1
|
Wang Y, Chai L, Chu C, Li D, Gao C, Wu X, Yang Z, Zhang Y, Xu J, Nyengaard JR, Eickhoff SB, Liu B, Madsen KH, Jiang T, Fan L. Uncovering the genetic profiles underlying the intrinsic organization of the human cerebellum. Mol Psychiatry 2022; 27:2619-2634. [PMID: 35264730 DOI: 10.1038/s41380-022-01489-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 11/09/2022]
Abstract
The functional diversity of the human cerebellum is largely believed to be derived more from its extensive connections rather than being limited to its mostly invariant architecture. However, whether and how the determination of cerebellar connections in its intrinsic organization interact with microscale gene expression is still unknown. Here we decode the genetic profiles of the cerebellar functional organization by investigating the genetic substrates simultaneously linking cerebellar functional heterogeneity and its drivers, i.e., the connections. We not only identified 443 network-specific genes but also discovered that their co-expression pattern correlated strongly with intra-cerebellar functional connectivity (FC). Ninety of these genes were also linked to the FC of cortico-cerebellar cognitive-limbic networks. To further discover the biological functions of these genes, we performed a "virtual gene knock-out" by observing the change in the coupling between gene co-expression and FC and divided the genes into two subsets, i.e., a positive gene contribution indicator (GCI+) involved in cerebellar neurodevelopment and a negative gene set (GCI-) related to neurotransmission. A more interesting finding is that GCI- is significantly linked with the cerebellar connectivity-behavior association and many recognized brain diseases that are closely linked with the cerebellar functional abnormalities. Our results could collectively help to rethink the genetic substrates underlying the cerebellar functional organization and offer possible micro-macro interacted mechanistic interpretations of the cerebellum-involved high order functions and dysfunctions in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yaping Wang
- Sino-Danish Center, University of Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100190, Beijing, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Lin Chai
- University of Chinese Academy of Sciences, 100190, Beijing, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Congying Chu
- University of Chinese Academy of Sciences, 100190, Beijing, China. .,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China. .,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.
| | - Deying Li
- University of Chinese Academy of Sciences, 100190, Beijing, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Chaohong Gao
- Sino-Danish Center, University of Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100190, Beijing, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Xia Wu
- University of Chinese Academy of Sciences, 100190, Beijing, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Zhengyi Yang
- University of Chinese Academy of Sciences, 100190, Beijing, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Yu Zhang
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 311100, China
| | - Junhai Xu
- School of Computer Science and Technology, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin, 300350, China
| | - Jens Randel Nyengaard
- Sino-Danish Center, University of Chinese Academy of Sciences, 100190, Beijing, China.,Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, 8000, Aarhus, Denmark.,Department of Pathology, Aarhus University Hospital, 8200, Aarhus, Denmark
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425, Jülich, Germany.,Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, 100875, Beijing, China
| | - Kristoffer Hougaard Madsen
- Sino-Danish Center, University of Chinese Academy of Sciences, 100190, Beijing, China.,Department of Informatics and Mathematical Modelling, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, 2650, Hvidovre, Denmark
| | - Tianzi Jiang
- Sino-Danish Center, University of Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100190, Beijing, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Lingzhong Fan
- Sino-Danish Center, University of Chinese Academy of Sciences, 100190, Beijing, China. .,University of Chinese Academy of Sciences, 100190, Beijing, China. .,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China. .,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.
| |
Collapse
|