1
|
Li H, Zhao Z, Jiang S, Wu H. Brain circuits that regulate social behavior. Mol Psychiatry 2025:10.1038/s41380-025-03037-6. [PMID: 40287553 DOI: 10.1038/s41380-025-03037-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Social interactions are essential for the survival of individuals and the reproduction of populations. Social stressors, such as social defeat and isolation, can lead to emotional disorders and cognitive impairments. Furthermore, dysfunctional social behaviors are hallmark symptoms of various neuropsychiatric disorders, including autism spectrum disorder (ASD) and post-traumatic stress disorder (PTSD). Consequently, understanding the neural circuit mechanisms underlying social behaviors has become a major focus in neuroscience. Social behaviors, which encompass a wide range of expressions and phases, are regulated by complex neural networks. In this review, we summarize recent progress in identifying the circuits involved in different types of social behaviors, including general social investigation, social preference, mating, aggression, parenting, prosocial behaviors, and dominance behaviors. We also outline the circuit mechanisms associated with social deficits in neuropsychiatric disorders, such as ASD, schizophrenia, and PTSD. Given the pivotal role of rodents in social behavior research, our review primarily focuses on neural circuits in these animals. Finally, we propose future research directions, including the development of specific behavioral paradigms, the identification of circuits involved in motor output, the integration of activity, transcriptome, and connectome data, the multifunctional roles of neurons with multiple targets, and the interactions among multiple brain regions.
Collapse
Affiliation(s)
- Hao Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Zhe Zhao
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Shaofei Jiang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
2
|
Allami P, Yazdanpanah N, Rezaei N. The role of neuroinflammation in PV interneuron impairments in brain networks; implications for cognitive disorders. Rev Neurosci 2025:revneuro-2024-0153. [PMID: 39842401 DOI: 10.1515/revneuro-2024-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025]
Abstract
Fast spiking parvalbumin (PV) interneuron is an inhibitory gamma-aminobutyric acid (GABA)ergic interneuron diffused in different brain networks, including the cortex and hippocampus. As a key component of brain networks, PV interneurons collaborate in fundamental brain functions such as learning and memory by regulating excitation and inhibition (E/I) balance and generating gamma oscillations. The unique characteristics of PV interneurons, like their high metabolic demands and long branching axons, make them too vulnerable to stressors. Neuroinflammation is one of the most significant stressors that have an adverse, long-lasting impact on PV interneurons. Neuroinflammation affects PV interneurons through specialized inflammatory pathways triggered by cytokines such as tumor necrosis factor (TNF) and interleukin 6 (IL-6). The crucial cells in neuroinflammation, microglia, also play a significant role. The destructive effect of inflammation on PV interneurons can have comprehensive effects and cause neurological disorders such as schizophrenia, Alzheimer's disease (AD), autism spectrum disorder (ASD), and bipolar disorder. In this article, we provide a comprehensive review of mechanisms in which neuroinflammation leads to PV interneuron hypofunction in these diseases. The integrated knowledge about the role of PV interneurons in cognitive networks of the brain and mechanisms involved in PV interneuron impairment in the pathology of these diseases can help us with better therapeutic interventions.
Collapse
Affiliation(s)
- Pantea Allami
- Student's Scientific Research Center, School of Medicine, 48439 Tehran University of Medical Sciences , Pour Sina St, Tehran 1416634793, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
| | - Niloufar Yazdanpanah
- Student's Scientific Research Center, School of Medicine, 48439 Tehran University of Medical Sciences , Pour Sina St, Tehran 1416634793, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, 48439 Tehran University of Medical Sciences, Children's Medical Center Hospital , Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- Department of Immunology, School of Medicine, 48439 Tehran University of Medical Sciences , Pour Sina St, Tehran 1416634793, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, 48439 Tehran University of Medical Sciences, Children's Medical Center Hospital , Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- Department of Immunology, School of Medicine, 48439 Tehran University of Medical Sciences , Pour Sina St, Tehran 1416634793, Tehran, Iran
| |
Collapse
|
3
|
Jahangir M, Shah SM, Zhou JS, Lang B, Wang XP. Parvalbumin interneurons in the anterior cingulate cortex exhibit distinct processing patterns for fear and memory in rats. Heliyon 2025; 11:e41218. [PMID: 39839509 PMCID: PMC11748682 DOI: 10.1016/j.heliyon.2024.e41218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
The anterior cingulate cortex is responsible for multiple cognitive functions like fear, pain management, decision-making, risk and reward assessment, and memory consolidation. However, its cell-type-specific functions are not clearly understood. To reveal the selective functional role of Parvalbumin-expressing GABAergic interneurons in the ACC, we knocked down (KD) the PV gene in-vivo in rats. Behavioral tests showed significantly improved spatial memory (p = 0.01) in ACC-PV-KD rats compared to control and sham groups, whereas novel object recognition memory was reduced significantly (p = 0.001). The PV knockdown group also showed a longer freezing duration (p = 0.001) and considerably fewer freezing responses (p = 0.005) in the fear conditioning chamber. Additionally, the PV knockdown rats spent significantly (p = 0.006) more time in the periphery and less time in the center of the open field box, indicating anxiety-like behavior. In conclusion, Parvalbumin expressing interneurons in ACC are functionally diverse and critical for regulating fear response, recognition memory and spatial memory. Completely elucidating the underlying mechanism and circuitry will open up therapeutic choices for associated disorders.
