1
|
Ador T, Fournié M, Rigollet S, Counil C, Stupar V, Barbier EL, Pichon C, Delalande A. Ultrasound-Assisted Blood-Brain Barrier Opening Monitoring by Photoacoustic and Fluorescence Imaging Using Indocyanine Green. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:1059-1069. [PMID: 40155229 DOI: 10.1016/j.ultrasmedbio.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/18/2025] [Accepted: 02/28/2025] [Indexed: 04/01/2025]
Abstract
OBJECTIVE The blood-brain barrier (BBB) is a selectively permeable membrane that restricts drug delivery to the central nervous system. Focused ultrasound (FUS) combined with microbubbles (MBs) is a promising technique to transiently open the BBB, enabling therapeutic delivery. However, real-time monitoring of BBB permeability changes remains challenging. This study investigated the use of indocyanine green (ICG) as a bi-modal contrast agent for photoacoustic and fluorescence imaging to assess BBB opening and closure dynamics. METHODS BALB/c mice underwent FUS-mediated BBB opening with different doses of MBs and ICG administration. Photoacoustic and fluorescence imaging were performed at various time points post-FUS to evaluate ICG extravasation dynamics. Magnetic resonance imaging (MRI) with gadolinium contrast was used as the gold standard for BBB permeability assessment. The effect of MB dose and injection timing on BBB closure kinetics was analyzed. RESULTS Photoacoustic imaging provided reliable BBB monitoring within the first hour post-FUS, whereas fluorescence imaging was more effective at detecting ICG extravasation at 24 h. A strong correlation was observed between fluorescence intensity and MRI-based contrast enhancement, confirming BBB opening dynamics. BBB closure followed an exponential decay model, with a half-closure time of approximately 81 min. The degree of BBB opening was proportional to the MB dose administered. CONCLUSION ICG-based photoacoustic and fluorescence imaging provide a non-invasive and cost-effective alternative to MRI for monitoring FUS-induced BBB opening. These techniques offer complementary temporal windows for assessment, improving the precision of BBB permeability evaluation in preclinical and potentially clinical applications.
Collapse
Affiliation(s)
- Thomas Ador
- ART mRNA Inserm US55, Orléans, France; Université d'Orléans, LI²RSO, Orléans, France; Laboratory of Experimental and Molecular Immunology and Neuromodulation, UMR 7355 CNRS-Université d'Orléans, Orléans, France
| | | | - Sébastien Rigollet
- Université Grenoble Alpes, Inserm, Grenoble Institut Neurosciences, Grenoble, France; Image Guided Therapy, Pessac, France
| | - Claire Counil
- ART mRNA Inserm US55, Orléans, France; Université d'Orléans, LI²RSO, Orléans, France
| | - Vasile Stupar
- Université Grenoble Alpes, Inserm, Grenoble Institut Neurosciences, Grenoble, France; Université Grenoble Alpes, Inserm, CNRS, CHU Grenoble Alpes, IRMaGe, Grenoble, France
| | - Emmanuel L Barbier
- Université Grenoble Alpes, Inserm, Grenoble Institut Neurosciences, Grenoble, France; Université Grenoble Alpes, Inserm, CNRS, CHU Grenoble Alpes, IRMaGe, Grenoble, France
| | - Chantal Pichon
- ART mRNA Inserm US55, Orléans, France; Université d'Orléans, LI²RSO, Orléans, France; Institut Universitaire de France, Paris, France
| | - Anthony Delalande
- ART mRNA Inserm US55, Orléans, France; Université d'Orléans, LI²RSO, Orléans, France.
| |
Collapse
|
2
|
Chen Z, Sang L, Qixi Z, Li X, Liu Y, Bai Z. Ultrasound-responsive nanoparticles for imaging and therapy of brain tumors. Mater Today Bio 2025; 32:101661. [PMID: 40206140 PMCID: PMC11979416 DOI: 10.1016/j.mtbio.2025.101661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/26/2025] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
Central nervous system (CNS) cancers, particularly glioblastoma (GBM), are associated with high mortality and disability rates. Despite aggressive surgical resection, radiotherapy, and chemotherapy, patient survival remains poor. The blood-brain barrier (BBB) significantly impedes therapeutic efficacy, making BBB penetration a critical focus of research. Focused ultrasound (FUS) combined with microbubbles (MBs) can transiently open the BBB through mechanisms such as cavitation, modulation of tight junction protein expression, and enhanced vesicular transport in endothelial cells. This review highlights precision delivery and personalized treatment strategies under ultrasound visualization, including precise control of ultrasound parameters and modulation of the immune microenvironment. We discuss the applications of ultrasound-responsive nanoparticles in brain tumor therapy, including enhanced radiotherapy, gene delivery, immunotherapy, and sonodynamic therapy (SDT), with a particular emphasis on piezoelectric catalytic immunotherapy. Finally, we provide insights into the clinical translation potential of ultrasound-responsive nanoparticles for personalized and precision treatment of brain tumors.
Collapse
Affiliation(s)
- Zhiguang Chen
- Department of Ultrasound, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Liang Sang
- Department of Ultrasound, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Zhai Qixi
- Department of Ultrasound, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | | | | | | |
Collapse
|
3
|
Wen D, Yan R, He J, Gu L, Chen XY, Wang K. Investigating the efficacy of a photoacoustic probe in liver function assessment for diabetic mellitus. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 342:126490. [PMID: 40449462 DOI: 10.1016/j.saa.2025.126490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/25/2025] [Accepted: 05/27/2025] [Indexed: 06/03/2025]
Abstract
γ-Glutamyltransferase (GGT, EC number: 2.3.2.2) is an enzyme critical for glutathione metabolism and serves as a key biomarker for liver function and disease. Diabetes mellitus, a prevalent metabolic disorder, often complicates liver function and increases the challenge of accurately monitoring hepatic GGT levels due to fluctuating metabolic conditions. In this study, we introduce a sulfonate-modified hemicyanine dye-based probe, HDP-GGT, designed for the targeted and real-time assessment of GGT activity in the liver. HDP-GGT combines the fluorescence and photoacoustic advantages of hemicyanine dyes with a specific peptide sequence that enhances sensitivity and specificity for GGT detection. Utilizing both in vitro and in vivo methodologies, the sulfonate-modified HDP-GGT probe enables dual-modal imaging of hepatic and serum GGT activity by photoacoustic and fluorescence models, respectively. To evaluate the clinical translational potential of HDP-GGT, we applied it to detect GGT in mouse serum, finding that the fluorescence signal intensity was highest in the diabetes mellitus (DM) group and significantly reduced in the diabetes mellitus + metformin (DM + Met) group, suggesting that HDP-GGT has promising clinical application prospects. Our results indicate that HDP-GGT is a potent tool for non-invasive monitoring of liver health and could play a crucial role in diagnosing and managing liver-related disorders, particularly in the context of diabetes.
