1
|
Yang Z, Yang B, Wang S, Qian J, Hou Z, Li X. Multivariate Distribution Structured Anisotropic Inorganic Polymer Composite Electrolyte for Long-Cycle and High-Energy All-Solid-State Lithium Metal Batteries. Angew Chem Int Ed Engl 2025:e202423227. [PMID: 40230167 DOI: 10.1002/anie.202423227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/08/2025] [Accepted: 04/14/2025] [Indexed: 04/16/2025]
Abstract
Solid polymer electrolytes are promising candidates for solid-state Li metal batteries owing to their favorable rheological properties and interfacial compatibility with cathodes and Li anodes. However, their limited ionic conductivity and low modulus lead to inferior electrochemical performance and dendrite growth. Herein, we developed a composite solid-state electrolyte comprising vermiculite sheets and a poly(vinylidene fluoride) (PVDF) matrix with multivariate distribution and an anisotropic structure. Within this assembly, some vermiculite sheets were suspended in the PVDF matrix to facilitate Li salt dissociation and Li+ transport, while others were tiled on the electrolyte surface, generating a dense, high-modulus Li2SiO3-rich solid electrolyte interphase via in situ electrochemical reduction, which further improved interfacial kinetics and suppressed dendrite growth. As a result, a high conductivity of 1.38 mS cm-1 was achieved at room temperature, and the Li||Li cells displayed robust stability over 3000 h. The LiNi0.6Co0.2Mn0.2O2||Li full cells delivered a specific capacity of 172 mAh g-1 at 0.2 C and 86% capacity retention after 500 cycles at 0.5 C. Additionally, practical cycle performance at a high loading (4.4 mAh cm-2) was achieved in pouch cells. Overall, multivariate distribution and anisotropic structuring offers a novel perspective for the preparation of high-performance solid-state electrolytes.
Collapse
Affiliation(s)
- Ziqiang Yang
- School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Bin Yang
- School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Sen Wang
- School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Jiasheng Qian
- School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Zhiguo Hou
- School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Xiaona Li
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, 315200, China
| |
Collapse
|
2
|
Wang X, Lu J, Wu Y, Zheng W, Zhang H, Bai T, Liu H, Li D, Ci L. Building Stable Anodes for High-Rate Na-Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311256. [PMID: 38181436 DOI: 10.1002/adma.202311256] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/15/2023] [Indexed: 01/07/2024]
Abstract
Due to low cost and high energy density, sodium metal batteries (SMBs) have attracted growing interest, with great potential to power future electric vehicles (EVs) and mobile electronics, which require rapid charge/discharge capability. However, the development of high-rate SMBs has been impeded by the sluggish Na+ ion kinetics, particularly at the sodium metal anode (SMA). The high-rate operation severely threatens the SMA stability, due to the unstable solid-electrolyte interface (SEI), the Na dendrite growth, and large volume changes during Na plating-stripping cycles, leading to rapid electrochemical performance degradations. This review surveys key challenges faced by high-rate SMAs, and highlights representative stabilization strategies, including the general modification of SMB components (including the host, Na metal surface, electrolyte, separator, and cathode), and emerging solutions with the development of solid-state SMBs and liquid metal anodes; the working principle, performance, and application of these strategies are elaborated, to reduce the Na nucleation energy barriers and promote Na+ ion transfer kinetics for stable high-rate Na metal anodes. This review will inspire further efforts to stabilize SMAs and other metal (e.g., Li, K, Mg, Zn) anodes, promoting high-rate applications of high-energy metal batteries towards a more sustainable society.
