1
|
Li D, Wang L, Jiang F, Zeng X, Xu Q, Zhang X, Zheng Q, Shao Z. Unveiling the microbial diversity across the northern Ninety East Ridge in the Indian Ocean. Front Microbiol 2024; 15:1436735. [PMID: 39380675 PMCID: PMC11458393 DOI: 10.3389/fmicb.2024.1436735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024] Open
Abstract
Prokaryotes play a crucial role in marine ecosystem health and drive biogeochemical processes. The northern Ninety East Ridge (NER) of the Indian Ocean, a pivotal yet understudied area for these cycles, has been the focus of our study. We employed high-throughput 16S rRNA gene sequencing to analyze 35 water samples from five stations along the ridge, categorized into three depth- and dissolved oxygen-level-based groups. Our approach uncovered a clear stratification of microbial communities, with key bioindicators such as Prochlorococcus MIT9313, Sva0996 marine group, and Candidatus Actinomarina in the upper layer; Ketobacter, Pseudophaeobacter, Nitrospina, and SAR324 clade in the middle layer; and Methylobacterium-Methylorubrum, Sphingomonas, Sphingobium, and Erythrobacter in the deep layer. Methylobacterium-Methylorubrum emerged as the most abundant bacterial genus, while Nitrosopumilaceae predominated among archaeal communities. The spatial and depth-wise distribution patterns revealed that Ketobacter was unique to the northern NER, whereas Methylobacterium-Methylorubrum, UBA10353, SAR324 clade, SAR406, Sva0996_marine_group, Candidatus Actinomarina were ubiquitous across various marine regions, exhibiting niche differentiation at the OTU level. Environmental factors, especially dissolved oxygen (DO), silicate, nitrate, and salinity, significantly influence community structure. These findings not only reveal the novelty and adaptability of the microbial ecosystem in the northern NER but also contribute to the broader understanding of marine microbial diversity and its response to environmental heterogeneity.
Collapse
Affiliation(s)
- Ding Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen, China
| | - Liping Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Fan Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen, China
| | - Xiang Zeng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Qinzeng Xu
- First Institute of Oceanography, Ministry of Natural Resources of PR China, Qingdao, Shandong, China
| | - Xuelei Zhang
- First Institute of Oceanography, Ministry of Natural Resources of PR China, Qingdao, Shandong, China
| | - Qiang Zheng
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen, China
| |
Collapse
|
2
|
Jiao N, Luo T, Chen Q, Zhao Z, Xiao X, Liu J, Jian Z, Xie S, Thomas H, Herndl GJ, Benner R, Gonsior M, Chen F, Cai WJ, Robinson C. The microbial carbon pump and climate change. Nat Rev Microbiol 2024; 22:408-419. [PMID: 38491185 DOI: 10.1038/s41579-024-01018-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 03/18/2024]
Abstract
The ocean has been a regulator of climate change throughout the history of Earth. One key mechanism is the mediation of the carbon reservoir by refractory dissolved organic carbon (RDOC), which can either be stored in the water column for centuries or released back into the atmosphere as CO2 depending on the conditions. The RDOC is produced through a myriad of microbial metabolic and ecological processes known as the microbial carbon pump (MCP). Here, we review recent research advances in processes related to the MCP, including the distribution patterns and molecular composition of RDOC, links between the complexity of RDOC compounds and microbial diversity, MCP-driven carbon cycles across time and space, and responses of the MCP to a changing climate. We identify knowledge gaps and future research directions in the role of the MCP, particularly as a key component in integrated approaches combining the mechanisms of the biological and abiotic carbon pumps for ocean negative carbon emissions.
Collapse
Affiliation(s)
- Nianzhi Jiao
- Innovation Research Center for Carbon Neutralization, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China.
