1
|
Zupanič Pajnič I, Mlinšek T, Počivavšek T, Leskovar T. Genetic sexing of subadult skeletal remains. Sci Rep 2023; 13:20463. [PMID: 37993531 PMCID: PMC10665466 DOI: 10.1038/s41598-023-47836-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023] Open
Abstract
When subadult skeletons need to be identified, biological sex diagnosis is one of the first steps in the identification process. Sex assessment of subadults using morphological features is unreliable, and molecular genetic methods were applied in this study. Eighty-three ancient skeletons were used as models for poorly preserved DNA. Three sex-informative markers on the Y and X chromosome were used for sex identification: a qPCR test using the PowerQuant Y target included in PowerQuant System (Promega), the amelogenin test included in ESI 17 Fast STR kit (Promega), and a Y-STR amplification test using the PowerPlex Y-23 kit (Promega). Sex was successfully determined in all but five skeletons. Successful PowerQuant Y-target, Y-amelogenin, and Y-chromosomal STR amplifications proved the presence of male DNA in 35 skeletons, and in 43 subadults female sex was established. No match was found between the genetic profiles of subadult skeletons, and the elimination database and negative control samples produced no profiles, indicating no contamination issue. Our study shows that genetic sex identification is a very successful approach for biological sexing of subadult skeletons whose sex cannot be assessed by anthropological methods. The results of this study are applicable for badly preserved subadult skeletons from routine forensic casework.
Collapse
Affiliation(s)
- Irena Zupanič Pajnič
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia.
| | - Teo Mlinšek
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Tadej Počivavšek
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Tamara Leskovar
- Centre for Interdisciplinary Research in Archaeology, Department of Archaeology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Dzehverovic M, Jusic B, Pilav A, Lukic T, Cakar J. Kinship analysis of skeletal remains from the Middle Ages. Forensic Sci Int Genet 2023; 63:102829. [PMID: 36669262 DOI: 10.1016/j.fsigen.2023.102829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/17/2023]
Abstract
Medieval cemeteries Klisa-Guca Gora, Alihodze and Glavica-Han Bila located in the Travnik area (Travnik, Bosnia and Herzegovina) were archaeologically examined in the period 2011-2014, revealing human skeletal remains of 11 individuals in total. Archaeological skeletal samples, previously deposited in Travnik Homeland Museum (Travnik, Bosnia and Herzegovina) were subjected to genetic analysis. The aim of this research was to test familiar relationship of 11 individuals excavated from three medieval cemeteries and to predict Y-haplogroup for male individuals. In order to perform molecular-genetic characterisation of collected human skeletal remains, two systems of genetic markers were analysed: autosomal and Y-STR loci. Complete or partial data obtained by autosomal STR typing of 11 individuals were subjected to kinship analysis. Male sex was determined in eight samples out of 11. Direct relatives of the "brother-brother" type were detected in one case with high kinship probability (KP) value of 99.99996 %. Complete or nearly complete and usable Y-STR profiles were obtained for six out of eight male individuals. The presence of identical haplotypes at Y-STR loci and results of Y-haplogroup prediction suggest that all male individuals share the same paternal lineage and belong to J2a haplogroup. Overall, this study emphasises the usefulness, efficiency and sensitivity of STR markers in the molecular-genetic characterisation of old skeletal remains as well as the importance of employing additional markers like Y-STRs in archaeogenetic studies, besides traditionally used autosomal STR markers, in order to get a comprehensive information about close and distant relatives, and ancestry.
Collapse
Affiliation(s)
- Mirela Dzehverovic
- University of Sarajevo-Institute for Genetic Engineering and Biotechnology, Zmaja od Bosne 8, Sarajevo, Bosnia and Herzegovina
| | - Belma Jusic
- University of Sarajevo-Institute for Genetic Engineering and Biotechnology, Zmaja od Bosne 8, Sarajevo, Bosnia and Herzegovina.