Collapse
Affiliation(s)
- Xihao Wang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jingyu Lu
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yehui Wu
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Weiran Zheng
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, Shantou, 515063, China
- Department of Chemistry, Guangdong Technion-Israel Institute of Technology, Shantou, 515063, China
| | - Hongqiang Zhang
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Tiansheng Bai
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Hongbin Liu
- School of Electrical Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, China
| | - Deping Li
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Lijie Ci
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| |
Collapse
|
3
|
Cao K, Xia Y, Li H, Huang H, Iqbal S, Yousaf M, Bin Xu B, Sun W, Yan M, Pan H, Jiang Y. Oxygen-regulated spontaneous solid electrolyte interphase enabling ultra-stable solid-state Na metal batteries. Sci Bull (Beijing) 2024; 69:49-58. [PMID: 37973461 DOI: 10.1016/j.scib.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/04/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023]
Abstract
Solid-state sodium metal batteries utilizing inorganic solid electrolytes (SEs) hold immense potentials such as intrinsical safety, high energy density, and environmental sustainability. However, the interfacial inhomogeneity/instability at the anode-SE interface usually triggers the penetration of sodium dendrites into the electrolyte, leading to short circuit and battery failure. Herein, confronting with the original nonuniform and high-resistance solid electrolyte interphase (SEI) at the Na-Na3Zr2Si2PO12 interface, an oxygen-regulated SEI innovative approach is proposed to enhance the cycling stability of anode-SEs interface, through a spontaneous reaction between the metallic sodium (containing trace amounts of oxygen) and the Na3Zr2Si2PO12 SE. The oxygen-regulated spontaneous SEI is thin, uniform, and kinetically stable to facilitate homogenous interfacial Na+ transportation. Benefitting from the optimized SEI, the assembled symmetric cell exhibits an ultra-stable sodium plating/stripping cycle for over 6600 h under a practical capacity of 3 mAh cm-2. Quasi-solid-state batteries with Na3V2(PO4)3 cathode deliver excellent cyclability over 500 cycles at a rate of 0.5 C (1 C = 117 mA cm-2) with a high capacity retention of 95.4%. This oxygen-regulated SEI strategy may offer a potential avenue for the future development of high-energy-density solid-state metal batteries.
Collapse
Affiliation(s)
- Keshuang Cao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Yufan Xia
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Haosheng Li
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Huiqin Huang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Sikandar Iqbal
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Muhammad Yousaf
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Wenping Sun
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mi Yan
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China; State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, China
| | - Hongge Pan
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China; Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, China
| | - Yinzhu Jiang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China; State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, China.
| |
Collapse
|
4
|
Xia X, Yang Y, Chen K, Xu S, Tang F, Liu L, Xu C, Rui X. Enhancing Interfacial Strength and Wettability for Wide-Temperature Sodium Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300907. [PMID: 37075770 DOI: 10.1002/smll.202300907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Development of high-performance sodium metal batteries (SMBs) with a wide operating temperature range (from -40 to 55 °C) is highly challenging. Herein, an artificial hybrid interlayer composed of sodium phosphide (Na3 P) and metal vanadium (V) is constructed for wide-temperature-range SMBs via vanadium phosphide pretreatment. As evidenced by simulation, the VP-Na interlayer can regulate redistribution of Na+ flux, which is beneficial for homogeneous Na deposition. Moreover, the experimental results confirm that the artificial hybrid interlayer possesses a high Young's modulus and a compact structure, which can effectively suppress Na dendrite growth and alleviate the parasitic reaction even at 55 °C. In addition, the VP-Na interlayer exhibits the capability to knock down the kinetic barriers for fast Na+ transportation, realizing a 30-fold decrease in impedance at -40 °C. Symmetrical VP-Na cells present a prolonged lifespan reaching 1200, 500, and 500 h at room temperature, 55 °C and -40 °C, respectively. In Na3 V2 (PO4 )3 ||VP-Na full cells, a high reversible capacity of 88, 89.8, and 50.3 mAh g-1 can be sustained after 1600, 1000, and 600 cycles at room temperature, 55 °C and -40 °C, respectively. The pretreatment formed artificial hybrid interlayer proves to be an effective strategy to achieve wide-temperature-range SMBs.