Collapse
Affiliation(s)
- Dake Wen
- Affiliated Children's Hospital of Jiangnan University, Wuxi 214000, China
| | - Ru Yan
- Affiliated Children's Hospital of Jiangnan University, Wuxi 214000, China
| | - Jian He
- Affiliated Children's Hospital of Jiangnan University, Wuxi 214000, China
| | - Ling Gu
- Affiliated Children's Hospital of Jiangnan University, Wuxi 214000, China
| | - Xu-Yang Chen
- Affiliated Children's Hospital of Jiangnan University, Wuxi 214000, China
| | - Kai Wang
- Affiliated Children's Hospital of Jiangnan University, Wuxi 214000, China.
| |
Collapse
|
4
|
Zhang Y, Liu K, Sun Q, Qi Y, Li F, Su X, Song M, Lv R, Sui H, Shi Y, Zhao L. Collagenase Degradable Biomimetic Nanocages Attenuate Porphyromonas gingivalis Mediated Neurocognitive Dysfunction via Targeted Intracerebral Antimicrobial Photothermal and Gas Therapy. ACS NANO 2025; 19:16448-16468. [PMID: 40285729 DOI: 10.1021/acsnano.4c17748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Porphyromonas gingivalis (P.g.), a pathogen linked to periodontitis, is reported to be associated with severe neurocognitive dysfunction. However, there are few reports focusing on improving neurological function in the brain by eliminating P.g.. Therefore, we developed a core-shell nanocomposite for targeted intracerebral P.g. clearance and ameliorating neurocognitive impairments, Pt-Au@C-P.g.-MM, consisting of platinum nanoparticles (Pt NPs) encapsulated within Au nanocages (Pt-Au) as the core and a shell made of collagen and macrophage membranes from macrophage pretreated with P.g. (C-P.g.-MM). This design enhanced the nanocomposite's ability to cross the blood-brain barrier (BBB) and specifically target intracerebral P.g. through coating of P.g.-MM. Pt-Au@C-P.g.-MM depended on collagen to neutralize excessive collagenase from P.g., promoting its directed migration toward P.g.. Au nanocages exhibited excellent photothermal effects under near-infrared (NIR) laser irradiation, while Pt NPs also provided an efficient antibacterial gas therapy by generating oxygen to expose anaerobic P.g.. As a result, Pt-Au@C-P.g.-MM contributed to a synergistic antibacterial therapy and significantly reduced P.g. mediated neurocognitive dysfunction in periodontitis mice induced by oral P.g. infection. Based on the insights provided by the transcriptome sequencing analysis, anti-P.g. activity of Pt-Au@C-P.g.-MM facilitated the transition of microglia from the M1 to M2 phenotype by stimulating the PI3K-Akt pathway and reducing neuronal damage through the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yifei Zhang
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, P. R. China
| | - Kang Liu
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, P. R. China
| | - Qing Sun
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, P. R. China
| | - Yao Qi
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, P. R. China
| | - Fang Li
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, P. R. China
| | - Xiangchen Su
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, P. R. China
| | - Mingzhu Song
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, P. R. China
| | - Ruizhen Lv
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, P. R. China
| | - Haijuan Sui
- Department of Pharmacology, Jinzhou Medical University, Jinzhou 121000, P. R. China
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, P. R. China
- Collaborative Innovation Center for Age-related Disease, Jinzhou Medical University, Jinzhou 121000, P. R. China
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, P. R. China
- Collaborative Innovation Center for Age-related Disease, Jinzhou Medical University, Jinzhou 121000, P. R. China
- Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou 121000, P. R. China
| |
Collapse
|
5
|
Tong S, Liu J, Chen Y, Xiao X, Li S, Song X, Yang H. Surface engineering of NIR-II luminescent gold nanoclusters for brain glioma-targeted imaging. NANOSCALE 2025; 17:10670-10676. [PMID: 40190226 DOI: 10.1039/d4nr05158k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Ultrasmall gold nanoclusters (AuNCs) with photoluminescence in the second near-infrared region (NIR-II) have emerged as promising probes for in vivo biomedical applications. However, it remains a challenge to utilize NIR-II-emitting AuNCs for imaging brain glioblastoma (GBM), which is highly lethal and hard to diagnose in time. Herein, we have presented systematic investigations on the brain delivery and GBM targeting efficacies of NIR-II-emitting AuNCs protected by different ligands. We first synthesized four types of AuNCs with surface coatings of small thiolated ligands and proteins, and then studied their in vitro penetration capability into the blood-brain barrier (BBB) and in vivo GBM targeting performances. It was found that the BBB permeability of AuNCs determined by the in vitro transwell model was not evidently affected by the surface ligands. Significantly, AuNCs protected by albumin exhibited notably extended blood circulation and less skull binding compared to those protected by small ligands, enabling superior in vivo brain GBM-targeted NIR-II PL imaging. We also modified the albumin-AuNCs with targeting peptides to improve in vivo imaging contrast. Additionally, AuNCs had negligible toxic effects on major organs as well as brain tissues and neurons, corroborating their good biocompatibility. This study examined the surface engineering of NIR-II luminescent AuNCs for brain GBM targeting, which may offer insights into the future design of AuNCs for bioapplications.
Collapse
Affiliation(s)
- Shufen Tong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Jie Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Yonghui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Xinyun Xiao
- School of Medical Imaging, Fujian Medical University, Fuzhou, Fujian 350122, China.
| | - Shihua Li
- School of Medical Imaging, Fujian Medical University, Fuzhou, Fujian 350122, China.
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
6
|
Yu B, Pang Z, Zhao J, Xue J, Lo H, Gu T, Zhang P, Tian J, Du GQ. Ischemic Myocardium Targeting Peptide-Guided Nanobubbles for Multimodal Imaging and Treatment of Coronary Microvascular Dysfunction. Adv Healthc Mater 2025; 14:e2404477. [PMID: 39853877 DOI: 10.1002/adhm.202404477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/02/2025] [Indexed: 01/26/2025]
Abstract
Coronary microvascular dysfunction (CMD) refers to clinical symptoms caused by structural and functional damage to coronary microcirculation. The timely and precise diagnosis of CMD-related myocardial ischemia is essential for improving patient prognosis. This study describes a method for the multimodal (fluorescence, ultrasonic, and photoacoustic) noninvasive imaging and treatment of CMD based on ischemic myocardium-targeting peptide (IMTP)-guided nanobubbles functionalized with indocyanine green (IMTP/ICG NBs) and characterizes their basic characteristics and in vitro imaging and targeting abilities. The IMTP/ICG NBs enable the accurate location of myocardial ischemia via photoacoustic imaging, and when loaded with tannic acid (TA), can be used to effectively treat myocardial ischemia and fibrosis in CMD mice, achieving an effect superior to that of free TA. The origin of this high therapeutic efficiency is revealed by transcriptomic and proteomic analyses. This investigation lays the groundwork for visual monitoring and the drug-targeted treatment of CMD.
