1
|
Zhao H, Xiao Y, Fu Y, Guan X, Fu M, Wang C, Zhou Y, Hong S, You Y, Wang Y, Chen S, Zhang Y, Bai Y, Guo H. Benzo[a]pyrene exposure and incident risks of digestive system cancers: Insights from nested case-control studies and adverse outcome pathway network analysis. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137159. [PMID: 39826461 DOI: 10.1016/j.jhazmat.2025.137159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Benzo[a]pyrene (B[a]P) is a recognized carcinogen for lung cancer, but its associations with digestive system cancers (DSCs) remain unclear and the common carcinogenic mechanisms are not fully understood. We conducted five nested case-control studies within the Dongfeng-Tongji cohort, including esophageal (EC, n = 58), gastric (GC, n = 103), colorectal (CRC, n = 220), hepatic (HC, n = 117), and pancreatic cancers (PC, n = 45). For each case, two sex and age ( ± 5 years) matched healthy controls were selected. We observed significant J-shaped associations between plasma concentrations of benzo[a]pyrene diol epoxide-albumin (BPDE-Alb) adducts and five DSCs (all P for non-linear <0.05). The subjects with high BPDE-Alb exposure exhibited a separate 2.19, 2.14, 1.67, 2.40, and 1.78-fold incident risks of EC, GC, CRC, HC, and PC (95% CI: 1.00-4.83, 1.24-3.67, 1.15-2.43, 1.48-3.90, and 0.71-4.47, respectively) than those with low exposure. Furthermore, the adverse outcome pathway (AOP) network indicated five molecular initiation events and 18 subsequent key events, particularly, the alterations in receptors of AhR, EGFR accompanied by regulations of cell proliferation and apoptosis pathways (e.g., PI3K-Akt, TNF signaling) may facilitate common carcinogenic processes. Our findings revealed the positive associations of B[a]P exposure with five DSCs, and the dysregulation of proliferation and apoptosis may initiate B[a]P-induced cancer development.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Yang Xiao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Ye Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Xin Guan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Ming Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Yuhan Zhou
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Shiru Hong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Yingqian You
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Yuxi Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Shengli Chen
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Yichi Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Yansen Bai
- Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China.
| |
Collapse
|
2
|
Zhao C, Jin H, Lei Y, Li Q, Zhang Y, Lu Q. The dual effects of Benzo(a)pyrene/Benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide on DNA Methylation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175042. [PMID: 39084379 DOI: 10.1016/j.scitotenv.2024.175042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Benzo(a)pyrene (BaP) is one of the most thoroughly studied polycyclic aromatic hydrocarbons(PAHs) and a widespread organic pollutant in various areas of human life. Its teratogenic, immunotoxic and carcinogenic effects on organisms are well documented and widely recognized by researchers. In the body, BaP is enzymatically converted to form a more active benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE). BaP/BPDE has the potential to trigger gene mutations, influence epigenetic modifications and cause damage to cellular structures, ultimately contributing to disease onset and progression. However, there are different points of view when studying epigenetics using BaP/BPDE. On the one hand, it is claimed in cancer research that BaP/BPDE contributes to gene hypermethylation and, in particular, induces the hypermethylation of tumor's suppressor gene promoters, leading to gene silencing and subsequent cancer development. Conversely, studies in human and animal populations suggest that exposure to BaP results in genome-wide DNA hypomethylation, potentially leading to adverse outcomes in inflammatory diseases. This apparent contradiction has not been summarized in research for almost four decades. This article presents a comprehensive review of the current literature on the influence of BaP/BPDE on DNA methylation regulation. It demonstrates that BaP/BPDE exerts a dual-phase regulatory effect on methylation, which is influenced by factors such as the concentration and duration of BaP/BPDE exposure, experimental models and detection methods used in various studies. Acute/high concentration exposure to BaP/BPDE often results in global demethylation of DNA, which is associated with inhibition of DNA methyltransferase 1 (DNMT1) after exposure. At certain specific gene loci (e.g., RAR-β), BPDE can form DNA adducts, recruiting DNMT3 and leading to hypermethylation at specific sites. By integrating these different mechanisms, our goal is to unravel the patterns and regulations of BaP/BPDE-induced DNA methylation changes and provide insights into future precision therapies targeting epigenetics.
Collapse
Affiliation(s)
- Cheng Zhao
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Central South University Hunan Key Laboratory of Medical Epigenomics Changsha, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Jin
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
| | - Yu Lei
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Central South University Hunan Key Laboratory of Medical Epigenomics Changsha, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qilin Li
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Central South University Hunan Key Laboratory of Medical Epigenomics Changsha, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Central South University Hunan Key Laboratory of Medical Epigenomics Changsha, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
| |
Collapse
|
3
|
Du X, Jin M, Li R, Zhou F, Sun Y, Mo Q, Song S, Dong N, Duan S, Li M, Lu M, Zhang C, He H, Yang X, Tang C, Li Y. Mechanisms and targeted reversion/prevention of hepatic fibrosis caused by the non-hereditary toxicity of benzo(a)pyrene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169496. [PMID: 38135085 DOI: 10.1016/j.scitotenv.2023.169496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/21/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
The effect of long term exposure to low concentrations of environmental pollutants on hepatic disorders is a major public health concern worldwide. Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent organic pollutants. In recent years, an increasing number of studies have focused on the deleterious effects of low concentrations of PAHs in the initiation or exacerbation of the progression of chronic liver disease. However, the underlying molecular mechanisms and effective intervention methods remain unclear. Here, we found that in hepatocytes, a low concentration of benzo(a)pyrene (B[a]P, an indicator of PAHs) chronic exposure continuously activated 14-3-3η via an epigenetic accumulation of DNA demethylation. As a "switch like" factor, 14-3-3η activated its downstream PI3K/Akt signal, which in turn promoted vascular endothelial growth factor (VEGF) production and secretion. As the characteristic fibrogenic paracrine factor regulated by B[a]P/14-3-3η, VEGF significantly induced the neovascularization and activation of hepatic stellate cells, leading to the development of hepatic fibrosis. Importantly, targeted 14-3-3η by using its specific inhibitor invented by our lab could prevent B[a]P-induced hepatic fibrosis, and could even reverse existent hepatic fibrosis caused by B[a]P. The present study not only revealed novel mechanisms, but also proposed an innovative approach for the targeted reversion/prevention of the harmful effects of exposure to PAHs on chronic liver disease.
