1
|
Oliveira CEDS, Sena Oliveira TJS, Jalal A, Fernandes GC, Bastos ADC, da Silva MR, Sant’Ana GR, Aguilar JV, de Camargos LS, Zoz T, Teixeira Filho MCM. Inoculation and co-inoculation of lettuce and arugula hydroponically influence nitrogen metabolism, plant growth, nutrient acquisition and photosynthesis. FRONTIERS IN PLANT SCIENCE 2025; 16:1547821. [PMID: 40308300 PMCID: PMC12040907 DOI: 10.3389/fpls.2025.1547821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025]
Abstract
The objective of this study was to investigate the effects of single and combined inoculations of A. brasilense, B. subtilis and P. fluorescens on lettuce and arugula grown in a hydroponic system. The study was carried out in a greenhouse and was designed in randomized blocks with five replications. The treatments consisted of inoculation with A. brasilense, B. subtilis and P. fluorescens and co-inoculation with A. brasilense + B. subtilis, A. brasilense + P. fluorescens, B. subtilis + P. fluorescens and A. brasilense + B. subtilis + P. fluorescens via nutrient solution. An increase in the length and fresh mass of the shoot and leaf chlorophyll concentrations of arugula and lettuce was observed under co-inoculations of A. brasilense + P. fluorescens and B. subtilis + P. fluorescens. Greater length, fresh mass and volume of the lettuce root system were observed under the co-inoculations of A. brasilense + B. subtilis, A. brasilense + P. fluorescens and B. subtilis + P. fluorescens in arugula under the inoculations of A. brasilense and A. brasilense + P. fluorescens. Greater nitrate reductase activity was detected in leaves, and lower nitrate accumulation was detected in lettuce and arugula under inoculations with A. brasilense, P. fluorescens and B. subtilis + P. fluorescens. The greatest accumulation of N, P, K, Ca and Mg in the lettuce shoot was obtained under inoculation with P. fluorescens, A. brasilense + P. fluorescens and B. subtilis + P. fluorescens. Co-inoculation with A. brasilense + P. fluorescens and B. subtilis + P. fluorescens was the most efficient combination for increasing the growth, nutrient acquisition and functioning of nitrogen metabolism in arugula lettuce plants.
Collapse
Affiliation(s)
| | - Thaissa Julyanne Soares Sena Oliveira
- Department of Plant Protection, Rural Engineering and Soils, São Paulo State University (UNESP), School of Engineering, Ilha Solteira, São Paulo, Brazil
| | - Arshad Jalal
- The BioActives Lab, Center for Desert Agriculture (CDA) Division of Biological and Environmental Sciences (BESE) King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Guilherme Carlos Fernandes
- Department of Plant Protection, Rural Engineering and Soils, São Paulo State University (UNESP), School of Engineering, Ilha Solteira, São Paulo, Brazil
| | - Andréa de Castro Bastos
- Department of Plant Protection, Rural Engineering and Soils, São Paulo State University (UNESP), School of Engineering, Ilha Solteira, São Paulo, Brazil
- Salesian Auxilium Catholic University Center, Araçatuba, São Paulo, Brazil
| | - Marcelo Rinaldi da Silva
- Department of Plant Protection, Rural Engineering and Soils, São Paulo State University (UNESP), School of Engineering, Ilha Solteira, São Paulo, Brazil
| | - Gabriela Rodrigues Sant’Ana
- Department of Agronomy, State University of Mato Grosso do Sul – UEMS, Cassilândia, Mato Grosso do Sul, Brazil
| | - Jailson Vieira Aguilar
- Department of Biology and Zootechny, São Paulo State University (UNESP), School of Engineering, Ilha Solteira, São Paulo, Brazil
| | - Liliane Santos de Camargos