Collapse
Affiliation(s)
- Bo Yu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Ziwei Pang
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jing Zhao
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Jingyi Xue
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Hsuan Lo
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Tiancheng Gu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ping Zhang
- Postgraduate Cultivation Base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou, 510000, China
| | - Jiawei Tian
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Guo-Qing Du
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| |
Collapse
|
7
|
Sharma S, Gone GB, Roychowdhury P, Kim HS, Chung SJ, Kuppusamy G, De A. Photodynamic and sonodynamic therapy synergy: mechanistic insights and cellular responses against glioblastoma multiforme. J Drug Target 2025; 33:458-472. [PMID: 39556529 DOI: 10.1080/1061186x.2024.2431676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Glioblastoma multiforme (GBM), the most aggressive form of brain cancer, poses substantial challenges to effective treatment due to its complex and infiltrative nature, making it difficult to manage. Photodynamic therapy (PDT) and sonodynamic therapy (SDT), have emerged as promising individual treatment options against GBM due to their least-invasive approach. However, both PDT and SDT have drawbacks that require careful consideration. A combination therapy using light and sound waves has gained attention, offering new avenues to overcome challenges from individual therapies. Sono-photodynamic therapy (SPDT) has been used against various tumours. Researchers are considering SPDT as a favourable alternative to the conventional therapies for GBM. SPDT offers complementary mechanisms of action, including the production of ROS, disruption of cellular structures, and induction of apoptosis, leading to enhanced tumour cell death. This review gives an insight about PDT/SDT and their limitations in GBM treatment and the need for combination therapy. We try to unveil the process of SPDT and explore the mechanism behind improved SPDT-meditated cell death in GBM cells by focusing on the ROS-mediated cell response occurring as a result of SPDT and discussing current modifications in the existing sensitisers for their optimal use in SPDT for GBM therapy.
Collapse
Affiliation(s)
- Swati Sharma
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Geetanjali B Gone
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Parikshit Roychowdhury
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sang Jeon Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Gowthmarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Anindita De
- Department of Pharmaceutics, School of Pharmacy, JSS University, Noida, Uttar Pradesh, India
- Department of Pharmacy, Ajou University, Suwon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
8
|
Xu Y, Zhang T, Li Z, Gao W, Guo K, Zhang Z, Zhang Z, Liu P. Fluorescence Endoscopy with Second Window Indocyanine Green for Surgical Resection of Malignant Brain Tumors. World Neurosurg 2025; 196:123766. [PMID: 39955047 DOI: 10.1016/j.wneu.2025.123766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
OBJECTIVE This study aimed to validate the clinical feasibility, safety, and effectiveness of using the fluorescence endoscopy with second window indocyanine green (FESWICG) technique for resection of malignant brain tumors. METHODS Twenty-two patients undergoing surgery for malignant brain tumor resection were examined. Intravenous ICG (250 mg) was administered within 24 hours prior to surgery. All procedures were performed under endoscopic guidance. The fluorescence intensity of the tumors was monitored using fluorescence mode endoscopy. Specimens including resection margins were harvested and submitted for histopathological analysis. The sensitivity and specificity of FESWICG were validated using contrast-enhanced cranial magnetic resonance imaging performed within 24 hours of surgery and histopathology. The Karnofsky performance scale was used to assess overall functional status before and after surgery. RESULTS The tumor diagnoses were as follows: glioma (n = 14), ependymoma (n = 1), metastasis (n = 5), lymphoma (n = 1), and choroid plexus papilloma (n = 1). Intraoperative tumor fluorescence was strong in 20 patients and weak in 2. Postoperative contrast-enhanced imaging revealed complete tumor resection in 18 patients (81.82%). Sixty-four tumor specimens were collected, including 42 obtained from tumor margins. Using histopathology as the reference, the sensitivity, specificity, positive predictive value, and negative predictive value of FESWICG for detection of malignant brain tumors were 91.42%, 41.38%, 65.31%, and 80%, respectively. The median Karnofsky performance scale score was 85 before surgery and 93 at the 3-month follow-up. CONCLUSIONS SWICG notably enhanced intraoperative visualization of malignant brain tumors, particularly the delineation between tumor and normal brain. Its utility for margin detection is promising. When utilized in conjunction with a full endoscopic system, the visual acuity and overall effectiveness of surgical procedures can be substantially enhanced. However, ICG remains a low-specificity technique.
Collapse
Affiliation(s)
- Yongqiang Xu
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Tao Zhang
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Zhuoqun Li
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Wenbo Gao
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Ke Guo
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Zhao Zhang
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Zhirou Zhang
- Department of Rehabilitation Therapeutics, Binzhou Medical University, Yantai, Shandong, China
| | - Pengfei Liu
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
9
|
Guo Q, Tang Y, Wang S, Xia X. Applications and enhancement strategies of ROS-based non-invasive therapies in cancer treatment. Redox Biol 2025; 80:103515. [PMID: 39904189 PMCID: PMC11847112 DOI: 10.1016/j.redox.2025.103515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
Reactive oxygen species (ROS) play a crucial role in the pathogenesis of cancer. Non-invasive therapies that promote intracellular ROS generation, including photodynamic therapy (PDT), sonodynamic therapy (SDT), and chemodynamic therapy (CDT), have emerged as novel approaches for cancer treatment. These therapies directly kill tumor cells by generating ROS, and although they show great promise in tumor treatment, many challenges remain to be addressed in practical applications. Firstly, the inherent complexity of the tumor microenvironment (TME), such as hypoxia and elevated glutathione (GSH) levels, hinders ROS generation, thereby significantly diminishing the efficacy of ROS-based therapies. In addition, these therapies are influenced by their intrinsic mechanisms. To overcome these limitations, various nanoparticle (NP) systems have been developed to improve the therapeutic efficacy of non-invasive therapies against tumors. This review first summarizes the mechanisms of ROS generation for each non-invasive therapy and their current limitations, with a particular focus on the enhancement strategies for each therapy based on NP systems. Additionally, various strategies to modulate the TME are highlighted. These strategies aim to amplify ROS generation in non-invasive therapies and enhance their anti-tumor efficiency. Finally, the current challenges and possible solutions for the clinical translation of ROS-based non-invasive therapies are also discussed.
Collapse
Affiliation(s)
- Qiuyan Guo
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Yingnan Tang
- School of Pharmacy, Hunan Vocational College of Science And Technology, Changsha, Hunan, 410208, China
| | - Shengmei Wang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
10
|
Meng Y, Gao J, Huang X, Liu P, Zhang C, Zhou P, Bai Y, Guo J, Zhou C, Li K, Huang F, Cao Y. Molecular Trojan Based on Membrane-Mimicking Conjugated Electrolyte for Stimuli-Responsive Drug Release. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415705. [PMID: 39950504 DOI: 10.1002/adma.202415705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/16/2025] [Indexed: 03/27/2025]
Abstract
Enhancing payload encapsulation stability while enabling controlled drug release are both critical objectives in drug delivery systems but are challenging to reconcile. This study introduces a zwitterionic conjugated electrolyte (CE) molecule named Zwit, which acts as a molecular Trojan by mimicking the lipid bilayers. When integrated into liposome membranes, Zwit rigidifies the bilayer structure likely due to its hydrophobic interactions providing structural support, thus inhibiting drug leakage. Upon 808 nm laser excitation, Zwit rapidly accelerates DOX release from liposome core, likely due to light-triggered conformational changes or photothermal effects that compromise membrane permeability. These findings demonstrate Zwit's ability to overcome the challenge of simultaneously preventing premature payload leakage and enabling stimuli-responsive drug release with a single component. Additionally, Zwit exhibits excellent biocompatibility with membranes, outperforming its quaternary ammonium counterpart and commonly used dye indocyanine green (ICG). By harnessing its NIR-II emission, Zwit enables durable in vivo biodistribution tracking of nanocarriers, whereas ICG suffers from significant dye leakage. In subcutaneous tumor models, the synergistic effects of chemotherapy and thermotherapy facilitated by this light-triggered system induced a potent antitumor immune response, further enhancing anticancer efficacy. This work underscores the potential of membrane-mimicking CEs as multifunctional tools in advanced drug delivery systems.