- UN Global ONCE joint focal points at Shandong University, University of East Anglia, University of Maryland Center for Environmental Science, and Xiamen University, Xiamen, China.
| | - Tingwei Luo
- Innovation Research Center for Carbon Neutralization, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
- UN Global ONCE joint focal points at Shandong University, University of East Anglia, University of Maryland Center for Environmental Science, and Xiamen University, Xiamen, China
| | - Quanrui Chen
- Innovation Research Center for Carbon Neutralization, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
- UN Global ONCE joint focal points at Shandong University, University of East Anglia, University of Maryland Center for Environmental Science, and Xiamen University, Xiamen, China
| | - Zhao Zhao
- Innovation Research Center for Carbon Neutralization, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
- UN Global ONCE joint focal points at Shandong University, University of East Anglia, University of Maryland Center for Environmental Science, and Xiamen University, Xiamen, China
| | - Xilin Xiao
- Innovation Research Center for Carbon Neutralization, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
- UN Global ONCE joint focal points at Shandong University, University of East Anglia, University of Maryland Center for Environmental Science, and Xiamen University, Xiamen, China
| | - Jihua Liu
- UN Global ONCE joint focal points at Shandong University, University of East Anglia, University of Maryland Center for Environmental Science, and Xiamen University, Xiamen, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Zhimin Jian
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Shucheng Xie
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Helmuth Thomas
- Institute of Carbon Cycles, Helmholtz-Zentrum Hereon, Geesthacht, Germany
- Institut für Chemie und Biologie des Meeres (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Ronald Benner
- Department of Biological Sciences, School of the Earth, Ocean and Environment, University of South Carolina, Columbia, SC, USA
| | - Micheal Gonsior
- UN Global ONCE joint focal points at Shandong University, University of East Anglia, University of Maryland Center for Environmental Science, and Xiamen University, Xiamen, China
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, MD, USA
| | - Feng Chen
- UN Global ONCE joint focal points at Shandong University, University of East Anglia, University of Maryland Center for Environmental Science, and Xiamen University, Xiamen, China
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Wei-Jun Cai
- School of Marine Science and Policy, University of Delaware, Newark, DE, USA
| | - Carol Robinson
- UN Global ONCE joint focal points at Shandong University, University of East Anglia, University of Maryland Center for Environmental Science, and Xiamen University, Xiamen, China.
- Centre for Ocean and Atmospheric Sciences (COAS), School of Environmental Sciences, University of East Anglia, Norwich, UK.
| |
Collapse
|
3
|
Delpech LM, Tveit AT, Hodson AJ, Hand KP, Kalenitchenko D. Chemolithoautotrophic bacteria flourish at dark water-ice interfaces of an emerged Arctic cold seep. THE ISME JOURNAL 2024; 18:wrae170. [PMID: 39269636 PMCID: PMC11637994 DOI: 10.1093/ismejo/wrae170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/14/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Below their ice shells, icy moons may offer a source of chemical energy that could support microbial life in the absence of light. In the Arctic, past and present glacial retreat leads to isostatic uplift of sediments through which cold and methane-saturated groundwater travels. This fluid reaches the surface and freezes as hill-shaped icings during winter, producing dark ice-water interfaces above water ponds containing chemical energy sources. In one such system characterized by elevated methane concentrations - the Lagoon Pingo in Adventdalen, Svalbard, Norway (~10 mg/L CH4, <0.3 mg/L O2, -0.25°C, pH 7.9), we studied amplicons of the bacterial and archaeal (microbial) 16S rRNA gene and transcripts in the water pond and overlaying ice. We found that active chemolithoautotrophic sulfur-oxidizing microorganisms (Sulfurimonas, Thiomicrorhabdus) dominate a niche at the bottom of the ice that is in contact with the anoxic water reservoir. There, the growing ice offers surfaces that interface with water and hosts favorable physico-chemical conditions for sulfide oxidation. The detection of anaerobic methanotrophs further suggests that throughout the winter, a steady-state dark and cold methane sink occurs under the ice in two steps: first, methane is oxidized to carbon dioxide and sulfates are concomitantly reduced to sulfides by the activity of anaerobic methanotrophs (ANME) ANME-1a and sulfate-reducing bacteria (SRB) SEEP-SRB1 consortia; and second, energy from sulfides is used by sulfur-oxidizing microorganisms to fix carbon dioxide into organic carbon. Our results underscore that ice-covered and dark ecosystems are hitherto overlooked oases of microbial life and emphasize the need to study microbial communities in icy habitats.