| | - Amela Pilav
- University of Sarajevo-Institute for Genetic Engineering and Biotechnology, Zmaja od Bosne 8, Sarajevo, Bosnia and Herzegovina
| | - Tamara Lukic
- Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, Sarajevo, Bosnia and Herzegovina
| | - Jasmina Cakar
- University of Sarajevo-Institute for Genetic Engineering and Biotechnology, Zmaja od Bosne 8, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
3
|
Pilli E, Tarallo R, Riccia PL, Berti A, Novelletto A. Kinship assignment with the ForenSeq™ DNA Signature Prep Kit: Sources of error in simulated and real cases. Sci Justice 2022; 62:1-9. [PMID: 35033321 DOI: 10.1016/j.scijus.2021.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 08/31/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022]
Abstract
Kinship recognition between anonymous DNA samples is becoming a relevant issue in forensics, more so with the increasing number of DNA profiles in databanks. Also, NGS-based genotyping is being increasingly used in routine personal identification, to simultaneously type large numbers of markers of different kind. In the present work, we explored computationally and experimentally the performance of the ForenSeq™ DNA Signature Prep Kit in identifying the true relationship between two anonymous samples, distinguishing it from other possible relationships. We analyzed with Familias R series of 10,000 pairs with 9 different simulated relationships, corresponding to different degrees of autosomal sharing. For each pair we obtained likelihood ratios for five kinship hypotheses vs. unrelatedness, and used their ranking to identify the preferred relationship. We also typed 21 subjects from two pedigrees, representing from parent-child to 4th cousins relationships. As expected, the power for identifying the true relationship decays in the order of autosomal sharing. Parent-child and full siblings can be robustly identified against other relationships. For half-siblings the chance of reaching a significant conclusion is already small. For more distant relationships the proportion of cases correctly and significantly identified is 10% or less. Bidirectional errors in kinship attribution include the suggestion of relatedness when this does not exist (10-50%), and the suggestion of independence in pairs of individuals more than 4 generations apart (25-60%). The real cases revealed a relevant effect of genotype miscalling at some loci, which could only be partly avoided by modulating the analysis parameters. In conclusion, with the exception of first degree relatives, the kit can be useful to inform additional investigations, but does not usually provide probatory results.
Collapse
Affiliation(s)
- Elena Pilli
- Department of Biology, University of Florence, Florence, Italy.
| | - Roberta Tarallo
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Pietro La Riccia
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Andrea Berti
- Reparto Carabinieri Investigazioni Scientifiche, Sezione di Biologia, Roma, Italy
| | - Andrea Novelletto
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
4
|
Zupanič Pajnič I. Identification of a Slovenian prewar elite couple killed in the Second World War. Forensic Sci Int 2021; 327:110994. [PMID: 34536754 DOI: 10.1016/j.forsciint.2021.110994] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 11/28/2022]
Abstract
Genetic identification of a Slovenian prewar elite couple killed in 1944 was performed by typing autosomal and Y-chromosomal STRs, and phenotypic HIrisPlex SNPs for hair and eye color prediction were analyzed for the female skeleton using next-generation sequencing (NGS) technology. The clandestine grave containing the couple's skeletal remains was found in 2015 and only the partial remains were found. Living distant relatives could be found only for the male victim. Because of a lack of comparative reference samples, it was not possible to identify the female victim through autosomal and mitochondrial DNA typing. However, the possibility of comparison of eye and hair color with a painting exhibited in the City Museum of Ljubljana by the prominent Slovenian painter Ivana Kobilca existed. Nuclear DNA obtained from the samples was quantified using the PowerQuant System, and then STR typing was carried out with different autosomal and Y-STR kits. From 0.09-9.36 ng DNA/g of powder was obtained from teeth and bones analyzed. Complete autosomal and Y-STR profiles made it possible to identify the male skeleton via comparison with two nephews. For the female victim, predicted eye and hair color was compared to colors on the painting. Kobilca's painting confirms the genetically predicted eye and hair color. After more than seventy years, the skeletal remains of the couple were handed over to their relatives, who buried the victims with dignity in a family grave.