Collapse
Affiliation(s)
- Xinru Du
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ming Jin
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ruzhi Li
- The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fei Zhou
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuanze Sun
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qinliang Mo
- The First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Sisi Song
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Na Dong
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuoke Duan
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Maoxuan Li
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ming Lu
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chi Zhang
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huiwei He
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Xiaojun Yang
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China; Ili & Jiangsu Joint Institute of Health, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Xinjiang, China.
| | - Chengwu Tang
- The First Affiliated Hospital of Huzhou University, Huzhou, China.
| | - Yuan Li
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Xiao Y, Liu C, Fu Y, Zhong G, Guan X, Li W, Wang C, Hong S, Fu M, Zhou Y, You Y, Wu T, Zhang X, He M, Li Y, Guo H. Mediation of association between benzo[a]pyrene exposure and lung cancer risk by plasma microRNAs: A Chinese case-control study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115980. [PMID: 38262095 DOI: 10.1016/j.ecoenv.2024.115980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/17/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
Epidemiologic studies have reported the positive relationship of benzo[a]pyrene (BaP) exposure with the risk of lung cancer. However, the mechanisms underlying the relationship is still unclear. Plasma microRNA (miRNA) is a typical epigenetic biomarker that was linked to environment exposure and lung cancer development. We aimed to reveal the mediation effect of plasma miRNAs on BaP-related lung cancer. We designed a lung cancer case-control study including 136 lung cancer patients and 136 controls, and measured the adducts of benzo[a]pyrene diol epoxide-albumin (BPDE-Alb) and sequenced miRNA profiles in plasma. The relationships between BPDE-Alb adducts, normalized miRNA levels and the risk of lung cancer were assessed by linear regression models. The mediation effects of miRNAs on BaP-related lung cancer were investigated. A total of 190 plasma miRNAs were significantly related to lung cancer status at Bonferroni adjusted P < 0.05, among which 57 miRNAs showed different levels with |fold change| > 2 between plasma samples before and after tumor resection surgery at Bonferroni adjusted P < 0.05. Especially, among the 57 lung cancer-associated miRNAs, BPDE-Alb adducts were significantly related to miR-17-3p, miR-20a-3p, miR-135a-5p, miR-374a-5p, miR-374b-5p, miR-423-5p and miR-664a-5p, which could in turn mediate a separate 42.2%, 33.0%, 57.5%, 36.4%, 48.8%, 32.5% and 38.2% of the relationship of BPDE-Alb adducts with the risk of lung cancer. Our results provide non-invasion biomarker candidates for lung cancer, and highlight miRNAs dysregulation as a potential intermediate mechanism by which BaP exposure lead to lung tumorigenesis.
Collapse
Affiliation(s)
- Yang Xiao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenliang Liu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guorong Zhong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Guan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wending Li
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiru Hong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Zhou
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingqian You
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianhao Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangkai Li
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Wang H, Liu B, Chen H, Xu P, Xue H, Yuan J. Dynamic changes of DNA methylation induced by benzo(a)pyrene in cancer. Genes Environ 2023; 45:21. [PMID: 37391844 DOI: 10.1186/s41021-023-00278-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/07/2023] [Indexed: 07/02/2023] Open
Abstract
Benzo(a)pyrene (BaP), the earliest and most significant carcinogen among polycyclic aromatic hydrocarbons (PAHs), has been found in foods, tobacco smoke, and automobiles exhaust, etc. Exposure to BaP induced DNA damage directly, or oxidative stress-related damage, resulting in cell apoptosis and carcinogenesis in human respiratory system, digestive system, reproductive system, etc. Moreover, BaP triggered genome-wide epigenetic alterations by methylation, which might cause disturbances in regulation of gene expression, and thereby induced cancer. It has been proved that BaP reduced genome-wide DNA methylation, and activated proto-oncogene by hypomethylation in the promoter region, but silenced tumor suppressor genes by promoter hypermethylation, resulting in cancer initiation and progression. Here we summarized the changes in DNA methylation in BaP exposure, and revealed the methylation of DNA plays a role in cancer development.
Collapse
Affiliation(s)
- Huizeng Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Bingchun Liu
- Stem Cell Research Center, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Hong Chen
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Peixin Xu
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Huiting Xue
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010010, China.
| | - Jianlong Yuan
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China.
| |
Collapse
|
6
|
Mu W, Gu P, Song W, Zhu T, Wang W, Zhou Y. Comprehensive analysis and identification of the circ_0084615/miR-451a/MEF2D axis in benzo(a)pyrene exposed tumor cells in hepato-carcinogenesis. Food Chem Toxicol 2023; 176:113810. [PMID: 37146711 DOI: 10.1016/j.fct.2023.113810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is caused by genetic and epigenetic alterations, as well as abnormal lifestyle and dietary habits, including contaminated food intake. Benzo(a)pyrene (B[a]P), derived from deep-fried meats, is regarded as the main dietary factor for tumorigenesis in epidemiological investigations. Although various studies have illustrated the adverse effects of B[a]P in malignancy through cell and animal models, the correlation between B[a]P exposure and clinical data remain to be explored. In the present study, we analyzed and identified novel B[a]P-associated circular RNA (circRNA) from microarray databases of liver tumor cells and HCC patient samples. Considering that circRNA regulates mRNA as a miRNA sponge, molecular circRNA-miRNA-mRNA interactions based on the stimulation of B[a]P exposure were predicted and established. Furthermore, up-regulated circ_0084615 in B[a]P-treated tumor cells was verified as a miRNA sponge via fluorescence in situ hybridization (FISH) assays, and the repression between circ_0084615 and target miR-451a exhibited a contrasting effect on hepatocarcinogenesis. Therefore, we performed integrated bioinformatics analysis and molecular experiments to establish the circ_0084615/miR-451a/MEF2D pathway, which provided a better understanding of the adverse effects of fried food preference on human health.
Collapse
Affiliation(s)
- Wei Mu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Pengfei Gu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weiwei Song
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tengfei Zhu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenbo Wang
- Department of Oncology, Shanghai Tenths People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yanfeng Zhou
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
7
|
Huang Y, Wang J, Huang S, Zhang X, Hu J. 5-Lipoxygenase Contributes to Benzo[a]pyrene-Induced Cytotoxicity and DNA Damage in Human Bronchial Epithelial Cells. Int J Toxicol 2023; 42:172-181. [PMID: 36537154 DOI: 10.1177/10915818221146286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metabolic activation of indirect-acting carcinogens in target organs is a recognized mechanism of carcinogenesis. This study aimed to determine the role of benzo[a]pyrene (BaP) metabolism enzymes lipoxygenase (LOX), cytochrome P4501A1 (CYP1A1), and prostaglandin synthetase (PGS) in the cytotoxicity and DNA damage induced by BaP in the human tracheobronchial epithelial cells (HBECs) using RNA interference strategy and metabolic enzyme inhibitors. Our results showed that in three epithelial cell lines (HBE, HTR-8/SVneo, and HaCat), BaP significantly upregulated 5-LOX protein expression. 15-LOX-2 expression also increased with increasing BaP concentration, but the change was less pronounced than that of 5-LOX. BaP caused significant cytotoxicity, DNA strand breaks, and 8-hydroxy-2'-deoxyguanosine formation in HBE, which was inhibited by 5-LOXshRNA, a specific inhibitor of 5-LOX (AA861), the CYP1A1 inhibitor α-naphthoflavone, and the PGS inhibitor naproxen. The protective effects of 5-LOXshRNA were stronger than AA861, naproxen and α-naphthoflavone. We conclude that BaP may be activated more by 5-LOX than by CYP1A1 and PGS to produce cytotoxicity and DNA damage in HBE.
