1
|
Mo F, Li C, Zhou Q. The pivotal role of phosphorus level gradient in regulating nitrogen cycle in wetland ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173646. [PMID: 38821288 DOI: 10.1016/j.scitotenv.2024.173646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Phosphorus (P) is one of key drivers in Earth's nitrogen (N) cycle, however, the global overview of the P-regulated microbial community structure and gene abundance carrying wetland N process remains to be investigated. The key environmental factors that influenced wetland N cycle were initially screened, verifying the central role P. More complex and stable community interaction can be established in rich (20 mg/kg < P ≤ 100 mg/kg) and surplus P groups (P > 100 mg/kg) compared to that in deficient P group (P ≤ 20 mg/kg), with enhanced participation of betaproteobacteria and actinobacteria (i.e., changed hub microorganisms). Accordingly, P-mediated variations in gene expression patterns can be expected. On the one hand, the gene responses to carbon (C), N, and P factors presented nearly synchronous variation, highlighting the potential C-N-P coupling cycle in wetland ecosystem. On the other hand, the gene sensitivity towards environmental factors was changed at different P levels. Overall, the P level gradient can influence N cycle in direct (i.e., influences on gene abundances) and indirect (i.e., influences on gene response to environmental factors) manners. These findings provide important insights for controlling the N cycle in wetland ecosystems, particularly in cases where P levels are limiting factors.
Collapse
Affiliation(s)
- Fan Mo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chenghao Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
2
|
Li Q, Xiang P, Zhang T, Wu Q, Bao Z, Tu W, Li L, Zhao C. The effect of phosphate mining activities on rhizosphere bacterial communities of surrounding vegetables and crops. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153479. [PMID: 35092784 DOI: 10.1016/j.scitotenv.2022.153479] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The effects of phosphate mining on rhizosphere bacteria in surrounding vegetables and crops, including Lactuca sativa, Glycine max, and Triticum aestivum, are assessed in this study. As results, phosphate mining significantly increased the contents of some large elements, trace elements, and heavy metals in the surrounding agricultural soil, including phosphorus, magnesium, boron, cadmium, lead, arsenic, zinc, and chromium (P < 0.05). The community richness and diversity of bacteria in rhizosphere of the three crops were significantly reduced by phosphate mining (P < 0.05). Abundances of Sphingomonas and RB41 in the rhizosphere soil of phosphate mining area improved compared with the baseline in the non-phosphate mining area. Beta diversity analysis indicated that phosphate mining led to the differentiation of bacterial community structure in plant rhizospheres. Bacterial metabolic analysis indicated that different plant rhizosphere microbial flora developed various metabolic strategies in response to phosphate mining stress, including enriching unsaturated fatty acids, antibiological transport systems, cold shock proteins, etc. This study reveals the interaction between crops, rhizosphere bacteria, and soil pollutants. Select differentiated microbial strains suitable for specific plant rhizosphere environments are necessary for agricultural soil remediation. Additionally, the problem of destruction of agricultural soil and microecology caused by phosphate mining must be solved.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Zhijie Bao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
King CM, Hovick SM. Wetland plant community variation across replicate urban to rural gradients: non-native species as both drivers and passengers in systems impacted by anthropogenic land-use. Urban Ecosyst 2020. [DOI: 10.1007/s11252-020-01012-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Can Constructed Wetlands be Wildlife Refuges? A Review of Their Potential Biodiversity Conservation Value. SUSTAINABILITY 2020. [DOI: 10.3390/su12041442] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The degradation of wetland ecosystems is currently recognized as one of the main threats to global biodiversity. As a means of compensation, constructed wetlands (CWs), which are built to treat agricultural runoff and municipal wastewater, have become important for maintaining biodiversity. Here, we review studies on the relationships between CWs and their associated biodiversity published over the past three decades. In doing so, we provide an overview of how wildlife utilizes CWs, and the effects of biodiversity on pollutant transformation and removal. Beyond their primary aim (to purify various kinds of wastewater), CWs provide sub-optimal habitat for many species and, in turn, their purification function can be strongly influenced by the biodiversity that they support. However, there are some difficulties when using CWs to conserve biodiversity because some key characteristics of these engineered ecosystems vary from natural wetlands, including some fundamental ecological processes. Without proper management intervention, these features of CWs can promote biological invasion, as well as form an ‘ecological trap’ for native species. Management options, such as basin-wide integrative management and building in more natural wetland components, can partially offset these adverse impacts. Overall, the awareness of managers and the public regarding the potential value of CWs in biodiversity conservation remains superficial. More in-depth research, especially on how to balance different stakeholder values between wastewater managers and conservationists, is now required.
Collapse
|
5
|
Barker CA, Turley NE, Orrock JL, Ledvina JA, Brudvig LA. Agricultural land-use history does not reduce woodland understory herb establishment. Oecologia 2019; 189:1049-1060. [PMID: 30879140 DOI: 10.1007/s00442-019-04348-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 01/30/2019] [Indexed: 10/27/2022]
Abstract
Agricultural land use is a leading cause of habitat degradation, leaving a legacy of ecological impacts long after agriculture has ceased. Yet the mechanisms for legacy effects, such as altered plant community composition, are not well understood. In particular, whether plant community recovery is limited by an inability of populations to establish within post-agricultural areas, owing to altered environmental conditions within these areas, remains poorly known. We evaluated this hypothesis of post-agricultural establishment limitation through a field experiment within longleaf pine woodlands in South Carolina (USA) and a greenhouse experiment using field-collected soils from these sites. In the field, we sowed seeds of 12 understory plant species associated with remnants (no known history of agriculture) into 27 paired remnant and post-agricultural woodlands. We found that post-agricultural woodlands supported higher establishment, resulting in greater species richness of sown species. These results were context dependent, however, with higher establishment in post-agricultural woodlands only when sites were frequently burned, had less leaf litter, or had less sandy soils. In the greenhouse, we found that agricultural history had no impact on plant growth or survival, suggesting that establishment limitation is unlikely driven by differences in soils associated with agricultural history when environmental conditions are not stressful. Rather, the potential for establishment in post-agricultural habitats can be higher than in remnant habitats, with the strength of this effect determined by fire frequency and soil characteristics.