Collapse
Affiliation(s)
- Irena Zupanič Pajnič
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia.
| |
Collapse
|
5
|
Strategy for STR typing of bones from the Second World War combining CE and NGS technology: A pilot study. Forensic Sci Int Genet 2020; 50:102401. [PMID: 33171316 DOI: 10.1016/j.fsigen.2020.102401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/21/2020] [Accepted: 09/26/2020] [Indexed: 01/23/2023]
Abstract
The genetic identification of skeletal remains found in Second World War mass graves is complicated because of the poor quality of the samples. The aim of this study was to set up a workflow for STR typing of such samples combining PCR/CE and PCR/NGS technologies. To this end, 57 DNA samples from an equal number of 75-year-old femurs were studied. After a first round of PCR typing using GlobalFiler CE, 42 samples yielded a full profile and were therefore submitted to our standard workflow. The 15 samples that yielded no or a limited number (2-17/21) of autosomal STR markers as well four bone control samples that provided a full profile with the conventional PCR/CE test were typed in duplicate by the GlobalFiler NGS kit. Despite the degradation of the samples, which resulted in lower coverage and a lower % of on-target reads, reliable sequencing data were obtained from 16/19 samples. The use of a threshold of 30× for the locus call led to a consensus profile (cp) of 20-31/31 STR autosomal loci in 10 samples and to a cp of 8-10/31 loci in two samples, whereas the four control samples yielded a cp of 26-31/31 loci. Finally, the data of the NGS typing were combined with those of the CE typing. This last task allowed us to recover (on average) three alleles per sample and to increase the number of the heterozygous patterns in 37 cases. In total, the combined approach proposed here made possible the genetic typing of 65-100% of the autosomal STR markers in 10/15 (66.6 %) skeletal remains that yielded no or very poor results with the conventional PCR/CE approach. However, because several artefacts (such as allelic drop-out and allelic drop-in) were scored, the risk of mistyping cannot be neglected.
Collapse
|
6
|
Zupanič Pajnič I, Obal M, Zupanc T. Identifying victims of the largest Second World War family massacre in Slovenia. Forensic Sci Int 2020; 306:110056. [DOI: 10.1016/j.forsciint.2019.110056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 01/25/2023]
|
7
|
Leskovar T, Zupanič Pajnič I, Jerman I, Črešnar M. Separating forensic, WWII, and archaeological human skeletal remains using ATR-FTIR spectra. Int J Legal Med 2019; 134:811-821. [PMID: 31172274 DOI: 10.1007/s00414-019-02079-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 05/11/2019] [Accepted: 05/20/2019] [Indexed: 11/29/2022]
Abstract
ATR-FTIR spectroscopy is a fast and accessible, minimally or non-destructive technique which provides information on physiochemical characteristics of analyzed materials. In forensic and archaeological sciences, it is commonly used for answering numerous questions, including the archaeological or forensic context of the human skeletal remains. In this research, the accuracy of ATR-FTIR-obtained spectra for separation between forensic, WWII, and archaeological human skeletal remains was investigated. Building from the previously proposed methodological procedures, various ratio-based and whole spectra separation procedures were applied, carefully analyzed, and evaluated. Results showed that employing whole spectral domains works best for the separation of archaeological, WWII, and forensic samples, even with samples of highly variable origin. Principal component analysis (PCA) further highlighted the necessity of acknowledging all the major components in the remains: amides, phosphates, and carbonates for the separation. Most influential proved to be amide I, namely its secondary structure, which presented well-preserved and organized collagen structure in forensic and WWII samples, while highly degraded in archaeological samples. Using the whole spectral domain for separation between samples from different contexts proved to be fast and simple, with no manipulation beyond baseline correction and normalization of spectra necessary. However, a dataset with samples of known origin is required for the learning model and predictions. A less accurate alternative is separation based on combining ratios of peaks correlating to organics and minerals in the bone, which eliminated overlapping and managed to classify the majority of the samples correctly as archaeological, WWII, or forensic.
Collapse
Affiliation(s)
- Tamara Leskovar
- Department of Archaeology, Faculty of Arts, University of Ljubljana, Zavetiška 5, 1000, Ljubljana, Slovenia.
| | - Irena Zupanič Pajnič
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Ivan Jerman
- National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| | - Matija Črešnar
- Department of Archaeology, Faculty of Arts, University of Ljubljana, Zavetiška 5, 1000, Ljubljana, Slovenia
| |
Collapse
|