Collapse
Affiliation(s)
- Muhammad Jahangir
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - S. Mudasser Shah
- Institute of Developmental Psychology, School of Psychology, Beijing Normal University, Beijing, China
| | - Jian-Song Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Bing Lang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xiao-Ping Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
4
|
Xiao H, Xi K, Wang K, Zhou Y, Dong B, Xie J, Xie Y, Zhang H, Ma G, Wang W, Feng D, Guo B, Wu S. Restoring the Function of Thalamocortical Circuit Through Correcting Thalamic Kv3.2 Channelopathy Normalizes Fear Extinction Impairments in a PTSD Mouse Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305939. [PMID: 38102998 PMCID: PMC10916658 DOI: 10.1002/advs.202305939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Impaired extinction of fear memory is one of the most common symptoms in post-traumatic stress disorder (PTSD), with limited therapeutic strategies due to the poor understanding of its underlying neural substrates. In this study, functional screening is performed and identified hyperactivity in the mediodorsal thalamic nucleus (MD) during fear extinction. Furthermore, the encoding patterns of the hyperactivated MD is investigated during persistent fear responses using multiple machine learning algorithms. The anterior cingulate cortex (ACC) is also identified as a functional downstream region of the MD that mediates the extinction of fear memory. The thalamocortical circuit is comprehensively analyzed and found that the MD-ACC parvalbumin interneurons circuit is preferentially enhanced in PTSD mice, disrupting the local excitatory and inhibitory balance. It is found that decreased phosphorylation of the Kv3.2 channel contributed to the hyperactivated MD, primarily to the malfunctioning thalamocortical circuit. Using a lipid nanoparticle-based RNA therapy strategy, channelopathy is corrected via a methoxylated siRNA targeting the protein phosphatase 6 catalytic subunit and restored fear memory extinction in PTSD mice. These findings highlight the function of the thalamocortical circuit in PTSD-related impaired extinction of fear memory and provide therapeutic insights into Kv3.2-targeted RNA therapy for PTSD.
Collapse
Affiliation(s)
- Haoxiang Xiao
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Kaiwen Xi
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Kaifang Wang
- Department of AnesthesiologyTangdu HospitalFourth Military Medical UniversityXi'an710032China
| | - Yongsheng Zhou
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
- Eastern Theater Air Force Hospital of PLANanjing210000China
| | - Baowen Dong
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'an710032China
| | - Jinyi Xie
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Yuqiao Xie
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Haifeng Zhang
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Guaiguai Ma
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Wenting Wang
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Dayun Feng
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'an710032China
| | - Baolin Guo
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Shengxi Wu
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| |
Collapse
|
5
|
Kitamura T, Ramesh K, Terranova JI. Understanding Others' Distress Through Past Experiences: The Role of Memory Engram Cells in Observational Fear. ADVANCES IN NEUROBIOLOGY 2024; 38:215-234. [PMID: 39008018 DOI: 10.1007/978-3-031-62983-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
For individuals to survive and function in society, it is essential that they recognize, interact with, and learn from other conspecifics. Observational fear (OF) is the well-conserved empathic ability of individuals to understand the other's aversive situation. While it is widely known that factors such as prior similar aversive experience and social familiarity with the demonstrator facilitate OF, the neural circuit mechanisms that explicitly regulate experience-dependent OF (Exp OF) were unclear. In this review, we examine the neural circuit mechanisms that regulate OF, with an emphasis on rodent models, and then discuss emerging evidence for the role of fear memory engram cells in the regulation of Exp OF. First, we examine the neural circuit mechanisms that underlie Naive OF, which is when an observer lacks prior experiences relevant to OF. In particular, the anterior cingulate cortex to basolateral amygdala (BLA) neural circuit is essential for Naive OF. Next, we discuss a recent study that developed a behavioral paradigm in mice to examine the neural circuit mechanisms that underlie Exp OF. This study found that fear memory engram cells in the BLA of observers, which form during a prior similar aversive experience with shock, are reactivated by ventral hippocampal neurons in response to shock delivery to the familiar demonstrator to elicit Exp OF. Finally, we discuss the implications of fear memory engram cells in Exp OF and directions of future research that are of both translational and basic interest.