Collapse
Affiliation(s)
- Yingying Meng
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Ji Gao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Xiaoran Huang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Pengke Liu
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Chibin Zhang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Peirong Zhou
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yuanqing Bai
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jingjing Guo
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, P. R. China
| | - Cheng Zhou
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Kai Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
11
|
Hu D, Zha M, Zheng H, Gao D, Sheng Z. Recent Advances in Indocyanine Green-Based Probes for Second Near-Infrared Fluorescence Imaging and Therapy. RESEARCH (WASHINGTON, D.C.) 2025; 8:0583. [PMID: 39830366 PMCID: PMC11739436 DOI: 10.34133/research.0583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/11/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025]
Abstract
Fluorescence imaging, a highly sensitive molecular imaging modality, is being increasingly integrated into clinical practice. Imaging within the second near-infrared biological window (NIR-II; 1,000 to 1,700 nm), also referred to as shortwave infrared, has received substantial attention because of its markedly reduced autofluorescence, deeper tissue penetration, and enhanced spatiotemporal resolution as compared to traditional near-infrared (NIR) imaging. Indocyanine green (ICG), a US Food and Drug Administration-approved NIR fluorophore, has long been used in clinical applications, including blood vessel angiography, vascular perfusion monitoring, and tumor detection. Recent advancements in NIR-II imaging technology have revitalized interest in ICG, revealing its extended tail fluorescence beyond 1,000 nm and reaffirming its potential as a clinically translatable NIR-II fluorophore for in vivo imaging and theranostic applications for diagnosing various diseases. This review emphasizes the notable advances in the use of ICG and its derivatives for NIR-II imaging and image-guided therapy from both fundamental and clinical perspectives. We also provide a concise conclusion and discuss the challenges and future opportunities with NIR-II imaging using clinically approved fluorophores.
Collapse
Affiliation(s)
- Dehong Hu
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- State Key Laboratory of Biomedical lmaging Science and System, Shenzhen 518055, P. R. China
| | - Menglei Zha
- Dongguan Key Laboratory of Chronic Inflammatory Diseases, the First Dongguan Affiliated Hospital,
Guangdong Medical University, Dongguan 523710, P. R. China
| | - Hairong Zheng
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- State Key Laboratory of Biomedical lmaging Science and System, Shenzhen 518055, P. R. China
| | - Duyang Gao
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- State Key Laboratory of Biomedical lmaging Science and System, Shenzhen 518055, P. R. China
| | - Zonghai Sheng
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- State Key Laboratory of Biomedical lmaging Science and System, Shenzhen 518055, P. R. China
| |
Collapse
|
12
|
Li N, Wang M, Liu F, Wu P, Wu F, Xiao H, Kang Q, Li Z, Yang S, Wu G, Tan X, Yang Q. Bioorthogonal Engineering of Bacterial Outer Membrane Vesicles for NIR-II Fluorescence Imaging-Guided Synergistic Enhanced Immunotherapy. Anal Chem 2024; 96:19585-19596. [PMID: 39603824 DOI: 10.1021/acs.analchem.4c04449] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The efficacy of immunotherapy in treating triple-negative breast cancer (TNBC) has been restricted due to its low immunogenicity and suppressive immune microenvironment. Bacterial outer membrane vesicles (OMVs) have emerged as innovative immunotherapeutic agents in antitumor therapy by stimulating the innate immune system, but intricate modifications and undesirable multiple dose administration severely hinder their utility. Herein, a two-step bacterial metabolic labeling technique was utilized for the bioorthogonal engineering of OMVs. At first, d-propargylglycine (DPG, an alkyne-containing d-amino acid) was introduced into the incubation process of probiotic Escherichia coli 1917 (Ecn) to produce DPG-functionalized OMVs, which were subsequently conjugated with azide-functionalized new indocyanine green (IR820) to yield OMV-DPG-IR820. The combination of phototherapy and immunostimulation of OMV-DPG-IR820 effectively arouses adaptive immune responses, causing maturation of dendritic cells, infiltration of T cells, repolarization of the M2 macrophage to the M1 macrophage, and upregulation of inflammatory factors. Remarkably, OMV-DPG-IR820 demonstrated tumor-targeting capabilities with guidance provided by near-infrared II (NIR-II) fluorescence imaging, leading to remarkable inhibition on both primary and distant tumors and preventing metastasis without causing noticeable adverse reactions. This study elucidates a sophisticated bioorthogonal engineering strategy for the design and production of functionalized OMVs and provides novel perspectives on the microbiome-mediated reversal of TNBC through a precise and efficient immunotherapy.
Collapse
Affiliation(s)
- Na Li
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Minghui Wang
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Fen Liu
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Peixian Wu
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Fan Wu
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Hao Xiao
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qiang Kang
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zelong Li
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Sha Yang
- Pathology Research Group & Department of Pathology Institute of Basic Disease Sciences & School of Basic Medical Sciences, Xiangnan University, Chenzhou, Hunan 423000, China
| | - Guilong Wu
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaofeng Tan
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qinglai Yang
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
13
|
Huang W, Jin B, Gong H, Ali N, Jiang D, Shan T, Zhang L, Tian J, Zhang W. A tumor Microenvironment-triggered protein-binding Near-infrared-II Theranostic nanoplatform for Mild-Temperature photothermal therapy. J Colloid Interface Sci 2024; 680:375-388. [PMID: 39577235 DOI: 10.1016/j.jcis.2024.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
Photothermal therapy (PTT) has gained significant attention as a non-invasive treatment in clinical oncology. However, the translation of PTT into clinical practice remains constrained by three fundamental limitations: acquired thermal tolerance in tumor cells, restricted light penetration depth in biological matrices, and insufficient therapeutic outcomes from single-modality treatment. To address these issues, a strategy for forming in situ complexes between near-infrared-II (NIR-II) photothermal agents and proteins is developed, aimed at damaging protein conformation and enhancing PTT effectiveness. We developed a nanoplatform called PCy-SF, consisting of the NIR-II photothermal polymer (PCy) and sorafenib (SF). PCy-SF responds to the tumor microenvironment (TME), specifically releasing Cy-CHO and sorafenib from the assemblies. The released Cy-CHO covalently binds to proteins, forming Cy-Protein complexes that activate NIR-II fluorescence, facilitating NIR-II imaging-guided photothermal therapy. Concurrently, the released SF intensifies microvascular damage, synergizing with PTT for enhanced therapeutic efficacy. Notably, PCy-SF induces a strong anticancer immune response, effectively suppressing tumor recurrence and metastasis. This study introduces a promising protein deactivation strategy for achieving mild-temperature PTT, offering broader applicability of PTT and insights for sensitizing tumors to photothermal therapy. Together, this innovative approach combining NIR-II photothermal agents with protein complexation and a responsive nanoplatform enhances PTT precision and efficacy, demonstrating significant potential in the field of cancer nanomedicine.