Collapse
Affiliation(s)
- Yun Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, 12570Central South University, Changsha, China
| | - Jing Wang
- Shanxi Provincial Center for Disease Control and Prevention, Taiyuan, China
| | - Shaoling Huang
- 633786Changsha Center for Disease Control and Prevention, Changsha, China
| | - Xinge Zhang
- 595060Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Jianan Hu
- Department of Occupational and Environmental Health, Xiangya School of Public Health, 12570Central South University, Changsha, China
| |
Collapse
|
8
|
Liu A, Li X, Hao Z, Cao J, Li H, Sun M, Zhang Z, Liang R, Zhang H. Alterations of DNA methylation and mRNA levels of CYP1A1, GSTP1, and GSTM1 in human bronchial epithelial cells induced by benzo[a]pyrene. Toxicol Ind Health 2022; 38:127-138. [PMID: 35193440 DOI: 10.1177/07482337211069233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Benzo[a]pyrene (B[a]P) is a known human carcinogen and plays a major function in the initiation of lung cancer at its first proximity. However, the underlying molecular mechanisms are less well understood. In this study, we investigated the impact of B[a]P treatment on the DNA methylation and mRNA levels of CYP1A1, GSTP1, and GSTM1 in human bronchial epithelial cells (16HBEs), and provide scientific evidence for the mechanism study on the carcinogenesis of B[a]P. We treated 16HBEs with DMSO or concentrations of B[a]P at 1, 2, and 5 mmol/L for 24 h, observed the morphological changes, determined the cell viability, DNA methylation, and mRNA levels of CYP1A1, GSTP1, and GSTM1. Compared to the DMSO controls, B[a]P treatment had significantly increased the neoplastic cell number and cell viability in 16HBEs at all three doses (1, 2, and 5 mmol/L), and had significantly reduced the CYP1A1 and GSTP1 DNA promoter methylation levels. Following B[a]P treatment, the GSTM1 promoter methylation level in 16HBEs was profoundly reduced at low dose group compared to the DMSO controls, yet it was significantly increased at both middle and high dose groups. The mRNA levels of CYP1A1, GSTP1, and GSTM1 were significantly decreased in 16HBEs following B[a]P treatment at all three doses. The findings demonstrate that B[a]P promoted cell proliferation in 16HBEs, which was possibly related to the altered DNA methylations and the inhibited mRNA levels in CYP1A1, GSTP1, and GSTM1.
Collapse
Affiliation(s)
- Aixiang Liu
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China.,Department of Health Information Management, 74648Shanxi Medical University Fenyang College, Fenyang, Shanxi, China
| | - Xin Li
- Center of Disease Control and Prevention, 442190Taiyuan Iron and Steel Co Ltd, Taiyuan, Shanxi, China
| | - Zhongsuo Hao
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jingjing Cao
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huan Li
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Min Sun
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruifeng Liang
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hongmei Zhang
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
9
|
Beier JI, Arteel GE. Environmental exposure as a risk-modifying factor in liver diseases: Knowns and unknowns. Acta Pharm Sin B 2021; 11:3768-3778. [PMID: 35024305 PMCID: PMC8727918 DOI: 10.1016/j.apsb.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/24/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Liver diseases are considered to predominantly possess an inherited or xenobiotic etiology. However, inheritance drives the ability to appropriately adapt to environmental stressors, and disease is the culmination of a maladaptive response. Thus “pure” genetic and “pure” xenobiotic liver diseases are modified by each other and other factors, identified or unknown. The purpose of this review is to highlight the knowledgebase of environmental exposure as a potential risk modifying agent for the development of liver disease by other causes. This exercise is not to argue that all liver diseases have an environmental component, but to challenge the assumption that the current state of our knowledge is sufficient in all cases to conclusively dismiss this as a possibility. This review also discusses key new tools and approaches that will likely be critical to address this question in the future. Taken together, identifying the key gaps in our understanding is critical for the field to move forward, or at the very least to “know what we don't know.”
Collapse
Affiliation(s)
- Juliane I. Beier
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center and University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, PA 15213, USA
- Corresponding authors.
| | - Gavin E. Arteel
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center and University of Pittsburgh, Pittsburgh, PA 15213, USA
- Corresponding authors.
| |
Collapse
|
10
|
Zhang D, Guo S, Schrodi SJ. Mechanisms of DNA Methylation in Virus-Host Interaction in Hepatitis B Infection: Pathogenesis and Oncogenetic Properties. Int J Mol Sci 2021; 22:9858. [PMID: 34576022 PMCID: PMC8466338 DOI: 10.3390/ijms22189858] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV), the well-studied oncovirus that contributes to the majority of hepatocellular carcinomas (HCC) worldwide, can cause a severe inflammatory microenvironment leading to genetic and epigenetic changes in hepatocyte clones. HBV replication contributes to the regulation of DNA methyltransferase gene expression, particularly by X protein (HBx), and subsequent methylation changes may lead to abnormal transcription activation of adjacent genes and genomic instability. Undoubtedly, the altered expression of these genes has been known to cause diverse aspects of infected hepatocytes, including apoptosis, proliferation, reactive oxygen species (ROS) accumulation, and immune responses. Additionally, pollutant-induced DNA methylation changes and aberrant methylation of imprinted genes in hepatocytes also complicate the process of tumorigenesis. Meanwhile, hepatocytes also contribute to epigenetic modification of the viral genome to affect HBV replication or viral protein production. Meanwhile, methylation levels of HBV integrants and surrounding host regions also play crucial roles in their ability to produce viral proteins in affected hepatocytes. Both host and viral changes can provide novel insights into tumorigenesis, individualized responses to therapeutic intervention, disease progress, and early diagnosis. As such, DNA methylation-mediated epigenetic silencing of cancer-related genes and viral replication is a compelling therapeutic goal to reduce morbidity and mortality from liver cancer caused by chronic HBV infection. In this review, we summarize the most recent research on aberrant DNA methylation associated with HBV infection, which is involved in HCC development, and provide an outlook on the future direction of the research.