Collapse
Affiliation(s)
- Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Kritika Ramesh
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
6
|
Keysers C, Gazzola V. Vicarious Emotions of Fear and Pain in Rodents. AFFECTIVE SCIENCE 2023; 4:662-671. [PMID: 38156261 PMCID: PMC10751282 DOI: 10.1007/s42761-023-00198-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/24/2023] [Indexed: 12/30/2023]
Abstract
Affective empathy, the ability to share the emotions of others, is an important contributor to the richness of our emotional experiences. Here, we review evidence that rodents show signs of fear and pain when they witness the fear and pain of others. This emotional contagion creates a vicarious emotion in the witness that mirrors some level of detail of the emotion of the demonstrator, including its valence and the vicinity of threats, and depends on brain regions such as the cingulate, amygdala, and insula that are also at the core of human empathy. Although it remains impossible to directly know how witnessing the distress of others feels for rodents, and whether this feeling is similar to the empathy humans experience, the similarity in neural structures suggests some analogies in emotional experience across rodents and humans. These neural homologies also reveal that feeling distress while others are distressed must serve an evolutionary purpose strong enough to warrant its stability across ~ 100 millions of years. We propose that it does so by allowing observers to set in motion the very emotions that have evolved to prepare them to deal with threats - with the benefit of triggering them socially, by harnessing conspecifics as sentinels, before the witness personally faces that threat. Finally, we discuss evidence that rodents can engage in prosocial behaviors that may be motivated by vicarious distress or reward.
Collapse
Affiliation(s)
- Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Boxer EE, Aoto J. Neurexins and their ligands at inhibitory synapses. Front Synaptic Neurosci 2022; 14:1087238. [PMID: 36618530 PMCID: PMC9812575 DOI: 10.3389/fnsyn.2022.1087238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of neurexins (Nrxns) as essential and evolutionarily conserved synaptic adhesion molecules, focus has largely centered on their functional contributions to glutamatergic synapses. Recently, significant advances to our understanding of neurexin function at GABAergic synapses have revealed that neurexins can play pleiotropic roles in regulating inhibitory synapse maintenance and function in a brain-region and synapse-specific manner. GABAergic neurons are incredibly diverse, exhibiting distinct synaptic properties, sites of innervation, neuromodulation, and plasticity. Different classes of GABAergic neurons often express distinct repertoires of Nrxn isoforms that exhibit differential alternative exon usage. Further, Nrxn ligands can be differentially expressed and can display synapse-specific localization patterns, which may contribute to the formation of a complex trans-synaptic molecular code that establishes the properties of inhibitory synapse function and properties of local circuitry. In this review, we will discuss how Nrxns and their ligands sculpt synaptic inhibition in a brain-region, cell-type and synapse-specific manner.
Collapse
Affiliation(s)
| | - Jason Aoto
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Denver, CO, United States
| |
Collapse
|
8
|
Keysers C, Knapska E, Moita MA, Gazzola V. Emotional contagion and prosocial behavior in rodents. Trends Cogn Sci 2022; 26:688-706. [PMID: 35667978 DOI: 10.1016/j.tics.2022.05.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 01/09/2023]
Abstract
Empathy is critical to adjusting our behavior to the state of others. The past decade dramatically deepened our understanding of the biological origin of this capacity. We now understand that rodents robustly show emotional contagion for the distress of others via neural structures homologous to those involved in human empathy. Their propensity to approach others in distress strengthens this effect. Although rodents can also learn to favor behaviors that benefit others via structures overlapping with those of emotional contagion, they do so less reliably and more selectively. Together, this suggests evolution selected mechanisms for emotional contagion to prepare animals for dangers by using others as sentinels. Such shared emotions additionally can, under certain circumstances, promote prosocial behavior.