Collapse
Affiliation(s)
- Wenlong Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Bo Jin
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Haobing Gong
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Nawab Ali
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Duoduo Jiang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Tongtong Shan
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Liangshun Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
14
|
Han B, Liu Y, Zhou Q, Yu Y, Liu X, Guo Y, Zheng X, Zhou M, Yu H, Wang W. The advance of ultrasound-enabled diagnostics and therapeutics. J Control Release 2024; 375:1-19. [PMID: 39208935 DOI: 10.1016/j.jconrel.2024.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/27/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Point-of-care ultrasound demonstrates significant potential in biomedical research due to its noninvasive, real-time visualization, cost-effectiveness, and other biological benefits. Ultrasound irradiation can precisely control the mechanical and physicochemical effects on pathogenic lesions, enabling real-time visualization, tunable tissue penetration depth, and therapeutic applications. This review summarizes recent advancements in ultrasound-enabled diagnostics and therapeutics, focusing on mechanochemical effects that can be directly integrated into biomedical applications. Additionally, the structure-functionality relationships of sonotheranostic nanoplatforms are systematically discussed, providing insights into the underlying biological effects. Finally, the limitations of current ultrasonic medicine are discussed, along with potential expansions to facilitate patient-centered translations.
Collapse
Affiliation(s)
- Biying Han
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yan Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Qianqian Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yuting Yu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Xingxing Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yu Guo
- State Key Laboratory of Chemical Biology & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Mengjiao Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Haijun Yu
- State Key Laboratory of Chemical Biology & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
15
|
Xu Y, Ding T, Chen X. Swimming short fibrous nasal drops for nose-to-brain drug delivery. Sci Bull (Beijing) 2024; 69:2153-2155. [PMID: 38845239 DOI: 10.1016/j.scib.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Affiliation(s)
- Yiru Xu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Tao Ding
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Xinliang Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China.
| |
Collapse
|
16
|
Wang J, Wang Q, Fu Y, Lu M, Chen L, Liu Z, Fu X, Du X, Yu B, Lu H, Cui W. Swimming short fibrous nasal drops achieving intraventricular administration. Sci Bull (Beijing) 2024; 69:1249-1262. [PMID: 38522998 DOI: 10.1016/j.scib.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/06/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
Adequate drug delivery across the blood-brain barrier (BBB) is a critical factor in treating central nervous system (CNS) disorders. Inspired by swimming fish and the microstructure of the nasal cavity, this study is the first to develop swimming short fibrous nasal drops that can directly target the nasal mucosa and swim in the nasal cavity, which can effectively deliver drugs to the brain. Briefly, swimming short fibrous nasal drops with charged controlled drug release were fabricated by electrospinning, homogenization, the π-π conjugation between indole group of fibers, the benzene ring of leucine-rich repeat kinase 2 (LRRK2) inhibitor along with charge-dipole interaction between positively charged poly-lysine (PLL) and negatively charged surface of fibers; this enabled these fibers to stick to nasal mucosa, prolonged the residence time on mucosa, and prevented rapid mucociliary clearance. In vitro, swimming short fibrous nasal drops were biocompatible and inhibited microglial activation by releasing an LRRK2 inhibitor. In vivo, luciferase-labelled swimming short fibrous nasal drops delivered an LRRK2 inhibitor to the brain through the nasal mucosa, alleviating cognitive dysfunction caused by sepsis-associated encephalopathy by inhibiting microglial inflammation and improving synaptic plasticity. Thus, swimming short fibrous nasal drops is a promising strategy for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiuyun Wang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yifei Fu
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liang Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhiheng Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Xiaohan Fu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiyu Du
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Buwei Yu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Han Lu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
17
|
Qin JP, Hu CA, Lin CQ, Pan CY. Lead-free Perovskite with Distorted [InX 6] 3- Octahedron Induced by Organic Cation and Enhanced PLQY by Sb Doping. Inorg Chem 2024; 63:8764-8774. [PMID: 38686432 DOI: 10.1021/acs.inorgchem.4c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
In-based halide perovskites have attracted a lot of attention because of their unique broadband emission properties. Herein, a series of In-based hybrid perovskites of (H2MP)2InCl7·H2O (1), (H2EP)2InCl7·H2O (2), (H2MP)2InBr7·H2O (3), and (H2EP)2InBr7·H2O (4) were synthesized under the control of halogen ions and organic cations. 1, 2, and 4 exhibit obvious photoluminescence properties with peaks at 392, 442, and 652 nm, respectively. The effects of the different components on the crystal structure and photoluminescence properties are discussed by calculating the structural distortion of the [InX6]3- octahedron. The photoluminescence properties of 1 and 4 were significantly improved after Sb3+ doping with PLQY values of 57.12 and 41.53%. Finally, a white LED was successfully fabricated with the two doped compounds coated onto the 365 nm blue LED chip.
Collapse
Affiliation(s)
- Jian-Peng Qin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Ghuangzhou 510006, China
| | - Cheng-An Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Ghuangzhou 510006, China
| | - Chang-Qing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Ghuangzhou 510006, China
| | - Chun-Yang Pan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Ghuangzhou 510006, China
| |
Collapse
|
18
|
Perolina E, Meissner S, Raos B, Harland B, Thakur S, Svirskis D. Translating ultrasound-mediated drug delivery technologies for CNS applications. Adv Drug Deliv Rev 2024; 208:115274. [PMID: 38452815 DOI: 10.1016/j.addr.2024.115274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/18/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Ultrasound enhances drug delivery into the central nervous system (CNS) by opening barriers between the blood and CNS and by triggering release of drugs from carriers. A key challenge in translating setups from in vitro to in vivo settings is achieving equivalent acoustic energy delivery. Multiple devices have now been demonstrated to focus ultrasound to the brain, with concepts emerging to also target the spinal cord. Clinical trials to date have used ultrasound to facilitate the opening of the blood-brain barrier. While most have focused on feasibility and safety considerations, therapeutic benefits are beginning to emerge. To advance translation of these technologies for CNS applications, researchers should standardise exposure protocol and fine-tune ultrasound parameters. Computational modelling should be increasingly used as a core component to develop both in vitro and in vivo setups for delivering accurate and reproducible ultrasound to the CNS. This field holds promise for transformative advancements in the management and pharmacological treatment of complex and challenging CNS disorders.
Collapse
Affiliation(s)
- Ederlyn Perolina
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Svenja Meissner
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Brad Raos
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Bruce Harland
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Sachin Thakur
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand.
| |
Collapse
|
19
|
Eleni Karakatsani M, Estrada H, Chen Z, Shoham S, Deán-Ben XL, Razansky D. Shedding light on ultrasound in action: Optical and optoacoustic monitoring of ultrasound brain interventions. Adv Drug Deliv Rev 2024; 205:115177. [PMID: 38184194 PMCID: PMC11298795 DOI: 10.1016/j.addr.2023.115177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Monitoring brain responses to ultrasonic interventions is becoming an important pillar of a growing number of applications employing acoustic waves to actuate and cure the brain. Optical interrogation of living tissues provides a unique means for retrieving functional and molecular information related to brain activity and disease-specific biomarkers. The hybrid optoacoustic imaging methods have further enabled deep-tissue imaging with optical contrast at high spatial and temporal resolution. The marriage between light and sound thus brings together the highly complementary advantages of both modalities toward high precision interrogation, stimulation, and therapy of the brain with strong impact in the fields of ultrasound neuromodulation, gene and drug delivery, or noninvasive treatments of neurological and neurodegenerative disorders. In this review, we elaborate on current advances in optical and optoacoustic monitoring of ultrasound interventions. We describe the main principles and mechanisms underlying each method before diving into the corresponding biomedical applications. We identify areas of improvement as well as promising approaches with clinical translation potential.