Collapse
Affiliation(s)
- Dake Zhang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Shicheng Guo
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Steven J. Schrodi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
11
|
Peng XF, Huang SF, Chen LJ, Xu L, Ye WC. Targeting epigenetics and lncRNAs in liver disease: From mechanisms to therapeutics. Pharmacol Res 2021; 172:105846. [PMID: 34438063 DOI: 10.1016/j.phrs.2021.105846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022]
Abstract
Early onset and progression of liver diseases can be driven by aberrant transcriptional regulation. Different transcriptional regulation processes, such as RNA/DNA methylation, histone modification, and ncRNA-mediated targeting, can regulate biological processes in healthy cells, as well also under various pathological conditions, especially liver disease. Numerous studies over the past decades have demonstrated that liver disease has a strong epigenetic component. Therefore, the epigenetic basis of liver disease has challenged our knowledge of epigenetics, and epigenetics field has undergone an important transformation: from a biological phenomenon to an emerging focus of disease research. Furthermore, inhibitors of different epigenetic regulators, such as m6A-related factors, are being explored as potential candidates for preventing and treating liver diseases. In the present review, we summarize and discuss the current knowledge of five distinct but interconnected and interdependent epigenetic processes in the context of hepatic diseases: RNA methylation, DNA methylation, histone methylation, miRNAs, and lncRNAs. Finally, we discuss the potential therapeutic implications and future challenges and ongoing research in the field. Our review also provides a perspective for identifying therapeutic targets and new hepatic biomarkers of liver disease, bringing precision research and disease therapy to the modern era of epigenetics.
Collapse
Affiliation(s)
- Xiao-Fei Peng
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Shi-Feng Huang
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Ling-Juan Chen
- Department of Clinical Laboratory, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Lingqing Xu
- Department of Clinical Laboratory, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Wen-Chu Ye
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China.
| |
Collapse
|
12
|
Ge Y, Gu P, Wang W, Cao L, Zhang L, Li J, Mu W, Wang H. Benzo[a]pyrene stimulates miR-650 expression to promote the pathogenesis of fatty liver disease and hepatocellular carcinoma via SOCS3/JAK/STAT3 cascades. J Mol Cell Biol 2021; 13:mjab052. [PMID: 34450627 PMCID: PMC8697348 DOI: 10.1093/jmcb/mjab052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
Modern diets, which often feature high levels of fat and charcoal-grilled meat, contribute to the pathogenesis of obesity and nonalcoholic fatty liver disease (NAFLD), resulting in liver cancer progression. Benzo(a)pyrene (B[a]P) is a common environmental and foodborne pollutant found in smoke and fire-grilled foods, which can have an adverse effect on human health. Hepatocellular carcinoma (HCC) is the fifth leading cause of cancer and the second leading cause of cancer-related deaths worldwide. The epidemiological studies suggest that both environmental risk factors and chronic liver injury including NAFL are important for HCC development, but the precise mechanisms linking eating habits to hepato-carcinogenesis remain unclear. In the present study, we demonstrated that various miRNAs in B[a]P-exposed tumor cells contribute to tumor metastasis, among which miR-650 could be the most potent inducer. Furthermore, we found that suppressor of cytokine signaling 3 (SOCS3) is directly regulated by miR-650 and its suppression regulates the activation of the Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) cascade. Our findings reveal a possible adverse outcome pathway of SOCS3/JAK/STAT3 regulation in B[a]P-induced HCC progress. These results provide a better understanding of the adverse effects of chronic exposure to B[a]P on human health.
Collapse
Affiliation(s)
- Yang Ge
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-cell
Omics, School of Public Health, Shanghai Jiao Tong University School of
Medicine, Shanghai 200025, China
| | - Pengfei Gu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-cell
Omics, School of Public Health, Shanghai Jiao Tong University School of
Medicine, Shanghai 200025, China
| | - Wenbo Wang
- Department of Oncology, Shanghai Tenth People's Hospital, School of Medicine,
Tongji University, Shanghai 200072, China
| | - Liyuan Cao
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-cell
Omics, School of Public Health, Shanghai Jiao Tong University School of
Medicine, Shanghai 200025, China
| | - Lulu Zhang
- Institute of Military Health Management, Second Military Medical
University, Shanghai 200433, China
| | - Jingquan Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-cell
Omics, School of Public Health, Shanghai Jiao Tong University School of
Medicine, Shanghai 200025, China
| | - Wei Mu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-cell
Omics, School of Public Health, Shanghai Jiao Tong University School of
Medicine, Shanghai 200025, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-cell
Omics, School of Public Health, Shanghai Jiao Tong University School of
Medicine, Shanghai 200025, China
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of
Sciences, Shanghai 200031, China
| |
Collapse
|
13
|
Curcumin Suppresses the Lipid Accumulation and Oxidative Stress Induced by Benzo[a]pyrene Toxicity in HepG2 Cells. Antioxidants (Basel) 2021; 10:antiox10081314. [PMID: 34439562 PMCID: PMC8389208 DOI: 10.3390/antiox10081314] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 01/14/2023] Open
Abstract
Benzo[a]pyrene (B[a]P) is a potentially hepatotoxic group-1 carcinogen taken up by the body through ingestion of daily foods. B[a]P is widely known to cause DNA and protein damages, which are closely related to cell transformation. Accordingly, studies on natural bioactive compounds that attenuate such chemical-induced toxicities have significant impacts on public health. This study aimed to uncover the mechanism of curcumin, the major curcuminoid in turmeric (Curcuma longa), in modulating the lipid accumulation and oxidative stress mediated by B[a]P cytotoxicity in HepG2 cells. Curcumin treatment reduced the B[a]P-induced lipid accumulation and reactive oxygen spicies (ROS) upregulation and recovered the cell viability. Cytochrome P450 family 1 subfamily A polypeptide 1 (CYP1A1) and Cytochrome P450 subfamily B polypeptide 1 (CYP1B1) downregulation resulting from decreased aryl hydrocarbon receptor (AhR) translocation into nuclei attenuated the effects of B[a]P-induced lipid accumulation and repressed cell viability, respectively. Moreover, the curcumin-induced reduction in ROS generation decreased the nuclear translocation of Nuclear factor erythroid-2-related factor 2 (Nrf2) and the expression of phase-II detoxifying enzymes. These results indicate that curcumin suppresses B[a]P-induced lipid accumulation and ROS generation which can potentially induce nonalcoholic fatty liver disease (NAFLD) and can shed a light on the detoxifying effect of curcumin.