Collapse
Affiliation(s)
- Xianming Xia
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yi Yang
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Kaizhi Chen
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Shitan Xu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Fang Tang
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Lin Liu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Chen Xu
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Xianhong Rui
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
5
|
Xia X, Xu S, Tang F, Yao Y, Wang L, Liu L, He S, Yang Y, Sun W, Xu C, Feng Y, Pan H, Rui X, Yu Y. A Multifunctional Interphase Layer Enabling Superior Sodium-Metal Batteries under Ambient Temperature and -40 °C. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209511. [PMID: 36576022 DOI: 10.1002/adma.202209511] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The sodium (Na)-metal anode with high theoretical capacity and low cost is promising for construction of high-energy-density metal batteries. However, the unsatisfactory interface between Na and the liquid electrolyte induces tardy ion transfer kinetics and dendritic Na growth, especially at ultralow temperature (-40 °C). Herein, an artificial heterogeneous interphase consisting of disodium selenide (Na2 Se) and metal vanadium (V) is produced on the surface of Na (Na@Na2 Se/V) via an in situ spontaneous chemical reaction. Such interphase layer possesses high sodiophilicity, excellent ionic conductivity, and high Young's modulus, which can promote Na-ion adsorption and transport, realizing homogenous Na deposition without dendrites. The symmetric Na@Na2 Se/V cell exhibits outstanding cycling life span of over 1790 h (0.5 mA cm-2 /1 mAh cm-2 ) in carbonate-based electrolyte. More remarkably, ab initio molecular dynamics simulations reveal that the artificial Na2 Se/V hybrid interphase can accelerate the desolvation of solvated Na+ at -40 °C. The Na@Na2 Se/V electrode thus exhibits exceptional electrochemical performance in symmetric cell (over 1500 h at 0.5 mA cm-2 /0.5 mAh cm-2 ) and full cell (over 700 cycles at 0.5 C) at -40 °C. This work provides an avenue to design artificial heterogeneous interphase layers for superior high-energy-density metal batteries at ambient and ultralow temperatures.
Collapse
Affiliation(s)
- Xianming Xia
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Shitan Xu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Fang Tang
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yu Yao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Lifeng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Lin Liu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Shengnan He
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Chen Xu
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yuezhan Feng
- Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xianhong Rui
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
6
|
Wang C, Xu BB, Zhang X, Sun W, Chen J, Pan H, Yan M, Jiang Y. Ion Hopping: Design Principles for Strategies to Improve Ionic Conductivity for Inorganic Solid Electrolytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107064. [PMID: 35373539 DOI: 10.1002/smll.202107064] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Solid electrolytes are considered as an ideal substitution of liquid electrolytes, avoiding the potential hazards of volatilization, flammability, and explosion for liquid electrolyte-based rechargeable batteries. However, there are significant performance gaps to be bridged between solid electrolytes and liquid electrolytes; one with a particular importance is the ionic conductivity which is highly dependent on the material types and structures. In this review, the general physical image of ion hopping in the crystalline structure is revisited, by highlighting two main kernels that impact ion migration: ion hopping pathways and skeletons interaction. The universal strategies to effectively improve ionic conductivity of inorganic solid electrolytes are then systematically summarized: constructing rapid diffusion pathways for mobile ions; and reducing resistance of the surrounding potential field. The scoped strategies offer an exclusive view on the working principle of ion movement regardless of the ion species, thus providing a comprehensive guidance for the future exploitation of solid electrolytes.