Collapse
Affiliation(s)
- Maria Eleni Karakatsani
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Héctor Estrada
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Shy Shoham
- Department of Ophthalmology and Tech4Health and Neuroscience Institutes, NYU Langone Health, NY, USA
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| |
Collapse
|
20
|
Tian M, Ma Z, Yang GZ. Micro/nanosystems for controllable drug delivery to the brain. Innovation (N Y) 2024; 5:100548. [PMID: 38161522 PMCID: PMC10757293 DOI: 10.1016/j.xinn.2023.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/26/2023] [Indexed: 01/03/2024] Open
Abstract
Drug delivery to the brain is crucial in the treatment for central nervous system disorders. While significant progress has been made in recent years, there are still major challenges in achieving controllable drug delivery to the brain. Unmet clinical needs arise from various factors, including controlled drug transport, handling large drug doses, methods for crossing biological barriers, the use of imaging guidance, and effective models for analyzing drug delivery. Recent advances in micro/nanosystems have shown promise in addressing some of these challenges. These include the utilization of microfluidic platforms to test and validate the drug delivery process in a controlled and biomimetic setting, the development of novel micro/nanocarriers for large drug loads across the blood-brain barrier, and the implementation of micro-intervention systems for delivering drugs through intraparenchymal or peripheral routes. In this article, we present a review of the latest developments in micro/nanosystems for controllable drug delivery to the brain. We also delve into the relevant diseases, biological barriers, and conventional methods. In addition, we discuss future prospects and the development of emerging robotic micro/nanosystems equipped with directed transportation, real-time image guidance, and closed-loop control.
Collapse
Affiliation(s)
- Mingzhen Tian
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhichao Ma
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang-Zhong Yang
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
21
|
Yang YC, Zhu Y, Sun SJ, Zhao CJ, Bai Y, Wang J, Ma LT. ROS regulation in gliomas: implications for treatment strategies. Front Immunol 2023; 14:1259797. [PMID: 38130720 PMCID: PMC10733468 DOI: 10.3389/fimmu.2023.1259797] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023] Open
Abstract
Gliomas are one of the most common primary malignant tumours of the central nervous system (CNS), of which glioblastomas (GBMs) are the most common and destructive type. The glioma tumour microenvironment (TME) has unique characteristics, such as hypoxia, the blood-brain barrier (BBB), reactive oxygen species (ROS) and tumour neovascularization. Therefore, the traditional treatment effect is limited. As cellular oxidative metabolites, ROS not only promote the occurrence and development of gliomas but also affect immune cells in the immune microenvironment. In contrast, either too high or too low ROS levels are detrimental to the survival of glioma cells, which indicates the threshold of ROS. Therefore, an in-depth understanding of the mechanisms of ROS production and scavenging, the threshold of ROS, and the role of ROS in the glioma TME can provide new methods and strategies for glioma treatment. Current methods to increase ROS include photodynamic therapy (PDT), sonodynamic therapy (SDT), and chemodynamic therapy (CDT), etc., and methods to eliminate ROS include the ingestion of antioxidants. Increasing/scavenging ROS is potentially applicable treatment, and further studies will help to provide more effective strategies for glioma treatment.
Collapse
Affiliation(s)
- Yu-Chen Yang
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
| | - Yu Zhu
- College of Health, Dongguan Polytechnic, Dongguan, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Si-Jia Sun
- Department of Postgraduate Work, Xi’an Medical University, Xi’an, China
| | - Can-Jun Zhao
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
| | - Yang Bai
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Jin Wang
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Air Force Medical University (Fourth Military Medical University), Xi’an, China
- Shaanxi Key Laboratory of Free Radical and Medicine, Xi’an, China
| | - Li-Tian Ma
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province, Xi’an, China
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
| |
Collapse
|
22
|
Zheng J, Zhu H, Guo W, Gao C, Guo J, Sun L, Xu G, Wang Z, Dai B, Gu N, He X. Investigation of sponge medium for efficient concurrent tumor treating fields and radiotherapy for glioblastomas. NANOSCALE 2023; 15:17839-17849. [PMID: 37882243 DOI: 10.1039/d3nr04228f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Realizing precise therapy for glioblastomas (GBMs), a kind of high-frequency malignant brain tumor, is of great importance in improving the overall survival (OS) of patients. With relentless efforts made in the past few years, a sponge medium has been introduced into concurrent tumor treating fields (TTFields) and radiotherapy to enhance therapy efficacy for GBMs, and some progresses have been witnessed. However, the specific physical and chemical characteristics of the sponge that can be used for GBMs have not been reported as far as we know. Therefore, this study aims to develop a simple yet robust method to select a candidate sponge medium and verify its safety in advanced concurrent TTFields and radiotherapy for GBMs through interdisciplinary investigation among materials science, medical physics, and clinical radiation oncology. Significantly, latex-free polyurethane (PU) sponges with a Hounsfield unit (HU) value lower than -750, which exhibit almost no negative influence on planning computed tomography (CT) imaging and radiotherapy dosimetry, are demonstrated to be available for concurrent TTFields and radiotherapy for GBMs. Moreover, in clinical research, the achieved clear CT images, negligible scalp toxicity, lower residual positioning errors, and high compliant rate of 82% over the selected representative sponge sample corroborate the availability and safety of PU sponges in practical applications for GBM treatment.
Collapse
Affiliation(s)
- Jiajun Zheng
- Jiangsu Cancer Hospital, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China.
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China.
| | - Huanfeng Zhu
- Jiangsu Cancer Hospital, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| | - Wenjie Guo
- Jiangsu Cancer Hospital, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| | - Chenchen Gao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Jiahao Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Li Sun
- Jiangsu Cancer Hospital, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| | - Geng Xu
- Jiangsu Cancer Hospital, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| | - Zhi Wang
- The First Affiliated Hospital of Anhui Medical University, Nanjing 230022, China
| | - Baoying Dai
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Ning Gu
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China.
- Medical School, Nanjing University, Nanjing 210093, China
| | - Xia He
- Jiangsu Cancer Hospital, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| |
Collapse
|
23
|
Song X, Qian H, Yu Y. Nanoparticles Mediated the Diagnosis and Therapy of Glioblastoma: Bypass or Cross the Blood-Brain Barrier. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302613. [PMID: 37415556 DOI: 10.1002/smll.202302613] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Glioblastoma is one of the most aggressive central nervous system malignancies with high morbidity and mortality. Current clinical approaches, including surgical resection, radiotherapy, and chemotherapy, are limited by the difficulty of targeting brain lesions accurately, leading to disease recurrence and fatal outcomes. The lack of effective treatments has prompted researchers to continuously explore novel therapeutic strategies. In recent years, nanomedicine has made remarkable progress and expanded its application in brain drug delivery, providing a new treatment for brain tumors. Against this background, this article reviews the application and progress of nanomedicine delivery systems in brain tumors. In this paper, the mechanism of nanomaterials crossing the blood-brain barrier is summarized. Furthermore, the specific application of nanotechnology in glioblastoma is discussed in depth.
