1
|
Yang Z, Zhang B, Zhang Y, Bartlam M, Wang Y. Stereoisomer-specific bacterial mechanisms for hexabromocyclododecane biotransformation. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137589. [PMID: 39954446 DOI: 10.1016/j.jhazmat.2025.137589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/20/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Hexabromocyclododecane (HBCD), a flame retardant classified as a Persistent Organic Pollutant (POP), undergoes stereoisomer-specific microbial transformation with significant environmental and health implications. However, the underlying mechanisms of this stereoisomer-specific microbial transformation remain poorly understood. In this study, high-purity HBCD chiral isomers were isolated using an optimized high-performance liquid chromatography (HPLC) method and their transformation by Acinetobacter hemolyticum sp. strain HW-2 was investigated through transcriptomic analysis. Within three days, strain HW-2 removed (+) α-, (-) α-, (+) β-, (-) β-, (+) γ-, and (-) γ-HBCD with respective removal efficiencies of 52.38 %, 71.08 %, 71.07 %, 63.34 %, 47.47 %, and 77.05 %. Transcriptomic data revealed stereoisomer-specific processes in HBCD transport, response, and transformation. Strain HW-2 upregulated major facilitator superfamily (MFS) transport genes for HBCD uptake, with distinct genes activated for different diastereoisomers. Compared to γ-HBCD, α- and β-HBCD exerted greater stress on strain HW-2, leading to increased expression of efflux genes and antioxidant-related genes. The transformation of HBCD stereoisomers involved distinct functional enzymes, with only (-) γ-HBCD metabolized via the aromatic compound metabolic pathway. This study elucidates the stereoisomeric-specific transformation mechanisms underlying HBCD transformation by strain HW-2, offering valuable insights for theoretical and practical applications in HBCD remediation.
Collapse
Affiliation(s)
- Zhao Yang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China
| | - Bidan Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China
| | - Yi Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China
| | - Mark Bartlam
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300071, China.
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China.
| |
Collapse
|
2
|
Marques ML, Cairrao E. Occurrence and Health Effects of Hexabromocyclododecane: An Updated Review. TOXICS 2023; 11:toxics11050409. [PMID: 37235223 DOI: 10.3390/toxics11050409] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023]
Abstract
Hexabromocyclododecane (HBCD) is a non-aromatic compound belonging to the bromine flame retardant family and is a known persistent organic pollutant (POP). This compound accumulates easily in the environment and has a high half-life in water. With a variety of uses, the HBCD is found in house dust, electronics, insulation, and construction. There are several isomers and the most studied are α-, β-, and γ-HBCD. Initially used as a substitute for other flame retardants, the polybrominated diphenyl ethers (PBDEs), the discovery of its role as a POP made HBCD use and manufacturing restricted in Europe and other countries. The adverse effects on the environment and human health have been piling, either as a result from its accumulation or considering its power as an endocrine disruptor (ED). Furthermore, it has also been proven that it has detrimental effects on the neuronal system, endocrine system, cardiovascular system, liver, and the reproductive system. HBCD has also been linked to cytokine production, DNA damage, increased cell apoptosis, increased oxidative stress, and reactive oxygen species (ROS) production. Therefore, this review aims to compile the most recent studies regarding the negative effects of this compound on the environment and human health, describing the possible mechanisms by which this compound acts and its possible toxic effects.
Collapse
Affiliation(s)
- Maria Lopes Marques
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
3
|
Ruan Y, Sun H, Lu Y, Zhang Y, Xu J, Zhu H, He Y. Evaluating phospholipid- and protein-water partitioning of two groups of chemicals of emerging concern: Diastereo- and enantioselectivity. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128499. [PMID: 35739679 DOI: 10.1016/j.jhazmat.2022.128499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/19/2022] [Accepted: 02/12/2022] [Indexed: 06/15/2023]
Abstract
The partitioning between phospholipids/proteins and water can be used to predict the bioaccumulation potential of chemicals with better accuracy compared with n-octanol-water partition coefficient. However, such partitioning is poorly understood for chiral chemicals, many of which exhibit differential bioaccumulation and toxicity potential between enantiomers. In this study, the enantiospecific liposome-water and bovine serum albumin (BSA)-water partition coefficients (Klip/w and KBSA/w, determined at 25 ℃ and 37 ℃, respectively) were measured by equilibrium dialysis for α-, β-, and γ-hexabromocyclododecane (HBCD) and three β-blockers (propranolol, metoprolol, and sotalol). Raman and fluorescence analyses and molecular docking were conducted to provide additional insights into the partitioning process. Results showed α- and β-HBCD displayed stronger enantioselective partitioning to liposomes with the (-)-form, while (-)-α-HBCD, R-(+)-propranolol, R-(+)-metoprolol, and E2-sotalol favored partitioning to BSA compared with their antipodes. Raman spectra revealed α- and γ-HBCD enhanced and reduced the organization of liposome acyl chains, respectively, and polar interactions enhanced the liposome partitioning of β-blockers. Fluorescence spectra indicated the changed tryptophan microenvironment might influence the BSA steric effect toward HBCD, and electrostatic interactions dominated the formation of BSA-β-blocker complexes. Molecular docking results supported the difference in the thermodynamic nature of interaction between the studied enantiomers and BSA.