- Department of Biology and Zootechny, São Paulo State University (UNESP), School of Engineering, Ilha Solteira, São Paulo, Brazil
| | - Tiago Zoz
- Department of Agronomy, State University of Mato Grosso do Sul – UEMS, Mundo Novol, Mato Grosso do Sul, Brazil
| | | |
Collapse
|
2
|
Oliveira CEDS, Gato IMB, Jalal A, Girardi VDAM, Oliveira JR, Tamburi KV, Caetano GC, Oliveira RM, Aguilar JV, Camargos LSD, Teixeira Filho MCM. Pseudomonas fluorescens
rates increase nitrate reductase activity and reduce shoot nitrate accumulation in hydroponic lettuce. JOURNAL OF PLANT NUTRITION 2025; 48:208-221. [DOI: 10.1080/01904167.2024.2399289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 08/20/2024] [Indexed: 01/14/2025]
Affiliation(s)
| | - Isabela Martins Bueno Gato
- Department of Plant Health, Rural Engineering and Soils, São Paulo State University - UNESP-FEIS, School of Engineering
| | - Arshad Jalal
- Department of Plant Health, Rural Engineering and Soils, São Paulo State University - UNESP-FEIS, School of Engineering
| | | | - Júlia Revolti Oliveira
- Department of Plant Health, Rural Engineering and Soils, São Paulo State University - UNESP-FEIS, School of Engineering
| | - Karen Vicentini Tamburi
- Department of Plant Health, Rural Engineering and Soils, São Paulo State University - UNESP-FEIS, School of Engineering
| | - Geovana Cunha Caetano
- Department of Plant Health, Rural Engineering and Soils, São Paulo State University - UNESP-FEIS, School of Engineering
| | - Rafaela Marega Oliveira
- Department of Plant Health, Rural Engineering and Soils, São Paulo State University - UNESP-FEIS, School of Engineering
| | - Jailson Vieira Aguilar
- Department of Biology and Zootechny, Lab of Plant Morphology and Anatomy/Lab Plant Metabolism and Physiology, São Paulo State University - UNESP-FEIS, School of Engineering
| | - Liliane Santos de Camargos
- Department of Biology and Zootechny, Lab of Plant Morphology and Anatomy/Lab Plant Metabolism and Physiology, São Paulo State University - UNESP-FEIS, School of Engineering
| | | |
Collapse
|
3
|
Wichaphian A, Kaewman N, Pathom-Aree W, Phinyo K, Pekkoh J, Chromkaew Y, Cheirsilp B, Srinuanpan S. Zero-waste biorefining co-products from ultrasonically assisted deep eutectic solvent-pretreated Chlorella biomass: Sustainable production of biodiesel and bio-fertilizer. BIORESOURCE TECHNOLOGY 2024; 408:131163. [PMID: 39079573 DOI: 10.1016/j.biortech.2024.131163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Microalgal biomass is gaining increasing attention to produce high-value co-products. This study proposes integrating Chlorella microalgal biomass into a zero-waste biorefining system, aiming to produce biodiesel and biofertilizer. It investigates optimal conditions for ultrasound-assisted deep eutectic solvent (DES) pretreatment and lipid recovery to enhance the extraction of lipids. Optimal DES pretreatment was identified as a 1.6:1 acetic acid-to-choline chloride molar ratio, 0.36 g biomass loading, and 2.50 min of pretreatment. Lipid recovery succeeded with a 10-minute extraction time and a 1:3 methanol-to-butanol volume ratio. These conditions yielded biodiesel-quality lipids at 139.52 mg/g microalgal biomass with superior fuel characteristics. The de-oiled microalgal biomass residue exhibited promise as a lettuce biofertilizer, enhancing photosynthetic pigments but potentially reducing yields by 40 %. The study also notes changes in rhizosphere microbial communities, indicating both stimulatory and inhibitory effects on beneficial microbes. This study has the potential to enhance sustainability in energy, agriculture, and the environment.