Collapse
Affiliation(s)
- Caiyun Wang
- School of Materials Science and Engineering, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 310027, China
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Xuan Zhang
- School of Materials Science and Engineering, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 310027, China
| | - Wenping Sun
- School of Materials Science and Engineering, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 310027, China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Hongge Pan
- School of Materials Science and Engineering, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 310027, China
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Mi Yan
- School of Materials Science and Engineering, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 310027, China
| | - Yinzhu Jiang
- School of Materials Science and Engineering, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou, 014030, P. R. China
| |
Collapse
|
7
|
Li Z, Wang C, Ling F, Wang L, Bai R, Shao Y, Chen Q, Yuan H, Yu Y, Tan Y. Room-Temperature Sodium-Sulfur Batteries: Rules for Catalyst Selection and Electrode Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204214. [PMID: 35699691 DOI: 10.1002/adma.202204214] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Seeking an optimal catalyst to accelerate conversion reaction kinetics of room-temperature sodium-sulfur (RT Na-S) batteries is crucial for improving their electrochemical performance and promoting the practical applications. Herein, theoretical calculations of interfacial interactions of catalysts and polysulfides in terms of the surface adsorption state, interfacial ions migration, and electronic concentration around the Fermi level are systematically proposed as guiding principles of catalyst selection for RT Na-S batteries. As a case, MoN catalyst is accurately selected from transition metal nitrides with different d orbital electrons, and for experiment, it is introduced into the carbon nanofibers as a dual-functioning host (MoN@CNFs). The MoN@CNFs can effectively anchor polysulfides and accelerate their conversion reaction. In addition, for the sodium anode, the MoN@CNFs can also induce uniform deposition of Na and inhibit dendrite growth, which are supported by in situ characterizations and finite element simulation technique. As a result, the as-prepared RT Na-S battery displays high reversible capacity of 990 mAh g-1 at 0.2 A g-1 after 100 cycles and long lifespan over 1500 cycles at 2 A g-1 . Even with high S loading of 5 mg cm-2 , the RT Na-S battery still exhibits a high areal capacity of 2.5 mAh cm-2 .
Collapse
Affiliation(s)
- Zhen Li
- State Key Laboratory of Bio-Fibers and Eco-Textiles & Institute of Marine Biobased Materials & Collage of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Changlai Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Fangxin Ling
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Lifeng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ruilin Bai
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yu Shao
- Jiujiang DeFu Technology Co. Ltd., Jiujiang, Jiangxi, 332000, P. R. China
| | - Qianwang Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hua Yuan
- State Key Laboratory of Bio-Fibers and Eco-Textiles & Institute of Marine Biobased Materials & Collage of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- National Synchrotron Radiation Laboratory, Hefei, Anhui, 230026, P. R. China
| | - Yeqiang Tan
- State Key Laboratory of Bio-Fibers and Eco-Textiles & Institute of Marine Biobased Materials & Collage of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
8
|
Yuan C, Li R, Zhan X, Sprenkle VL, Li G. Stabilizing Metallic Na Anodes via Sodiophilicity Regulation: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4636. [PMID: 35806761 PMCID: PMC9267197 DOI: 10.3390/ma15134636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023]
Abstract
This review focuses on the Na wetting challenges and relevant strategies regarding stabilizing sodium-metal anodes in sodium-metal batteries (SMBs). The Na anode is the essential component of three key energy storage systems, including molten SMBs (i.e., intermediate-temperature Na-S and ZEBRA batteries), all-solid-state SMBs, and conventional SMBs using liquid electrolytes. We begin with a general description of issues encountered by different SMB systems and point out the common challenge in Na wetting. We detail the emerging strategies of improving Na wettability and stabilizing Na metal anodes for the three types of batteries, with the emphasis on discussing various types of tactics developed for SMBs using liquid electrolytes. We conclude with a discussion of the overlooked yet critical aspects (Na metal utilization, N/P ratio, critical current density, etc.) in the existing strategies for an individual battery system and propose promising areas (anolyte incorporation and catholyte modifications for lower-temperature molten SMBs, cell evaluation under practically relevant current density and areal capacity, etc.) that we believe to be the most urgent for further pursuit. Comprehensive investigations combining complementary post-mortem, in situ, and operando analyses to elucidate cell-level structure-performance relations are advocated.