Collapse
|
14
|
Meng H, Li G, Wei W, Bai Y, Feng Y, Fu M, Guan X, Li M, Li H, Wang C, Jie J, Wu X, He M, Zhang X, Wei S, Li Y, Guo H. Epigenome-wide DNA methylation signature of benzo[a]pyrene exposure and their mediation roles in benzo[a]pyrene-associated lung cancer development. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125839. [PMID: 33887567 DOI: 10.1016/j.jhazmat.2021.125839] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Benzo[a]pyrene (B[a]P) is a typical carcinogen associated with increased lung cancer risk, but the underlying mechanisms remain unclear. This study aimed to investigate epigenome-wide DNA methylation associated with B[a]P exposure and their mediation effects on B[a]P-lung cancer association in two lung cancer case-control studies of 462 subjects. Their plasma levels of benzo[a]pyrene diol epoxide-albumin (BPDE-Alb) adducts and genome-wide DNA methylations were separately detected in peripheral blood by using enzyme-linked immunosorbent assay (ELISA) and genome-wide methylation arrays. The epigenome-wide meta-analysis was performed to analyze the associations between BPDE-Alb adducts and DNA methylations. Mediation analysis was applied to assess effect of DNA methylation on the B[a]P-lung cancer association. We identified 15 CpGs associated with BPDE-Alb adducts (P-meta < 1.0 × 10-5), among which the methylation levels at five loci (cg06245338, cg24256211, cg15107887, cg02211741, and cg04354393 annotated to UBE2O, SAMD4A, ACBD6, DGKZ, and SLFN13, respectively) mediated a separate 38.5%, 29.2%, 41.5%, 47.7%, 56.5%, and a joint 58.2% of the association between BPDE-Alb adducts and lung cancer risk. Compared to the traditional factors [area under the curve (AUC) = 0.788], addition of these CpGs exerted improved discriminations for lung cancer, with AUC ranging 0.828-0.861. Our results highlight DNA methylation alterations as potential mediators in lung tumorigenesis induced by B[a]P exposure.
Collapse
Affiliation(s)
- Hua Meng
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guyanan Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Wei
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yansen Bai
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Feng
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Fu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Guan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengying Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hang Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiali Jie
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiulong Wu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meian He
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheng Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yangkai Li
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
15
|
Shaw A, Arnold LD, Privitera L, Whitfield PD, Doherty MK, Morè L. A proteomic signature for CNS adaptations to the valence of environmental stimulation. Behav Brain Res 2020; 383:112515. [PMID: 32006564 DOI: 10.1016/j.bbr.2020.112515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/11/2020] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
Environmental Enrichment leads to a significant improvement in long-term performance across a range of cognitive functions in mammals and it has been shown to produce an increased synaptic density and neurogenesis. Nevertheless it is still an open question as to whether some key aspects of spatial learning & memory and procedural learning might be embodied by different molecular pathways to those of social cognition. Associated with synaptic changes and potentially underlying conditions, the Ras-ERK pathway has been proposed to be the primary mediator of in vivo adaptations to environmental enrichment, acting via the downstream Ras-ERK signalling kinase MSK1 and the transcription factor CREB. Herein, we show that valence of environmental stimulation increased social competition and that this is associated with a specific proteomic signature in the frontal lobe but notably not in the hippocampus. Specifically, we show that altering the valence of environmental stimuli affected the level of social competition, with mice from negatively enriched environments winning significantly more encounters-even though mice from positive were bigger and should display dominance. This behavioural phenotype was accompanied by changes in the proteome of the fronto-ventral pole of the brain, with a differential increase in the relative abundance of proteins involved in the mitochondrial metabolic processes of the TCA cycle and respiratory processes. Investigation of this proteomic signature may pave the way for the elucidation of novel pathways underpinning the behavioural changes caused by negative enrichment and further out understanding of conditions whose core feature is increased social competition.
Collapse
Affiliation(s)
- Andrew Shaw
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Luke D Arnold
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Lucia Privitera
- Centre for Discovery Brain Sciences, Edinburgh, EH8 9JZ, UK & School of Medicine, University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| | - Phillip D Whitfield
- Division of Biomedical Science, University of the Highlands and Islands, Inverness, IV2 3JH, UK
| | - Mary K Doherty
- Division of Biomedical Science, University of the Highlands and Islands, Inverness, IV2 3JH, UK
| | - Lorenzo Morè
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK.
| |
Collapse
|
16
|
Long-Term Exposure to Benzo[a]Pyrene Affects Sexual Differentiation and Embryos Toxicity in Three Generations of Marine Medaka (Oryzias Melastigma). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030970. [PMID: 32033145 PMCID: PMC7037311 DOI: 10.3390/ijerph17030970] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/01/2020] [Accepted: 02/02/2020] [Indexed: 12/26/2022]
Abstract
Benzo[a]pyrene (BaP) is a common environmental disrupting chemical that can cause endocrine disorders in organisms. However, the continued interference effects of BaP on multi-generation fish needs further research. In this study, we performed different periods (G1F1-3, G2F2-3, G3F3) of BaP exposure on marine medaka. We determined the embryo toxicity, and analyzed relative reproductive genes (ERα, cyp19a and vtg1) to predict the sexual differentiation of marine medaka. The results showed that high concentrations of BaP (200 μg·L−1) significantly delayed the hatching time of embryos. Moreover, medium/high concentrations of BaP (20 and 200 μg·L−1) prolonged the sexual maturity time of marine medaka. The relative gene expression of ERα, cyp19a and vtg1 were measured at 5 dpf of embryos. We found that BaP had significantly inhibited the expression of the genes related to female fish development. Consequently, there were more males in the offspring sex ratio at BaP exposure. Overall, BaP can cause embryonic toxicity and abnormal sexual differentiation, while the expression of related reproductive genes can effectively indicate the sex ratio.