Collapse
Affiliation(s)
- Antira Wichaphian
- Master of Science Program in Applied Microbiology (International Program), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Microbial Biorefinery and Biochemical Process Engineering Research Group, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nitiphong Kaewman
- Master of Science Program in Applied Microbiology (International Program), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kittiya Phinyo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Office of Research Administration, Office of the University, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yupa Chromkaew
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Benjamas Cheirsilp
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, International Program of Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Microbial Biorefinery and Biochemical Process Engineering Research Group, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Office of Research Administration, Office of the University, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
4
|
Jalal A, Júnior EF, Teixeira Filho MCM. Interaction of Zinc Mineral Nutrition and Plant Growth-Promoting Bacteria in Tropical Agricultural Systems: A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:571. [PMID: 38475420 PMCID: PMC10935411 DOI: 10.3390/plants13050571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
The relationship between zinc mineral nutrition and plant growth-promoting bacteria (PGPB) is pivotal in enhancing agricultural productivity, especially in tropical regions characterized by diverse climatic conditions and soil variability. This review synthesizes and critically evaluates current knowledge regarding the synergistic interaction between zinc mineral nutrition and PGPB in tropical agricultural systems. Zinc is an essential and fundamental micronutrient for various physiological and biochemical processes in plants. Its deficiency affects plant growth and development, decreasing yields and nutritional quality. In tropical regions, where soil zinc availability is often limited or imbalanced, the PGPB, through different mechanisms such as Zn solubilization; siderophore production; and phytohormone synthesis, supports Zn uptake and assimilation, thereby facilitating the adverse effects of zinc deficiency in plants. This review outlines the impacts of Zn-PGPB interactions on plant growth, root architecture, and productivity in tropical agricultural systems. The positive relationship between PGPB and plants facilitates Zn uptake and improves nutrient use efficiency, overall crop performance, and agronomic biofortification. In addition, this review highlights the importance of considering indigenous PGPB strains for specific tropical agroecosystems, acknowledging their adaptability to local conditions and their potential in sustainable agricultural practices. It is concluded that Zn fertilizer and PGPBs have synergistic interactions and can offer promising avenues for sustainable agriculture, addressing nutritional deficiencies, improving crop resilience, and ensuring food security.
Collapse
Affiliation(s)
- Arshad Jalal
- School of Engineering, Department of Plant Health, Soils and Rural Engineering, São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil;
| | | | | |
Collapse
|
5
|
Oliveira CEDS, Jalal A, Aguilar JV, de Camargos LS, Zoz T, Ghaley BB, Abdel-Maksoud MA, Alarjani KM, AbdElgawad H, Teixeira Filho MCM. Yield, nutrition, and leaf gas exchange of lettuce plants in a hydroponic system in response to Bacillus subtilis inoculation. FRONTIERS IN PLANT SCIENCE 2023; 14:1248044. [PMID: 37954988 PMCID: PMC10634435 DOI: 10.3389/fpls.2023.1248044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023]
Abstract
Inoculation with Bacillus subtilis is a promising approach to increase plant yield and nutrient acquisition. In this context, this study aimed to estimate the B. subtilis concentration that increases yield, gas exchange, and nutrition of lettuce plants in a hydroponic system. The research was carried out in a greenhouse in Ilha Solteira, Brazil. A randomized block design with five replications was adopted. The treatments consisted of B. subtilis concentrations in nutrient solution [0 mL "non-inoculated", 7.8 × 103, 15.6 × 103, 31.2 × 103, and 62.4 × 103 colony forming units (CFU) mL-1 of nutrient solution]. There was an increase of 20% and 19% in number of leaves and 22% and 25% in shoot fresh mass with B. subtilis concentrations of 15.6 × 103 and 31.2 × 103 CFU mL-1 as compared to the non-inoculated plants, respectively. Also, B. subtilis concentration at 31.2 × 103 CFU mL-1 increased net photosynthesis rate by 95%, intercellular CO2 concentration by 30%, and water use efficiency by 67% as compared to the non-inoculated treatments. The concentration of 7.8 × 103 CFU mL-1 improved shoot accumulation of Ca, Mg, and S by 109%, 74%, and 69%, when compared with non-inoculated plants, respectively. Inoculation with B. subtilis at 15.6 × 103 CFU mL-1 provided the highest fresh leaves yield while inoculation at 15.6 × 103 and 31.2 × 103 CFU mL-1 increased shoot fresh mass and number of leaves. Concentrations of 7.8 × 103 and 15.6 × 103 increased shoot K accumulation. The concentrations of 7.8 × 103, 15.6 × 103, and 31.2 × 103 CFU mL-1 increased shoot N accumulation in hydroponic lettuce plants.