Collapse
Affiliation(s)
- Xiaowei Song
- Department of Radiology, Anhui Provincial Institute of Translational Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, P. R. China
- Research Center of Clinical Medical Imaging, Hefei, 230022, China
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230011, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, 230011, China
| | - Yongqiang Yu
- Department of Radiology, Anhui Provincial Institute of Translational Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, P. R. China
- Research Center of Clinical Medical Imaging, Hefei, 230022, China
| |
Collapse
|
24
|
Ma Y, Liu L, Ye Z, Xu L, Li Y, Liu S, Song G, Zhang XB. Engineering of cyanine-based nanoplatform with tunable response toward reactive species for ratiometric NIR-II fluorescent imaging in mice. Sci Bull (Beijing) 2023; 68:2382-2390. [PMID: 37679256 DOI: 10.1016/j.scib.2023.08.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/05/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023]
Abstract
High-quality second near-infrared (NIR-II) nanoprobes are of great significance for real-time bioimaging and medical diagnosis. Cyanine is an important class of fluorophores to construct activatable probes; however, there are still significant challenges hindering their biological applications, including weak fluorescence in aqueous solution, instability, and insufficient specificity. Herein, an integrated engineering strategy is conducted to develop the cyanine-based activatable NIR-II nanoplatforms with bright, stable emission and high specificity. Specifically, poly(styrene-co-maleic anhydride) (PSMA) is employed to encapsulate NIR-II fluorescent molecules (IR1048) to render the stable and bright NIR-II nanoparticles (PSMA@IR1048 NPs). By charge-modulated strategy, a series of cyanine-fluorophores are loaded on the surface of PSMA@IR1048 NPs and exhibit tunable response toward reactive species. Combing those two strategies, NIR-II ratiometric fluorescent nanoprobes (RNPs, including RNP1, RNP2, and RNP3) are constructed; among them, RNP2 displays hypochlorous acid (HClO) responsive performance and generates a higher NIR-II fluorescent ratio (FL2/FL1) signal. Such nanoprobe can reliably report the pathological HClO level in models of diabetic liver injury and lower limb ischemia-reperfusion (I/R) injury mice. Our study paves an engineering strategy to construct cyanine-based stable, bright, and specific NIR-II probes for bioimaging.
Collapse
Affiliation(s)
- Yuan Ma
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Liuhui Liu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhifei Ye
- Department of Chemistry, Case Western Reserve University, Cleveland OH 44106, USA
| | - Li Xu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yuhang Li
- Department of Hepatobiliary Surgery/Central Laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410082, China
| | - Sulai Liu
- Department of Hepatobiliary Surgery/Central Laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410082, China.
| | - Guosheng Song
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
25
|
Hu L, Shi L, Hu T, Chen P, Guo T, Wang C, Yang R, Ying L. Enhanced photothermal therapy performance of D-A conjugated polymers based on [1,2,3]triazolo[4,5- g]quinoxaline by manipulating molecular motion. J Mater Chem B 2023; 11:8985-8993. [PMID: 37702077 DOI: 10.1039/d3tb01438j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Donor-acceptor (D-A) conjugated polymers can favor the nonradiative thermal dissipation process, due to the formation of an intramolecular charge transfer (ICT) state resulting from the electron cloud delocalization of the HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital). Thus, to realize a high extinction coefficient and excellent photothermal conversion ability for a single photothermal agent, donor-acceptor type conjugated polymers PBDT-QTz and PCDT-QTz, comprising a new electron-deficient unit 2-(2-decyltetradecyl)-6,7-dimethyl-2H-[1,2,3]triazolo [4,5-g] quinoxaline (QTz) as the acceptor and 4,8-di(thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene (BDT) or 4H-cyclopenta[2,1-b:3,4-b'] dithiophene (CDT) as the donor, are designed and synthesized by manipulating intramolecular motion. The high extinction coefficient of 28.5 L g-1 cm-1 at 850 nm and the optimal photothermal conversion efficiency of 64.3% under an 808 nm laser are achieved based on PBDT-QTz. Consequently, PBDT-QTz nanoparticles can be successfully used for both in vitro and in vivo experiments. After intravenous administration and 808 nm laser irradiation, HeLa tumor-bearing mice achieve complete tumor remission without recurrence. The results provide an efficient photothermal agent by manipulating molecular motion.
Collapse
Affiliation(s)
- Liwen Hu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Flexible Display Materials and Technology Co-Innovation Centre of Hubei Province, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China
| | - Linrui Shi
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Tianze Hu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Peiling Chen
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Ting Guo
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Chunxiao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen, University, Guangzhou 510060, China
| | - Renqiang Yang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Flexible Display Materials and Technology Co-Innovation Centre of Hubei Province, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China
| | - Lei Ying
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
- South China Institute of Collaborative Innovation, Dongguan 523808, China
| |
Collapse
|
26
|
Dunn B, Hanafi M, Hummel J, Cressman JR, Veneziano R, Chitnis PV. NIR-II Nanoprobes: A Review of Components-Based Approaches to Next-Generation Bioimaging Probes. Bioengineering (Basel) 2023; 10:954. [PMID: 37627839 PMCID: PMC10451329 DOI: 10.3390/bioengineering10080954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Fluorescence and photoacoustic imaging techniques offer valuable insights into cell- and tissue-level processes. However, these optical imaging modalities are limited by scattering and absorption in tissue, resulting in the low-depth penetration of imaging. Contrast-enhanced imaging in the near-infrared window improves imaging penetration by taking advantage of reduced autofluorescence and scattering effects. Current contrast agents for fluorescence and photoacoustic imaging face several limitations from photostability and targeting specificity, highlighting the need for a novel imaging probe development. This review covers a broad range of near-infrared fluorescent and photoacoustic contrast agents, including organic dyes, polymers, and metallic nanostructures, focusing on their optical properties and applications in cellular and animal imaging. Similarly, we explore encapsulation and functionalization technologies toward building targeted, nanoscale imaging probes. Bioimaging applications such as angiography, tumor imaging, and the tracking of specific cell types are discussed. This review sheds light on recent advancements in fluorescent and photoacoustic nanoprobes in the near-infrared window. It serves as a valuable resource for researchers working in fields of biomedical imaging and nanotechnology, facilitating the development of innovative nanoprobes for improved diagnostic approaches in preclinical healthcare.
Collapse
Affiliation(s)
- Bryce Dunn
- Department of Bioengineering, George Mason University, Fairfax, VA 22030, USA (R.V.)
| | - Marzieh Hanafi
- Department of Bioengineering, George Mason University, Fairfax, VA 22030, USA (R.V.)
| | - John Hummel
- Department of Physics, George Mason University, Fairfax, VA 22030, USA
| | - John R. Cressman
- Department of Physics, George Mason University, Fairfax, VA 22030, USA
| | - Rémi Veneziano
- Department of Bioengineering, George Mason University, Fairfax, VA 22030, USA (R.V.)
| | - Parag V. Chitnis
- Department of Bioengineering, George Mason University, Fairfax, VA 22030, USA (R.V.)