Collapse
|
17
|
Tian M, Zhao B, Martin FL, Morais CLM, Liu L, Huang Q, Zhang J, Shen H. Gene-environment interactions between GSTs polymorphisms and targeted epigenetic alterations in hepatocellular carcinoma following organochlorine pesticides (OCPs) exposure. ENVIRONMENT INTERNATIONAL 2020; 134:105313. [PMID: 31731000 DOI: 10.1016/j.envint.2019.105313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/17/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Exposure to environmental pollutant organochlorine pesticides (OCPs) and the role of tumour suppressor GSTs gene polymorphisms as well as epigenetic alterations have all been well reported in hepatocarcinogenesis. However, the interplay between environmental risk factors and polymorphic tumour suppressor genes or epigenetic factors in hepatocellular carcinoma (HCC) development remains ambiguous. Herein, we investigated the relationship of three GSTs polymorphisms (GSTT1 deletion, GSTM1 deletion, GSTP1 rs1695) as well as GSTP1 promoter region DNA methylation and HCC risk with a particular focus on the interaction with OCPs exposure among 90 HCC cases and 99 controls in a Chinese population. Serum samples were analysed for OCPs exposure employing gas chromatography coupled with mass selective detector (GC-MS). GSTs polymorphisms and epigenetic alterations were determined using high-resolution melting PCR (HRM PCR) and DNA sequencing. After adjusting for confounders (HBV infection, smoking, alcohol consumption, BMI, age, gender), OCPs exposure and GSTP1 methylation is significantly associated with elevated risk of HCC, while no significance is observed for GSTs polymorphisms. Moreover, the effects of OCPs exposure on HCC risk are more pronounced amongst GSTP1 (Ile/Val + Val/Val) and GSTP1 promoter methylation subjects than those who were GSTP1 (Ile/Ile) and unmethylated subjects. The interactions between OCPs exposure and GSTP1 genotype as well as GSTP1 epigenetic status are statistically significant. The current study demonstrates the importance of gene-environment interactions in the multifactorial development of HCC.
Collapse
Affiliation(s)
- Meiping Tian
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Benhua Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Francis L Martin
- Lancashire Teaching Hospitals NHS Trust, Royal Preston Hospital, Fulwood, Preston PR2 2HE, UK; School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| | - Camilo L M Morais
- Lancashire Teaching Hospitals NHS Trust, Royal Preston Hospital, Fulwood, Preston PR2 2HE, UK; School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| | - Liangpo Liu
- School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Qingyu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Heqing Shen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
18
|
VoPham T. Environmental risk factors for liver cancer and nonalcoholic fatty liver disease. CURR EPIDEMIOL REP 2019; 6:50-66. [PMID: 31080703 DOI: 10.1007/s40471-019-0183-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Purpose of review The objective of this review was to summarize recent epidemiologic research examining the associations between environmental exposures and liver cancer and nonalcoholic fatty liver disease (NAFLD). Recent findings There were 28 liver cancer studies showing positive associations for exposures to aflatoxin, air pollution, polycyclic aromatic hydrocarbons, asbestos, chimney sweeping occupation, and paints; an inverse association for ultraviolet radiation; and null/inconsistent results for organic solvents, pesticides, perfluorooctanoic acid, nuclear radiation, iron foundry occupation, and brick kiln pollution. There were n=5 NAFLD studies showing positive associations for heavy metals, methyl tertiary-butyl ether, and selenium; and no association with trihalomethanes. Summary Evidence suggests that particular environmental exposures may be associated with liver cancer and NAFLD. Future liver cancer studies should examine specific histological subtypes and assess historical environmental exposures. Future NAFLD research should examine incident, biopsy-confirmed cases and the potential role of obesity and/or diabetes in studies of environmental factors and NAFLD.
Collapse
Affiliation(s)
- Trang VoPham
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
19
|
Tête A, Gallais I, Imran M, Chevanne M, Liamin M, Sparfel L, Bucher S, Burel A, Podechard N, Appenzeller BMR, Fromenty B, Grova N, Sergent O, Lagadic-Gossmann D. Mechanisms involved in the death of steatotic WIF-B9 hepatocytes co-exposed to benzo[a]pyrene and ethanol: a possible key role for xenobiotic metabolism and nitric oxide. Free Radic Biol Med 2018; 129:323-337. [PMID: 30268890 DOI: 10.1016/j.freeradbiomed.2018.09.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 12/15/2022]
Abstract
We previously demonstrated that co-exposing pre-steatotic hepatocytes to benzo[a]pyrene (B[a]P), a carcinogenic environmental pollutant, and ethanol, favored cell death. Here, the intracellular mechanisms underlying this toxicity were studied. Steatotic WIF-B9 hepatocytes, obtained by a 48h-supplementation with fatty acids, were then exposed to B[a]P/ethanol (10 nM/5 mM, respectively) for 5 days. Nitric oxide (NO) was demonstrated to be a pivotal player in the cell death caused by the co-exposure in steatotic hepatocytes. Indeed, by scavenging NO, CPTIO treatment of co-exposed steatotic cells prevented not only the increase in DNA damage and cell death, but also the decrease in the activity of CYP1, major cytochrome P450s of B[a]P metabolism. This would then lead to an elevation of B[a]P levels, thus possibly suggesting a long-lasting stimulation of the transcription factor AhR. Besides, as NO can react with superoxide anion to produce peroxynitrite, a highly oxidative compound, the use of FeTPPS to inhibit its formation indicated its participation in DNA damage and cell death, further highlighting the important role of NO. Finally, a possible key role for AhR was pointed out by using its antagonist, CH-223191. Indeed it prevented the elevation of ADH activity, known to participate to the ethanol production of ROS, notably superoxide anion. The transcription factor, NFκB, known to be activated by ROS, was shown to be involved in the increase in iNOS expression. Altogether, these data strongly suggested cooperative mechanistic interactions between B[a]P via AhR and ethanol via ROS production, to favor cell death in the context of prior steatosis.
Collapse
Affiliation(s)
- Arnaud Tête
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Isabelle Gallais
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Muhammad Imran
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Martine Chevanne
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Marie Liamin
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Simon Bucher
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000 Rennes, France
| | - Agnès Burel
- Univ Rennes, Biosit - UMS 3480, US_S 018, F-35000 Rennes, France
| | - Normand Podechard
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Brice M R Appenzeller
- HBRU, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Bernard Fromenty
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000 Rennes, France
| | - Nathalie Grova
- HBRU, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Odile Sergent
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
20
|
Wang Y, Pan T, Li L, Wang H, Zhang D, Yang H. Benzo(a)pyrene promotes Hep-G2 cell migration and invasion by upregulating phosphorylated extracellular signal-regulated kinase expression. Oncol Lett 2018; 15:8325-8332. [PMID: 29805565 PMCID: PMC5950133 DOI: 10.3892/ol.2018.8379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 03/07/2018] [Indexed: 12/21/2022] Open
Abstract
Benzo(a)pyrene (BaP), a carcinogenic component of cigarette smoke, has been reported to activate extracellular signal-regulated kinase (ERK) in cancer cells. Furthermore, activated ERK is associated with liver cancer cell invasion and metastasis. Therefore, the aim of the present study was to investigate the potential role of phosphorylated (p)-ERK in BaP-induced Hep-G2 cell migration and invasion. An MTT assay was used to determine the effects of BaP treatment on Hep-G2 cell proliferation. Wound-healing and Transwell invasion assays were employed to assess the migration and invasion abilities of Hep-G2 cells. Western blot analysis was applied to detect the expression of proteins. The results of the present study demonstrated that BaP treatment was able to increase the level of p-ERK protein expression in Hep-G2 cells. BaP treatment promoted Hep-G2 cell migration and invasion. The ERK inhibitor, U0126, was able to block the migration and invasion abilities of Hep-G2 cells induced by BaP. The results of the present study demonstrated that BaP treatment promoted the migration and invasion of Hep-G2 cells by upregulating p-ERK expression.