Collapse
Affiliation(s)
- Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Amsterdam, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands.
| | - Ewelina Knapska
- Laboratory of Emotions' Neurobiology, Center of Excellence for Neural Plasticity and Brain Disorders BRAINCITY, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marta A Moita
- Champalimaud Neuroscience Progamme, Champalimaud Foundation, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Amsterdam, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Jahangir M, Zhou JS, Lang B, Wang XP. GABAergic System Dysfunction and Challenges in Schizophrenia Research. Front Cell Dev Biol 2021; 9:663854. [PMID: 34055795 PMCID: PMC8160111 DOI: 10.3389/fcell.2021.663854] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Despite strenuous studies since the last century, the precise cause and pathology of schizophrenia are still largely unclear and arguably controversial. Although many hypotheses have been proposed to explain the etiology of schizophrenia, the definitive genes or core pathological mechanism remains absent. Among these hypotheses, however, GABAergic dysfunction stands out as a common feature consistently reported in schizophrenia, albeit a satisfactory mechanism that could be exploited for therapeutic purpose has not been developed yet. This review is focusing on the progress made to date in the field in terms of understanding the mechanisms involving dysfunctional GABAergic system and loops identified in schizophrenia research.
Collapse
Affiliation(s)
- Muhammad Jahangir
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jian-Song Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bing Lang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Xiao-Ping Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
10
|
Herrera-Melendez A, Stippl A, Aust S, Scheidegger M, Seifritz E, Heuser-Collier I, Otte C, Bajbouj M, Grimm S, Gärtner M. Gray matter volume of rostral anterior cingulate cortex predicts rapid antidepressant response to ketamine. Eur Neuropsychopharmacol 2021; 43:63-70. [PMID: 33309459 DOI: 10.1016/j.euroneuro.2020.11.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/13/2020] [Accepted: 11/30/2020] [Indexed: 12/28/2022]
Abstract
Ketamine was recently approved for treatment resistant depression. However, despite its therapeutic potential, about 50% of patients do not show improvement under this therapy. In this prospective two-site study, we investigated baseline brain structural predictors for rapid symptom improvement after a single subanesthetic ketamine infusion. Furthermore, given the preclinical evidence and findings from a pilot study in a clinical population that ketamine induces rapid neuroplasticity, we performed an exploratory investigation of macroscopic changes 24 h post-treatment. T1-weighted MRI brain images from 33 depressed patients were acquired before and 24 h after a single ketamine infusion and analyzed using voxel-based morphometry (VBM). Additionally, we performed a region of interest (ROI)-based analysis of structures that have previously been shown to play a role in the antidepressant effects of ketamine: bilateral hippocampus, nucleus accumbens, anterior cingulate cortex, and thalamus. A whole-brain regression analysis showed that greater baseline volume of the bilateral rostral anterior cingulate cortex (rACC) significantly predicts rapid symptom reduction. The right ACC showed the same association in the ROI analysis, while the other regions yielded no significant results. Exploratory follow-up analyses revealed no volumetric changes 24 h after treatment. This is the first study reporting an association between pretreatment gray matter volume of the bilateral rACC and the rapid antidepressant effects of ketamine. Results are in line with previous investigations, which highlighted the potential of the rACC as a biomarker for response prediction to different antidepressant treatments. Ketamine-induced volumetric changes may be seen at later time points.
Collapse
Affiliation(s)
- Ana Herrera-Melendez
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany.
| | - Anna Stippl
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Sabine Aust
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Milan Scheidegger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland
| | - Isabella Heuser-Collier
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Christian Otte
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Malek Bajbouj
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Simone Grimm
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany; MSB -Medical School Berlin, Calandrellistraße 1-9, 12247 Berlin, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland
| | - Matti Gärtner
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany; MSB -Medical School Berlin, Calandrellistraße 1-9, 12247 Berlin, Germany
| |
Collapse
|
11
|
Towards a unified theory of emotional contagion in rodents—A meta-analysis. Neurosci Biobehav Rev 2020; 132:1229-1248. [DOI: 10.1016/j.neubiorev.2020.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/30/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022]
|