| |
Collapse
|
27
|
Ji Z, Zheng J, Ma Y, Lei H, Lin W, Huang J, Yang H, Zhang G, Li B, Shu B, Du X, Zhang J, Lin H, Liao Y. Emergency Treatment and Photoacoustic Assessment of Spinal Cord Injury Using Reversible Dual-Signal Transform-Based Selenium Antioxidant. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207888. [PMID: 37127878 DOI: 10.1002/smll.202207888] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Spinal cord injury (SCI), following explosive oxidative stress, causes an abrupt and irreversible pathological deterioration of the central nervous system. Thus, preventing secondary injuries caused by reactive oxygen species (ROS), as well as monitoring and assessing the recovery from SCI are critical for the emergency treatment of SCI. Herein, an emergency treatment strategy is developed for SCI based on the selenium (Se) matrix antioxidant system to effectively inhibit oxidative stress-induced damage and simultaneously real-time evaluate the severity of SCI using a reversible dual-photoacoustic signal (680 and 750 nm). Within the emergency treatment and photoacoustic severity assessment (ETPSA) strategy, the designed Se loaded boron dipyrromethene dye with a double hydroxyl group (Se@BDP-DOH) is simultaneously used as a sensitive reporter group and an excellent antioxidant for effectively eliminating explosive oxidative stress. Se@BDP-DOH is found to promote the recovery of both spinal cord tissue and locomotor function in mice with SCI. Furthermore, ETPSA strategy synergistically enhanced ROS consumption via the caveolin 1 (Cav 1)-related pathways, as confirmed upon treatment with Cav 1 siRNA. Therefore, the ETPSA strategy is a potential tool for improving emergency treatment and photoacoustic assessment of SCI.
Collapse
Affiliation(s)
- Zhisheng Ji
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, P. R. China
| | - Judun Zheng
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, P. R. China
| | - Yanming Ma
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, P. R. China
| | - Hongyi Lei
- Department of Anesthesiology, Longgang District Central Hospital of Shenzhen, Shenzhen, 518100, P. R. China
| | - Weiqiang Lin
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, P. R. China
| | - Jialin Huang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, P. R. China
| | - Hua Yang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, P. R. China
| | - Guowei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, P. R. China
| | - Bin Li
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, P. R. China
| | - Bowen Shu
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, P. R. China
| | - Xianjin Du
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Jian Zhang
- Department of Biomedical Engineering, School of Basic Medical Science, Guang-zhou Medical University, Guangzhou, 511436, P. R. China
| | - Hongsheng Lin
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, P. R. China
| | - Yuhui Liao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, P. R. China
- Department of Anesthesiology, Longgang District Central Hospital of Shenzhen, Shenzhen, 518100, P. R. China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, P. R. China
| |
Collapse
|
28
|
Qin Q, Zhou Y, Li P, Liu Y, Deng R, Tang R, Wu N, Wan L, Ye M, Zhou H, Wang Z. Phase-transition nanodroplets with immunomodulatory capabilities for potentiating mild magnetic hyperthermia to inhibit tumour proliferation and metastasis. J Nanobiotechnology 2023; 21:131. [PMID: 37069614 PMCID: PMC10108485 DOI: 10.1186/s12951-023-01885-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/06/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Magnetic hyperthermia (MHT)-mediated thermal ablation therapy has promising clinical applications in destroying primary tumours. However, traditional MHT still presents the challenges of damage to normal tissues adjacent to the treatment site and the destruction of tumour-associated antigens due to its high onset temperature (> 50 °C). In addition, local thermal ablation of tumours often exhibits limited therapeutic inhibition of tumour metastasis. RESULTS To address the above defects, a hybrid nanosystem (SPIOs + RPPs) was constructed in which phase transition nanodroplets with immunomodulatory capabilities were used to potentiate supermagnetic iron oxide nanoparticle (SPIO)-mediated mild MHT (< 44 °C) and further inhibit tumour proliferation and metastasis. Magnetic-thermal sensitive phase-transition nanodroplets (RPPs) were fabricated from the immune adjuvant resiquimod (R848) and the phase transition agent perfluoropentane (PFP) encapsulated in a PLGA shell. Because of the cavitation effect of microbubbles produced by RPPs, the temperature threshold of MHT could be lowered from 50℃ to approximately 44℃ with a comparable effect, enhancing the release and exposure of damage-associated molecular patterns (DAMPs). The exposure of calreticulin (CRT) on the cell membrane increased by 72.39%, and the released high-mobility group B1 (HMGB1) increased by 45.84% in vivo. Moreover, the maturation rate of dendritic cells (DCs) increased from 4.17 to 61.33%, and the infiltration of cytotoxic T lymphocytes (CTLs) increased from 10.44 to 35.68%. Under the dual action of mild MHT and immune stimulation, contralateral and lung metastasis could be significantly inhibited after treatment with the hybrid nanosystem. CONCLUSION Our work provides a novel strategy for enhanced mild magnetic hyperthermia immunotherapy and ultrasound imaging with great clinical translation potential.
Collapse
Affiliation(s)
- Qiaoxi Qin
- Department of Ultrasound, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yang Zhou
- Department of Ultrasound, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China.
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Pan Li
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing, 400010, China
| | - Ying Liu
- Department of Ultrasound, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
- Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing, 400010, China
| | - Ruxi Deng
- Department of Ultrasound, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Rui Tang
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing, 400010, China
| | - Nianhong Wu
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing, 400010, China
| | - Li Wan
- Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing, 400010, China
- Department of Health Management (Physical Examination) Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Ming Ye
- Department of Ultrasound, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Hong Zhou
- Department of Ultrasound, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Zhiming Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
29
|
Awen A, Hu D, Gao D, Wang Z, Wu Y, Zheng H, Guan L, Mu Y, Sheng Z. Dual-modal molecular imaging and therapeutic evaluation of coronary microvascular dysfunction using indocyanine green-doped targeted microbubbles. Biomater Sci 2023; 11:2359-2371. [PMID: 36883518 DOI: 10.1039/d2bm02155b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Coronary microvascular dysfunction (CMD), which causes a series of cardiovascular diseases, seriously endangers human health. However, precision diagnosis of CMD is still challenging due to the lack of sensitive probes and complementary imaging technologies. Herein, we demonstrate indocyanine green-doped targeted microbubbles (named T-MBs-ICG) as dual-modal probes for highly sensitive near-infrared (NIR) fluorescence imaging and high-resolution ultrasound imaging of CMD in mouse models. In vitro results show that T-MBs-ICG can specifically target fibrin, a specific CMD biomarker, via the cysteine-arginine-glutamate-lysine-alanine (CREKA) peptide modified on the surface of microbubbles. We further employ T-MBs-ICG to achieve NIR fluorescence imaging of injured myocardial tissue in a CMD mouse model, leading to a signal-to-background ratio (SBR) of up to 50, which is 20 fold higher than that of the non-targeted group. Furthermore, ultrasound molecular imaging of T-MBs-ICG is obtained within 60 s after intravenous injection, providing molecular information on ventricular and myocardial structures and fibrin with a resolution of 1.033 mm × 0.466 mm. More importantly, we utilize comprehensive dual-modal imaging of T-MBs-ICG to evaluate the therapeutic efficacy of rosuvastatin, a cardiovascular drug for the clinical treatment of CMD. Overall, the developed T-MBs-ICG probes with good biocompatibility exhibit great potential in the clinical diagnosis of CMD.
Collapse
Affiliation(s)
- Alimina Awen
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, Xinjiang, 830011, P. R. China.
| | - Dehong Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China.
| | - Duyang Gao
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China.
| | - Zihang Wang
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, Xinjiang, 830011, P. R. China.
| | - Yayun Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China.
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China.
| | - Lina Guan
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, Xinjiang, 830011, P. R. China.
| | - Yuming Mu
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, Xinjiang, 830011, P. R. China.
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China.
| |
Collapse
|