Collapse
Affiliation(s)
- Yadong Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, Henan 450016, P.R. China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Teng Pan
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Li Li
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, Henan 450016, P.R. China
| | - Haiyu Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, Henan 450016, P.R. China
| | - Ding Zhang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, Henan 450016, P.R. China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
21
|
Bucher S, Tête A, Podechard N, Liamin M, Le Guillou D, Chevanne M, Coulouarn C, Imran M, Gallais I, Fernier M, Hamdaoui Q, Robin MA, Sergent O, Fromenty B, Lagadic-Gossmann D. Co-exposure to benzo[a]pyrene and ethanol induces a pathological progression of liver steatosis in vitro and in vivo. Sci Rep 2018; 8:5963. [PMID: 29654281 PMCID: PMC5899096 DOI: 10.1038/s41598-018-24403-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatic steatosis (i.e. lipid accumulation) and steatohepatitis have been related to diverse etiologic factors, including alcohol, obesity, environmental pollutants. However, no study has so far analyzed how these different factors might interplay regarding the progression of liver diseases. The impact of the co-exposure to the environmental carcinogen benzo[a]pyrene (B[a]P) and the lifestyle-related hepatotoxicant ethanol, was thus tested on in vitro models of steatosis (human HepaRG cell line; hybrid human/rat WIF-B9 cell line), and on an in vivo model (obese zebrafish larvae). Steatosis was induced prior to chronic treatments (14, 5 or 7 days for HepaRG, WIF-B9 or zebrafish, respectively). Toxicity and inflammation were analyzed in all models; the impact of steatosis and ethanol towards B[a]P metabolism was studied in HepaRG cells. Cytotoxicity and expression of inflammation markers upon co-exposure were increased in all steatotic models, compared to non steatotic counterparts. A change of B[a]P metabolism with a decrease in detoxification was detected in HepaRG cells under these conditions. A prior steatosis therefore enhanced the toxicity of B[a]P/ethanol co-exposure in vitro and in vivo; such a co-exposure might favor the appearance of a steatohepatitis-like state, with the development of inflammation. These deleterious effects could be partly explained by B[a]P metabolism alterations.
Collapse
Affiliation(s)
- Simon Bucher
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000, Rennes, France
| | - Arnaud Tête
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Normand Podechard
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Marie Liamin
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Dounia Le Guillou
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000, Rennes, France
| | - Martine Chevanne
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Cédric Coulouarn
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000, Rennes, France
| | - Muhammad Imran
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Isabelle Gallais
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Morgane Fernier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Quentin Hamdaoui
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000, Rennes, France
| | - Marie-Anne Robin
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000, Rennes, France
| | - Odile Sergent
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Bernard Fromenty
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000, Rennes, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
22
|
De Mattia E, Cecchin E, Polesel J, Bignucolo A, Roncato R, Lupo F, Crovatto M, Buonadonna A, Tiribelli C, Toffoli G. Genetic biomarkers for hepatocellular cancer risk in a caucasian population. World J Gastroenterol 2017; 23:6674-6684. [PMID: 29085212 PMCID: PMC5643288 DOI: 10.3748/wjg.v23.i36.6674] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/17/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To uncover novel genetic markers that could contribute to predicting hepatocellular carcinoma (HCC) susceptibility in Caucasians.
METHODS The present retrospective case-control study compared genotype frequencies between a cohort of HCC cases and two, independent, HCC-free, age/sex-matched control groups. The HCC cohort comprised 192 homogeneous patients that had undergone orthotopic liver transplantation. The first control group comprised 167 patients that were matched to the HCC cohort for the percentage of hepatitis B (HBV) and/or hepatitis C (HCV) infections. A second control group included 192 virus-free, healthy individuals that were used to evaluate the generalizability of the identified predictive markers. All cases and controls were Caucasian. The three study populations were characterized with a panel of 31 markers derived from 21 genes that encoded key proteins involved in hepatocarcinogenesis-related pathways. The study end-point was to assess the association between genetic variants and HCC onset.
RESULTS Five genetic markers were identified as risk factors for HCC in high-risk patients infected with HBV/HCV. According to a dominant model, reduced HCC risk was associated with three polymorphisms: ERCC1 rs3212986 (OR = 0.46, 95%CI: 0.30-0.71, P = 0.0005), GST-P1 rs1138272 (OR = 0.41, 95%CI: 0.21-0.81, P = 0.0097), and CYP17A1 rs743572 (OR = 0.50, 95%CI: 0.31-0.79, P = 0.0032). Conversely, according to a recessive model, increased HCC risk was associated with two polymorphisms: XRCC3 rs1799794 (OR = 3.70, 95%CI: 1.02-13.39, P = 0.0461) and ABCB1 rs1128503 (OR = 2.06, 95%CI: 1.18-3.61, P = 0.0111). These associations remained significant in a subgroup analysis, where patients were stratified according to viral status (HBV- or HCV-positive serology). Two variants exhibited a serology-specific effect: ABCB1 rs1128503 (OR = 4.18, 95%CI: 1.55-11.29, P = 0.0048) showed an effect in the HBV-positive subgroup; and ERCC1 rs3212986 (OR = 0.33, 95%CI: 0.18-0.60, P = 0.0003) showed an effect in the HCV-positive subgroup. Among the five markers identified, ERCC1 rs3212986 (OR = 0.43, P < 0.0001) and CYP17A1 rs743572 (OR = 0.73, P = 0.0310) had a different distribution in patients with HCC compared to healthy individuals. With a recursive partitioning approach, we also demonstrated that significant gene-gene interactions between ERCC1 rs3212986, CYP17A1 rs743572, GST-P1 rs1138272, and the previously described UGT1A7*3 predictive marker, played a role in the complex trait of HCC susceptibility.
CONCLUSION We identified five polymorphisms and interactions that contributed crucially to predicting HCC risk. These findings represented an important step towards improving HCC diagnosis and management.
