1
|
Liu B, Zhao L, Liu Y, Chen H, Li H, Yang M, Qiu J. Triazine-containing Covalent Organic Polymer-derived Grid-Like Multilocular Spheres for Aqueous Supercapacitors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419124. [PMID: 39945025 DOI: 10.1002/adma.202419124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/25/2025] [Indexed: 04/03/2025]
Abstract
Triazine-containing covalent organic polymers (TCOPs) with unique structures and physicochemical properties are of great potential in energy storage and conversion applications, yet how to finely tune the morphology, and the accessible active sites, and to enhance capacitive activity remains a challenge. Here, the grid-like multilocular spheres derived from TCOP with abundant redox active sites and unique structures are fabricated via a molecular twist-induced regulation strategy, of which the number and size of cavities can be finely modulated by changing the conformers of the twisted unit and the Ostwald ripening time. The unique structure of the as-fabricated TCOP results in unprecedented high specific capacitance (8412 F g-1 at 1 A g-1) and enables the as-assembled supercapacitor with an ultra-high energy density of 675 Wh kg-1 in redox-active electrolyte (KI-mixed H2SO4), much better than all reported aqueous supercapacitors thus far. It is found that the high electro-activity is due to the synergistic effect of the enhanced accessibility of active sites and the enhanced interaction of the abundant active sites with the redox-active electrolytes. This approach may pave a new way to precise synthesis of COPs with tuned structure and properties for application-inspired cutting-edge electrochemical energy storage and beyond.
Collapse
Affiliation(s)
- Bei Liu
- College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Lipu Zhao
- College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Yijiang Liu
- College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Hongbiao Chen
- College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Huaming Li
- College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Mei Yang
- College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Jieshan Qiu
- College of Chemical Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
2
|
Zhang Y, Huo Z, Wang X, Han X, Wu W, Wan B, Wang H, Zhai J, Tao J, Pan C, Wang ZL. High precision epidermal radio frequency antenna via nanofiber network for wireless stretchable multifunction electronics. Nat Commun 2020; 11:5629. [PMID: 33159080 PMCID: PMC7648760 DOI: 10.1038/s41467-020-19367-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/24/2020] [Indexed: 01/30/2023] Open
Abstract
Recently, stretchable electronics combined with wireless technology have been crucial for realizing efficient human-machine interaction. Here, we demonstrate highly stretchable transparent wireless electronics composed of Ag nanofibers coils and functional electronic components for power transfer and information communication. Inspired by natural systems, various patterned Ag nanofibers electrodes with a net structure are fabricated via using lithography and wet etching. The device design is optimized by analyzing the quality factor and radio frequency properties of the coil, considering the effects of strain. Particularly, the wireless transmission efficiency of a five-turn coil drops by approximately only 50% at 10 MHz with the strain of 100%. Moreover, various complex functional wireless electronics are developed using near-field communication and frequency modulation technology for applications in content recognition and long-distance transmission (>1 m), respectively. In summary, the proposed device has considerable potential for applications in artificial electronic skins, human healthcare monitoring and soft robotics.
Collapse
Affiliation(s)
- Yufei Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083, Beijing, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhihao Huo
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083, Beijing, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiandi Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083, Beijing, China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Xun Han
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083, Beijing, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049, Beijing, China
- College of Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Wenqiang Wu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083, Beijing, China
| | - Bensong Wan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083, Beijing, China
| | - Hui Wang
- Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, 100191, Beijing, China
| | - Junyi Zhai
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083, Beijing, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Juan Tao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083, Beijing, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083, Beijing, China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049, Beijing, China.
- College of Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, China.
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083, Beijing, China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049, Beijing, China.
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
3
|
Porous spherical NiO@NiMoO 4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials. Sci Bull (Beijing) 2020; 65:546-556. [PMID: 36659186 DOI: 10.1016/j.scib.2020.01.011] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/03/2020] [Accepted: 01/13/2020] [Indexed: 01/21/2023]
Abstract
In this work, a rational design and construction of porous spherical NiO@NiMoO4 wrapped with PPy was reported for the application of high-performance supercapacitor (SC). The results show that the NiMoO4 modification changes the morphology of NiO, and the hollow internal morphology combined with porous outer shell of NiO@NiMoO4 and NiO@NiMoO4@PPy hybrids shows an increased specific surface area (SSA), and then promotes the transfer of ions and electrons. The shell of NiMoO4 and PPy with high electronic conductivity decreases the charge-transfer reaction resistance of NiO, and then improves the electrochemical kinetics of NiO. At 20Ag-1, the initial capacitances of NiO, NiMoO4, NiO@NiMoO4 and NiO@NiMoO4@PPy are 456.0, 803.2, 764.4 and 941.6Fg-1, respectively. After 10,000 cycles, the corresponding capacitances are 346.8, 510.8, 641.2 and 904.8Fg-1, respectively. Especially, the initial capacitance of NiO@NiMoO4@PPy is 850.2Fg-1, and remains 655.2Fg-1 with a high retention of 77.1% at 30Ag-1 even after 30,000 cycles. The calculation result based on density function theory shows that the much stronger Mo-O bonds are crucial for stabilizing the NiO@NiMoO4 composite, resulting in a good cycling stability of these materials.
Collapse
|