1
|
Wen Y, Cao Y, Ren H, Du X, Guo J, Wu Z, Liu W, Du J, Zhang Y. Ferroelectric Optical Memristors Enabled by Non-Volatile Electro-Optic Effect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417658. [PMID: 39776037 DOI: 10.1002/adma.202417658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/19/2024] [Indexed: 01/11/2025]
Abstract
Memristors enable non-volatile memory and neuromorphic computing. Optical memristors are the fundamental element for programmable photonic integrated circuits due to their high-bandwidth computing, low crosstalk, and minimal power consumption. Here, an optical memristor enabled by a non-volatile electro-optic (EO) effect, where refractive index modulation under zero field is realized by deliberate control of domain alignment in the ferroelectric material Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT) is proposed. The non-volatile EO memristor is designed exclusively for the modulation of the optical phase without degrading the optical transparency, and it allows the support for deterministic and repeated non-volatile multilevel EO states. A non-volatile tunable waveplate composed of the optical memrisor for free-space optics, which allows for deterministic multilevel, and non-volatile phase shifts from 0 to π/2 is presented. The state switching rate of the memristor is less than 100 ms, with a switching energy consumption of 234 nJ, and the states can be retained for up to 12 h without requiring static power consumption. These results demonstrate a novel approach to fully realizing non-volatile optical memristors, where only optical phase modulation is involved, providing unprecedented opportunities for the development of new ferroelectric memristors.
Collapse
Affiliation(s)
- Yiyang Wen
- Institute of Modern Optics & Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, P. R. China
| | - Yilin Cao
- State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, P. R. China
| | - Hongda Ren
- Institute of Modern Optics & Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, P. R. China
| | - Xiaona Du
- Institute of Photoelectric Thin Film Devices and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Jiaxing Guo
- Institute of Modern Optics & Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, P. R. China
| | - Zhenping Wu
- State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, P. R. China
| | - Weiwei Liu
- Institute of Modern Optics & Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, P. R. China
| | - Jiangbing Du
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yang Zhang
- Institute of Modern Optics & Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
2
|
Du T, Luo M, Ma H, Jiang X, Zhang Z, Peng Z, Huang P, Zou H, Yang J. Real-time channel selection in multi-mode multiplexing optical interconnection implemented by hybrid algorithm and material system. OPTICS EXPRESS 2024; 32:21400-21411. [PMID: 38859494 DOI: 10.1364/oe.521562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024]
Abstract
Multi-mode multiplexing optical interconnection (MMOI) has been widely used as a new technology that can significantly expand communication bandwidth. However, the constant-on state of each channel in the existing MMOI systems leads to serious interference for receivers when extracting and processing information, necessitating introducing real-time selective-on function for each channel in MMOI systems. To achieve this goal, combining several practical requirements, we propose a real-time selective mode switch based on phase-change materials, which can individually tune the passing/blocking of different modes in the bus waveguide. We utilize our proposed particle swarm optimization algorithm with embedded neural network surrogate models (NN-in-PSO) to design this mode switch. The proposed NN-in-PSO significantly reduces the optimization cost, enabling multi-dimensional simultaneous optimization. The resulting mode switch offers several advantages, including ultra-compactness, rapid tuning, nonvolatility, and large extinction ratio. Then, we demonstrate the real-time channel selection function by integrating the mode switch into the MMOI system. Finally, we prove the fabricating robustness of the proposed mode switch, which paves the way for its large-scale application.
Collapse
|
3
|
Fang Z, Chen R, Fröch JE, Tanguy QAA, Khan AI, Wu X, Tara V, Manna A, Sharp D, Munley C, Miller F, Zhao Y, Geiger S, Böhringer KF, Reynolds MS, Pop E, Majumdar A. Nonvolatile Phase-Only Transmissive Spatial Light Modulator with Electrical Addressability of Individual Pixels. ACS NANO 2024; 18:11245-11256. [PMID: 38639708 DOI: 10.1021/acsnano.4c00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Active metasurfaces with tunable subwavelength-scale nanoscatterers are promising platforms for high-performance spatial light modulators (SLMs). Among the tuning methods, phase-change materials (PCMs) are attractive because of their nonvolatile, threshold-driven, and drastic optical modulation, rendering zero-static power, crosstalk immunity, and compact pixels. However, current electrically controlled PCM-based metasurfaces are limited to global amplitude modulation, which is insufficient for SLMs. Here, an individual-pixel addressable, transmissive metasurface is experimentally demonstrated using the low-loss PCM Sb2Se3 and doped silicon nanowire heaters. The nanowires simultaneously form a diatomic metasurface, supporting a high-quality-factor (∼406) quasi-bound-state-in-the-continuum mode. A global phase-only modulation of ∼0.25π (∼0.2π) in simulation (experiment) is achieved, showing ten times enhancement. A 2π phase shift is further obtained using a guided-mode resonance with enhanced light-Sb2Se3 interaction. Finally, individual-pixel addressability and SLM functionality are demonstrated through deterministic multilevel switching (ten levels) and tunable far-field beam shaping. Our work presents zero-static power transmissive phase-only SLMs, enabled by electrically controlled low-loss PCMs and individual meta-molecule addressable metasurfaces.