Collapse
Affiliation(s)
- Carlos Eduardo da Silva Oliveira
- Department of Plant Protection, Rural Engineering and Soils, School of Engineering, São Paulo State University - UNESP-FEIS, Ilha Solteira, São Paulo, Brazil
| | - Arshad Jalal
- Department of Plant Protection, Rural Engineering and Soils, School of Engineering, São Paulo State University - UNESP-FEIS, Ilha Solteira, São Paulo, Brazil
| | - Jailson Vieira Aguilar
- Department of Biology and Zootechnics, Lab of Plant Morphology and Anatomy/Lab Plant Metabolism and Physiology, School of Engineering, São Paulo State University - UNESP-FEIS, Ilha Solteira, São Paulo, Brazil
| | - Liliane Santos de Camargos
- Department of Biology and Zootechnics, Lab of Plant Morphology and Anatomy/Lab Plant Metabolism and Physiology, School of Engineering, São Paulo State University - UNESP-FEIS, Ilha Solteira, São Paulo, Brazil
| | - Tiago Zoz
- Department of Crop Science, State University of Mato Grosso do Sul – UEMS, Mundo Novo, Mato Grosso do Sul, Brazil
| | - Bhim Bahadur Ghaley
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Mostafa A. Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Hamada AbdElgawad
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Marcelo Carvalho Minhoto Teixeira Filho
- Department of Plant Protection, Rural Engineering and Soils, School of Engineering, São Paulo State University - UNESP-FEIS, Ilha Solteira, São Paulo, Brazil
| |
Collapse
|
6
|
da Silva Oliveira CE, Jalal A, Vitória LS, Giolo VM, Oliveira TJSS, Aguilar JV, de Camargos LS, Brambilla MR, Fernandes GC, Vargas PF, Zoz T, Filho MCMT. Inoculation with Azospirillum brasilense Strains AbV5 and AbV6 Increases Nutrition, Chlorophyll, and Leaf Yield of Hydroponic Lettuce. PLANTS (BASEL, SWITZERLAND) 2023; 12:3107. [PMID: 37687354 PMCID: PMC10490540 DOI: 10.3390/plants12173107] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/05/2023] [Accepted: 08/06/2023] [Indexed: 09/10/2023]
Abstract
Inoculation with Azospirillum brasilense has promisingly increased plant yield and nutrient acquisition. The study aimed to estimate the dose of A. brasilense that increases yield, gas exchange, nutrition, and foliar nitrate reduction. The research was carried out in a greenhouse at Ilha Solteira, in a hydroponic system in randomized blocks with four replicates. The treatments consisted of doses of inoculation with A. brasilense strains AbV5 and AbV6 via nutrient solution (0, 8, 16, 32, and 64 mL 100 L-1). Inoculation with A. brasilense at calculated doses between 20 and 44 mL provided the highest fresh and dry mass of shoots and roots, number of leaves, and leaf yield. In addition, the calculated doses of inoculation with A. brasilense increased the accumulation of N, P, K, Ca, Mg, S, B, Fe, Mn, and Zn in shoots and roots, except the accumulation of Ca in roots. It also increased cell membrane integrity index (15%), relative water content (13%), net photosynthesis rate (85%), intracellular CO2 concentration (15%), total chlorophyll (46%), stomatal conductance (56%), transpiration (15%), and water use efficiency (59%). Hence, inoculation with A. brasilense at doses between 20 and 44 mL 100 L-1 is considered the best approach for increasing the growth, yield, accumulation of nutrients, and gas exchange of hydroponically grown iceberg lettuce.