Collapse
Affiliation(s)
- Lisa-Marie Delpech
- LIENSs Littoral Environnement et Sociétés, UMRi 7266 CNRS–La Rochelle Université, La Rochelle, 17000, France
- Department of Geosciences, UiT The Arctic University of Norway, Tromsø, 9010, Norway
- Department of Biology, École Normale Supérieure de Lyon, Lyon, 69007, France
| | - Alexander T Tveit
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, 9019, Norway
| | - Andrew J Hodson
- Department of Arctic Geology, UNIS The University Center in Svalbard, Longyearbyen, 9170, Svalbard, Norway
- Department of Civil Engineering and Environmental Science, Western Norway University of Applied Sciences, Sogndal, 6856, Norway
| | - Kevin P Hand
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, United States
| | - Dimitri Kalenitchenko
- LIENSs Littoral Environnement et Sociétés, UMRi 7266 CNRS–La Rochelle Université, La Rochelle, 17000, France
- Department of Geosciences, UiT The Arctic University of Norway, Tromsø, 9010, Norway
| |
Collapse
|
4
|
Holatko J, Brtnicky M, Mustafa A, Kintl A, Skarpa P, Ryant P, Baltazar T, Malicek O, Latal O, Hammerschmiedt T. Effect of Digestate Modified with Amendments on Soil Health and Plant Biomass under Varying Experimental Durations. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1027. [PMID: 36770034 PMCID: PMC9920836 DOI: 10.3390/ma16031027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/31/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
A digestate with amendments provides plants with available nutrients and improves the microbiological properties of treated soil. Modification of a digestate through the addition of a biochar and sulphur source is less well-known. This pot experiment aimed at comparing the short- and long-time fertilization effects of a digestate enriched with biochar, with elemental sulphur, or with a combination of both on soil health and plant biomass. The experiment was carried out with maize, cultivated twice (1st-12th week = pre-cultivation; re-sowing after shoot harvest, 13th-24th = main cultivation) in soil amended with prepared digestate. The digestate used in pre-cultivation was incubated untreated (D) and was then treated with biochar (D + B), with elemental sulphur at a low (LS) and high (HS) dose, or with a combination of both (D + B + LS and D + B + HS). An additional unamended digestate (D) was added to each soil variant before the main cultivation. The application of digestate with a high dose of elemental sulphur and biochar mediated the most significant differences in the soil. The increase (compared to the unamended soil) was of short-term type (+11% and +6% increased total nitrogen and carbon after 12 weeks), then of long-term type (+54% and +30% increased sulphur and arylsulfatase activity after 24 weeks), and later emerged in the 13th to the 24th week of the experiment (+57% and +32% non-inhibited urease, increased N-acetyl-β-D-glucosaminidase and phosphatase). No significant differences in the effect of the applied amendments on dry aboveground plant biomass were observed.
Collapse
Affiliation(s)
- Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Agrovyzkum Rapotin Ltd., Vyzkumniku 267, 788 13 Rapotin, Czech Republic
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Adnan Mustafa
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benatska 2, 128 00 Praha, Czech Republic
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Agricultural Research Ltd., Zahradni 400/1, 664 41 Troubsko, Czech Republic
| | - Petr Skarpa
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Pavel Ryant
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Tivadar Baltazar
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Ondrej Malicek
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Oldrich Latal
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Agrovyzkum Rapotin Ltd., Vyzkumniku 267, 788 13 Rapotin, Czech Republic
| | - Tereza Hammerschmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| |
Collapse
|