Collapse
Affiliation(s)
- Zhuoran Fang
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Rui Chen
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Johannes E Fröch
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Quentin A A Tanguy
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Asir Intisar Khan
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xiangjin Wu
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Virat Tara
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Arnab Manna
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - David Sharp
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Christopher Munley
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Forrest Miller
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
- The Charles Stark Draper Laboratory, Cambridge, Massachusetts 02139, United States
| | - Yang Zhao
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Sarah Geiger
- The Charles Stark Draper Laboratory, Cambridge, Massachusetts 02139, United States
| | - Karl F Böhringer
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
- Institute for Nano-engineered Systems, University of Washington, Seattle, Washington 98195, United States
| | - Matthew S Reynolds
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Eric Pop
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Arka Majumdar
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
4
|
Alquliah A, Ha J, Ndao A. Multi-channel broadband nonvolatile programmable modal switch. OPTICS EXPRESS 2024; 32:10979-10999. [PMID: 38570958 DOI: 10.1364/oe.517313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/20/2024] [Indexed: 04/05/2024]
Abstract
Mode-division multiplexing (MDM) in chip-scale photonics is paramount to sustain data capacity growth and reduce power consumption. However, its scalability hinges on developing efficient and dynamic modal switches. Existing active modal switches suffer from substantial static power consumption, large footprints, and narrow bandwidth. Here, we present, for the first time, to the best of our knowledge, a novel multiport, broadband, non-volatile, and programmable modal switch designed for on-chip MDM systems. Our design leverages the unique properties of integrating nanoscale phase-change materials (PCM) within a silicon photonic architecture. This enables independent manipulation of spatial modes, allowing for dynamic, non-volatile, and selective routing to six distinct output ports. Crucially, our switch outperforms current dynamic modal switches by offering non-volatile, energy-efficient multiport functionality and excels in performance metrics. Our switch exhibits exceptional broadband operating bandwidth exceeding 70 nm, with low loss (< 1 dB), and a high extinction ratio (> 10 dB). Our framework provides a step forward in chip-scale MDM, paving the way for future green and scalable data centers and high-performance computers.
Collapse
|
5
|
Tripathi D, Vyas HS, Kumar S, Panda SS, Hegde R. Recent developments in Chalcogenide phase change material-based nanophotonics. NANOTECHNOLOGY 2023; 34:502001. [PMID: 37595569 DOI: 10.1088/1361-6528/acf1a7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 08/18/2023] [Indexed: 08/20/2023]
Abstract
There is now a deep interest in actively reconfigurable nanophotonics as they will enable the next generation of optical devices. Of the various alternatives being explored for reconfigurable nanophotonics, Chalcogenide phase change materials (PCMs) are considered highly promising owing to the nonvolatile nature of their phase change. Chalcogenide PCM nanophotonics can be broadly classified into integrated photonics (with guided wave light propagation) and Meta-optics (with free space light propagation). Despite some early comprehensive reviews, the pace of development in the last few years has shown the need for a topical review. Our comprehensive review covers recent progress on nanophotonic architectures, tuning mechanisms, and functionalities in tunable PCM Chalcogenides. In terms of integrated photonics, we identify novel PCM nanoantenna geometries, novel material utilization, the use of nanostructured waveguides, and sophisticated excitation pulsing schemes. On the meta-optics front, the breadth of functionalities has expanded, enabled by exploring design aspects for better performance. The review identifies immediate, and intermediate-term challenges and opportunities in (1) the development of novel chalcogenide PCM, (2) advance in tuning mechanism, and (3) formal inverse design methods, including machine learning augmented inverse design, and provides perspectives on these aspects. The topical review will interest researchers in further advancing this rapidly growing subfield of nanophotonics.
Collapse
Affiliation(s)
- Devdutt Tripathi
- Department of Electrical Engineering, IIT Gandhinagar, 382355, India
| | | | - Sushil Kumar
- Department of Electrical Engineering, IIT Gandhinagar, 382355, India
| | | | - Ravi Hegde
- Department of Electrical Engineering, IIT Gandhinagar, 382355, India
| |
Collapse
|