of metal oxide based nanoarray photoanodes is one of the promising strategies to make the continuous breakthroughs in solar to hydrogen conversion efficiency of PEC cells owing to their owned several advantages including enhanced reactive surface at the electrode/electrolyte interface, improved light absorption capability, increased charge separation efficiency and direct electron transport pathways. In this Review, we first introduce the structure, work principle and their relevant efficiency calculations of a PEC cell. We then give a summary of the state-of the-art research in the preparation strategies and growth mechanism for the metal oxide based nanoarrays, and some details about the performances of metal oxide based nanoarray photoanodes for PEC water splitting. Finally, we discuss key aspects which should be addressed in continued work on realizing high-efficiency metal oxide based nanoarray photoanodes for PEC solar water splitting systems.
Collapse
|
13
|
Metal Chalcogenides on Silicon Photocathodes for Efficient Water Splitting: A Mini Overview. Catalysts 2019. [DOI: 10.3390/catal9020149] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the photoelectrochemical (PEC) water splitting (WS) reactions, a photon is absorbed by a semiconductor, generating electron-hole pairs which are transferred across the semiconductor/electrolyte interface to reduce or oxidize water into oxygen or hydrogen. Catalytic junctions are commonly combined with semiconductor absorbers, providing electrochemically active sites for charge transfer across the interface and increasing the surface band bending to improve the PEC performance. In this review, we focus on transition metal (di)chalcogenide [TM(D)C] catalysts in conjunction with silicon photoelectrode as Earth-abundant materials systems. Surprisingly, there is a limited number of reports in Si/TM(D)C for PEC WS in the literature. We provide almost a complete survey on both layered TMDC and non-layered transition metal dichalcogenides (TMC) co-catalysts on Si photoelectrodes, mainly photocathodes. The mechanisms of the photovoltaic power conversion of silicon devices are summarized with emphasis on the exact role of catalysts. Diverse approaches to the improved PEC performance and the proposed synergetic functions of catalysts on the underlying Si are reviewed. Atomic layer deposition of TM(D)C materials as a new methodology for directly growing them and its implication for low-temperature growth on defect chemistry are featured. The multi-phase TM(D)C overlayers on Si and the operation principles are highlighted. Finally, challenges and directions regarding future research for achieving the theoretical PEC performance of Si-based photoelectrodes are provided.
Collapse
|