He Y, Wang W, Ma X, Duan Z, Wang B, Li M, Xu H. Discovery and Potential Functional Characterization of Long Noncoding RNAs Associated with Familial Acne Inversa with NCSTN Mutation.
Dermatology 2023;
240:119-131. [PMID:
37490873 DOI:
10.1159/000531978]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 07/06/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND
Long noncoding RNAs (lncRNAs) are associated with many dermatologic diseases. However, little is known about the regulatory function of lncRNAs in familial acne inversa (AI) patients with nicastrin (NCSTN) mutation.
OBJECTIVES
The aim of this study was to explore the regulatory function of lncRNAs in familial AI patients with NCSTN mutation.
METHODS
The expression profiles of lncRNAs and mRNAs in skin tissues from familial AI patients with NCSTN mutation and healthy individuals were analysed in this study via RNA sequencing (RNA-seq).
RESULTS
In total, 359 lncRNAs and 1,863 mRNAs were differentially expressed between the two groups. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the dysregulated mRNAs targeted by lncRNAs were mainly associated with the immune regulation, Staphylococcus aureus infection and B cell receptor signalling pathways. The lncRNA-miRNA-mRNA coexpression network contained 265 network pairs comprising 55 dysregulated lncRNAs, 11 miRNAs, and 74 mRNAs. Conservation analysis of the differentially expressed lncRNAs between familial AI patients with NCSTN mutation and Ncstn keratinocyte-specific knockout (NcstnΔKC) mice identified 6 lncRNAs with sequence conservation; these lncRNAs may participate in apoptosis, proliferation, and skin barrier function.
CONCLUSIONS
These findings provide a direction for exploring the regulatory mechanisms underlying the progression of familial AI patients with NCSTN mutation.
Collapse