Collapse
Affiliation(s)
- Carrie A Barker
- Department of Plant Biology, Michigan State University, East Lansing, USA. .,Department of Biological Sciences, Louisiana State University, Baton Rouge, USA.
| | - Nash E Turley
- Department of Plant Biology, Michigan State University, East Lansing, USA.,Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, USA
| | - John L Orrock
- Department of Zoology, University of Wisconsin, Madison, USA
| | - Joseph A Ledvina
- Department of Plant Biology, Michigan State University, East Lansing, USA
| | - Lars A Brudvig
- Department of Plant Biology, Michigan State University, East Lansing, USA.,Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, USA
| |
Collapse
|
6
|
Stapanian MA, Gara B, Schumacher W. Surrounding land cover types as predictors of palustrine wetland vegetation quality in conterminous USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:366-375. [PMID: 29156257 DOI: 10.1016/j.scitotenv.2017.11.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 05/26/2023]
Abstract
The loss of wetland habitats and their often-unique biological communities is a major environmental concern. We examined vegetation data obtained from 380 wetlands sampled in a statistical survey of wetlands in the USA. Our goal was to identify which surrounding land cover types best predict two indices of vegetation quality in wetlands at the regional scale. We considered palustrine wetlands in four regions (Coastal Plains, North Central East, Interior Plains, and West) in which the dominant vegetation was emergent, forested, or scrub-shrub. For each wetland, we calculated weighted proportions of eight land cover types surrounding the area in which vegetation was assessed, in four zones radiating from the edge of the assessment area to 2km. Using Akaike's Information Criterion, we determined the best 1-, 2- and 3-predictor models of the two indices, using the weighted proportions of the land cover types as potential predictors. Mean values of the two indices were generally higher in the North Central East and Coastal Plains than the other regions for forested and emergent wetlands. In nearly all cases, the best predictors of the indices were not the dominant surrounding land cover types. Overall, proportions of forest (positive effect) and agriculture (negative effect) surrounding the assessment area were the best predictors of the two indices. One or both of these variables were included as predictors in 65 of the 72 models supported by the data. Wetlands surrounding the assessment area had a positive effect on the indices, and ranked third (33%) among the predictors included in supported models. Development had a negative effect on the indices and was included in only 28% of supported models. These results can be used to develop regional management plans for wetlands, such as creating forest buffers around wetlands, or to conserve zones between wetlands to increase habitat connectivity.
Collapse
Affiliation(s)
- Martin A Stapanian
- U.S. Geological Survey, Lake Erie Biological Station, 6100 Columbus Avenue, Sandusky, OH 44870, USA.
| | - Brian Gara
- Ohio Environmental Protection Agency, 4675 Homer Ohio Lane, Groveport, OH 43125, USA
| | - William Schumacher
- Ohio Environmental Protection Agency, 4675 Homer Ohio Lane, Groveport, OH 43125, USA
| |
Collapse
|
7
|
Ye Y, Ngo HH, Guo W, Liu Y, Li J, Liu Y, Zhang X, Jia H. Insight into chemical phosphate recovery from municipal wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 576:159-171. [PMID: 27783934 DOI: 10.1016/j.scitotenv.2016.10.078] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/11/2016] [Accepted: 10/11/2016] [Indexed: 05/24/2023]
Abstract
Phosphate plays an irreplaceable role in the production of fertilizers. However, its finite availability may not be enough to satisfy increasing demands for the fertilizer production worldwide. In this scenario, phosphate recovery can effectively alleviate this problem. Municipal wastewater has received high priority to recover phosphate because its quantity is considerable. Therefore, phosphate recovery from municipal wastewater can bring many benefits such as relieving the burden of increasing production of fertilizers and reduction in occurrence of eutrophication caused by the excessive concentration of phosphate in the released effluent. The chemical processes are the most widely applied in phosphate recovery in municipal wastewater treatment because they are highly stable and efficient, and simple to operate. This paper compares chemical technologies for phosphate recovery from municipal wastewater. As phosphate in the influent is transferred to the liquid and sludge phases, a technical overview of chemical phosphate recovery in both phases is presented with reference to mechanism, efficiency and the main governing parameters. Moreover, an analysis on their applications at plant-scale is also presented. The properties of recovered phosphate and its impact on crops and plants are also assessed with a discussion on the economic feasibility of the technologies.
Collapse
Affiliation(s)
- Yuanyao Ye
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Jixiang Li
- Shanghai Advanced Research Institute, Chinese Academy of Science, Zhangjiang Hi-Tech Park, Pudong, Shanghai, China.
| | - Yi Liu
- Shanghai Advanced Research Institute, Chinese Academy of Science, Zhangjiang Hi-Tech Park, Pudong, Shanghai, China
| | - Xinbo Zhang
- Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Hui Jia
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| |
Collapse
|