Collapse
Affiliation(s)
- Elena De Mattia
- Clinical and Experimental Pharmacology, “Centro di Riferimento Oncologico” - National Cancer Institute, 33081 Aviano, Italy
| | - Erika Cecchin
- Clinical and Experimental Pharmacology, “Centro di Riferimento Oncologico” - National Cancer Institute, 33081 Aviano, Italy
| | - Jerry Polesel
- Unit of Cancer Epidemiology, “Centro di Riferimento Oncologico” - National Cancer Institute, 33081 Aviano, Italy
| | - Alessia Bignucolo
- Clinical and Experimental Pharmacology, “Centro di Riferimento Oncologico” - National Cancer Institute, 33081 Aviano, Italy
| | - Rossana Roncato
- Clinical and Experimental Pharmacology, “Centro di Riferimento Oncologico” - National Cancer Institute, 33081 Aviano, Italy
| | - Francesco Lupo
- General Surgery 2U and Liver Transplantation Center, A.O.U. Città della Salute e della Scienza di Torino, University of Torino, 10124 Torino, Italy
| | - Marina Crovatto
- Cytogenetics and Molecular Biology Unit, Santa Maria degli Angeli Hospital Pordenone, 33170 Pordenone, Italy
| | - Angela Buonadonna
- Medical Oncology Unit, “Centro di Riferimento Oncologico” - National Cancer Institute, 33081 Aviano, Italy
| | | | - Giuseppe Toffoli
- Clinical and Experimental Pharmacology, “Centro di Riferimento Oncologico” - National Cancer Institute, 33081 Aviano, Italy
| |
Collapse
|
23
|
Defois C, Ratel J, Denis S, Batut B, Beugnot R, Peyretaillade E, Engel E, Peyret P. Environmental Pollutant Benzo[ a]Pyrene Impacts the Volatile Metabolome and Transcriptome of the Human Gut Microbiota. Front Microbiol 2017; 8:1562. [PMID: 28861070 PMCID: PMC5559432 DOI: 10.3389/fmicb.2017.01562] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/02/2017] [Indexed: 01/23/2023] Open
Abstract
Benzo[a]pyrene (B[a]P) is a ubiquitous, persistent, and carcinogenic pollutant that belongs to the large family of polycyclic aromatic hydrocarbons. Population exposure primarily occurs via contaminated food products, which introduces the pollutant to the digestive tract. Although the metabolism of B[a]P by host cells is well known, its impacts on the human gut microbiota, which plays a key role in health and disease, remain unexplored. We performed an in vitro assay using 16S barcoding, metatranscriptomics and volatile metabolomics to study the impact of B[a]P on two distinct human fecal microbiota. B[a]P exposure did not induce a significant change in the microbial structure; however, it altered the microbial volatolome in a dose-dependent manner. The transcript levels related to several metabolic pathways, such as vitamin and cofactor metabolism, cell wall compound metabolism, DNA repair and replication systems, and aromatic compound metabolism, were upregulated, whereas the transcript levels related to the glycolysis-gluconeogenesis pathway and bacterial chemotaxis toward simple carbohydrates were downregulated. These primary findings show that food pollutants, such as B[a]P, alter human gut microbiota activity. The observed shift in the volatolome demonstrates that B[a]P induces a specific deviation in the microbial metabolism.
Collapse
Affiliation(s)
- Clémence Defois
- MEDIS, Institut National de la Recherche Agronomique, Université Clermont AuvergneClermont-Ferrand, France
| | - Jérémy Ratel
- UR370 QuaPA, MASS Team, Institut National de la Recherche AgronomiqueSaint-Genes-Champanelle, France
| | - Sylvain Denis
- MEDIS, Institut National de la Recherche Agronomique, Université Clermont AuvergneClermont-Ferrand, France
| | - Bérénice Batut
- MEDIS, Institut National de la Recherche Agronomique, Université Clermont AuvergneClermont-Ferrand, France
| | - Réjane Beugnot
- MEDIS, Institut National de la Recherche Agronomique, Université Clermont AuvergneClermont-Ferrand, France
| | - Eric Peyretaillade
- MEDIS, Institut National de la Recherche Agronomique, Université Clermont AuvergneClermont-Ferrand, France
| | - Erwan Engel
- UR370 QuaPA, MASS Team, Institut National de la Recherche AgronomiqueSaint-Genes-Champanelle, France
| | - Pierre Peyret
- MEDIS, Institut National de la Recherche Agronomique, Université Clermont AuvergneClermont-Ferrand, France
| |
Collapse
|
24
|
Plasma Folate and Vitamin B12 Levels in Patients with Hepatocellular Carcinoma. Int J Mol Sci 2016; 17:ijms17071032. [PMID: 27376276 PMCID: PMC4964408 DOI: 10.3390/ijms17071032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 12/14/2022] Open
Abstract
Folate and vitamin B12 involved in the one-carbon metabolism may play a key role in carcinogenesis and progression of hepatocellular carcinoma (HCC) through influencing DNA integrity. The purpose of this study is to evaluate the association of plasma folate and vitamin B12 levels with HCC in a case-control study on 312 HCC patients and 325 cancer-free controls. Plasma concentrations of folate and vitamin B12 in all the subjects were measured by electrochemiluminescence immunoassay. Meanwhile, the information of HCC patients' clinical characteristics including tumor-node-metastasis (TNM) stage, tumor size and tumor markers were collected. The patients of HCC had significantly lower folate levels than those of controls; there was no significant difference in the mean of plasma vitamin B12 levels. We also observed an inverse association between the levels of plasma folate and HCC: the adjusted odds ratios (OR) (95% confidence intervals (CI)) of HCC from the highest to lowest quartile of folate were 0.30 (0.15-0.60), 0.33 (0.17-0.65), and 0.19 (0.09-0.38). Compared to the subjects in the lowest quartile of plasma vitamin B12, only the subjects in the highest quartile of vitamin B12 exhibited a significant positive relationship with HCC, the adjusted OR was 2.01 (95% CI, 1.02-3.98). HCC patients with Stage III and IV or bigger tumor size had lower folate and higher vitamin B12 levels. There was no significant difference in the mean plasma folate levels of the HCC cases in tumor markers status (AFP, CEA and CA19-9 levels), whereas patients with higher CEA or CA19-9 levels retained significantly more plasma vitamin B12 than those with normal-CEA or CA19-9 level. In conclusion, plasma folate and vitamin B12 levels could be associated with HCC, and might be used as predictors of clinical characteristics of HCC patients. However, further prospective studies are essential to confirm the observed results.
Collapse
|