Collapse
Affiliation(s)
- Carlos Eduardo da Silva Oliveira
- Department of Plant Protection, Rural Engineering and Soils, Faculty of Engineering, São Paulo State University—UNESP-FEIS, Ilha Solteira 15385-000, SP, Brazil; (A.J.); (L.S.V.); (V.M.G.); (T.J.S.S.O.); (G.C.F.)
| | - Arshad Jalal
- Department of Plant Protection, Rural Engineering and Soils, Faculty of Engineering, São Paulo State University—UNESP-FEIS, Ilha Solteira 15385-000, SP, Brazil; (A.J.); (L.S.V.); (V.M.G.); (T.J.S.S.O.); (G.C.F.)
| | - Letícia Schenaide Vitória
- Department of Plant Protection, Rural Engineering and Soils, Faculty of Engineering, São Paulo State University—UNESP-FEIS, Ilha Solteira 15385-000, SP, Brazil; (A.J.); (L.S.V.); (V.M.G.); (T.J.S.S.O.); (G.C.F.)
| | - Victoria Moraes Giolo
- Department of Plant Protection, Rural Engineering and Soils, Faculty of Engineering, São Paulo State University—UNESP-FEIS, Ilha Solteira 15385-000, SP, Brazil; (A.J.); (L.S.V.); (V.M.G.); (T.J.S.S.O.); (G.C.F.)
| | - Thaissa Julyanne Soares Sena Oliveira
- Department of Plant Protection, Rural Engineering and Soils, Faculty of Engineering, São Paulo State University—UNESP-FEIS, Ilha Solteira 15385-000, SP, Brazil; (A.J.); (L.S.V.); (V.M.G.); (T.J.S.S.O.); (G.C.F.)
| | - Jailson Vieira Aguilar
- Department of Biology and Zootechny, Faculty of Engineering, São Paulo State University—UNESP-FEIS, Ilha Solteira 15385-000, SP, Brazil; (J.V.A.); (L.S.d.C.); (M.R.B.)
| | - Liliane Santos de Camargos
- Department of Biology and Zootechny, Faculty of Engineering, São Paulo State University—UNESP-FEIS, Ilha Solteira 15385-000, SP, Brazil; (J.V.A.); (L.S.d.C.); (M.R.B.)
| | - Matheus Ribeiro Brambilla
- Department of Biology and Zootechny, Faculty of Engineering, São Paulo State University—UNESP-FEIS, Ilha Solteira 15385-000, SP, Brazil; (J.V.A.); (L.S.d.C.); (M.R.B.)
| | - Guilherme Carlos Fernandes
- Department of Plant Protection, Rural Engineering and Soils, Faculty of Engineering, São Paulo State University—UNESP-FEIS, Ilha Solteira 15385-000, SP, Brazil; (A.J.); (L.S.V.); (V.M.G.); (T.J.S.S.O.); (G.C.F.)
| | - Pablo Forlan Vargas
- Tropical Root and Starches Center (CERAT), Faculty of Agricultural Science, São Paulo State University—UNESP-FCA, Botucatu 18610-034, SP, Brazil;
| | - Tiago Zoz
- Unit of Mundo Novo, Department of Crop Science, State University of Mato Grosso do Sul—UEMS, Mundo Novo 79980-000, MS, Brazil;
| | - Marcelo Carvalho Minhoto Teixeira Filho
- Department of Plant Protection, Rural Engineering and Soils, Faculty of Engineering, São Paulo State University—UNESP-FEIS, Ilha Solteira 15385-000, SP, Brazil; (A.J.); (L.S.V.); (V.M.G.); (T.J.S.S.O.); (G.C.F.)
| |
Collapse
|