Collapse
Affiliation(s)
- Chenbo Yuan
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China; (C.Y.); (R.L.)
| | - Rui Li
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China; (C.Y.); (R.L.)
| | - Xiaowen Zhan
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China; (C.Y.); (R.L.)
| | - Vincent L. Sprenkle
- Battery Materials and Systems Group, Pacific Northwest National Laboratory, Richland, WA 99352, USA;
| | - Guosheng Li
- Battery Materials and Systems Group, Pacific Northwest National Laboratory, Richland, WA 99352, USA;
| |
Collapse
|
9
|
Stabilizing the cycling stability of rechargeable lithium metal batteries with tris(hexafluoroisopropyl)phosphate additive. Sci Bull (Beijing) 2022; 67:725-732. [PMID: 36546137 DOI: 10.1016/j.scib.2022.01.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 01/06/2023]
Abstract
The application of rechargeable lithium metal batteries (LMBs) has been hindered by the fast growth of lithium dendrites during charge and the limited cycling life because of the decomposition of the electrolyte at the interface. Here, we have developed a non-flammable triethyl phosphate (TEP)-based electrolyte with tris(hexafluoroisopropyl)phosphate (THFP) as an additive. The polar nature of the C-F bonding and the rich CF3 groups in THFP lowers its LUMO energy and HOMO energy to help form a stable, LiF-rich solid electrolyte interphase (SEI) layer through the reduction of THFP and increases the binding ability of the PF6- anions, which significantly suppresses lithium dendrite growth and reduces the electrolyte decomposition. Moreover, THFP participates in the formation of a thin, C-F rich electrolyte interphase (CEI) layer to provide the stable cycling of the cathode at a high voltage. The symmetric Li||Li and full Li/NCM622 cells with THFP additive have small polarization and long cycling life, which demonstrates the importance of the additive to the application of the LMBs.
Collapse
|
10
|
Jiang Y, Yang Y, Ling F, Lu G, Huang F, Tao X, Wu S, Cheng X, Liu F, Li D, Yang H, Yao Y, Shi P, Chen Q, Rui X, Yu Y. Artificial Heterogeneous Interphase Layer with Boosted Ion Affinity and Diffusion for Na/K-Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109439. [PMID: 35106832 DOI: 10.1002/adma.202109439] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Metallic Na (K) are considered a promising anode materials for Na-metal and K-metal batteries because of their high theoretical capacity, low electrode potential, and abundant resources. However, the uncontrolled growth of Na (K) dendrites severely damages the stability of the electrode/electrolyte interface, resulting in battery failure. Herein, a heterogeneous interface layer consisting of metal vanadium nanoparticles and sodium sulfide (potassium sulfide) is introduced on the surface of a Na (K) foil (i.e., Na2 S/V/Na or K2 S/V/K). Experimental studies and theoretical calculations indicate that a heterogeneous Na2 S/V (K2 S/V) protective layer can effectively improve Na (K)-ion adsorption and diffusion kinetics, inhibiting the growth of Na (K) dendrites during Na (K) plating/stripping. Based on the novel design of the heterogeneous layer, the symmetric Na2 S/V/Na cell displays a long lifespan of over 1000 h in a carbonate-based electrolyte, and the K2 S/V/K electrode can operate for over 1300 h at 0.5 mA cm-2 with a capacity of 0.5 mAh cm-2 . Moreover, the Na full cell (Na3 V2 (PO4 )3 ||Na2 S/V/Na) exhibits a high energy density of 375 Wh kg-1 and a high power density of 23.5 kW kg-1 . The achievements support the development of heterogeneous protective layers for other high-energy-density metal batteries.
Collapse
Affiliation(s)
- Yu Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Yang Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fangxin Ling
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Gongxun Lu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Fanyang Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xinyong Tao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Shufan Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaolong Cheng
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fanfan Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Dongjun Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hai Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yu Yao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Pengcheng Shi
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China
| | - Qianwang Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xianhong Rui
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China
| | - Yan Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
- National Synchrotron Radiation Laboratory, Hefei, Anhui, 230026, China
| |
Collapse
|
11
|
Li X, Su J, Li Z, Zhao Z, Zhang F, Zhang L, Ye W, Li Q, Wang K, Wang X, Li H, Hu H, Yan S, Miao GX, Li Q. Revealing interfacial space charge storage of Li+/Na+/K+ by operando magnetometry. Sci Bull (Beijing) 2022; 67:1145-1153. [DOI: 10.1016/j.scib.2022.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/14/2022] [Accepted: 03/20/2022] [Indexed: 01/28/2023]
|