Collapse
Affiliation(s)
- Yuefei Ruan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; State Key Laboratory of Marine Pollution (SKLMP), Department of Chemistry, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), City University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yichun Lu
- School of Energy and Environment, City University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Yanwei Zhang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiayao Xu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuhe He
- School of Energy and Environment, City University of Hong Kong, Hong Kong Special Administrative Region of China
| |
Collapse
|
4
|
An overview of analytical methods for enantiomeric determination of chiral pollutants in environmental samples and biota. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
5
|
EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Rose M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of hexabromocyclododecanes (HBCDDs) in food. EFSA J 2021; 19:e06421. [PMID: 33732387 PMCID: PMC7938899 DOI: 10.2903/j.efsa.2021.6421] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on hexabromocyclododecanes (HBCDDs) in food. HBCDDs, predominantly mixtures of the stereoisomers α-, β- and γ-HBCDD, were widely used additive flame retardants. Concern has been raised because of the occurrence of HBCDDs in the environment, food and in humans. Main targets for toxicity are neurodevelopment, the liver, thyroid hormone homeostasis and the reproductive and immune systems. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour in mice can be considered the critical effects. Based on effects on spontaneous behaviour in mice, the Panel identified a lowest observed adverse effect level (LOAEL) of 0.9 mg/kg body weight (bw) as the Reference Point, corresponding to a body burden of 0.75 mg/kg bw. The chronic intake that would lead to the same body burden in humans was calculated to be 2.35 μg/kg bw per day. The derivation of a health-based guidance value (HBGV) was not considered appropriate. Instead, the margin of exposure (MOE) approach was applied to assess possible health concerns. Over 6,000 analytical results for HBCDDs in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary LB exposure to HBCDDs were fish meat, eggs, livestock meat and poultry. The CONTAM Panel concluded that the resulting MOE values support the conclusion that current dietary exposure to HBCDDs across European countries does not raise a health concern. An exception is breastfed infants with high milk consumption, for which the lowest MOE values may raise a health concern.
Collapse
|
6
|
Badea SL, Geana EI, Niculescu VC, Ionete RE. Recent progresses in analytical GC and LC mass spectrometric based-methods for the detection of emerging chlorinated and brominated contaminants and their transformation products in aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137914. [PMID: 32208267 DOI: 10.1016/j.scitotenv.2020.137914] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
This paper is an overview of screening methods recently developed for emerging halogenated contaminants and their transformation products. The target screening methods are available only for a limited number of emerging pollutants since the reference standards for these compounds are not always available, but a risk assessment of those micropollutants in environment must be performed anyhow. Therefore, the chromatographic techniques hyphenated with high resolution mass spectrometry (HRMS) trend to become indispensable methods for suspect and non-target screening of emerging halogenated contaminants. HRMS is also an effective tool for tentatively identification of the micropollutants' transformation products existing in much lower concentrations. To assess the transformation pathway of halogenated contaminants in environment, the non-target screening methods must be combined with biodegradation lab experiments and also with advanced oxidation and reduction processes that can mimic the transformation on these contaminants in environment. It is expected that in the future, the accurate-mass full-spectra of transformation products recorded by HRMS will be the basic information needed to elucidate the transformation pathways of emerging halogenated contaminants in aquatic environment.
Collapse
Affiliation(s)
- Silviu-Laurentiu Badea
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 4th Uzinei Street, 240050 Râmnicu Vâlcea, Romania.
| | - Elisabeta-Irina Geana
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 4th Uzinei Street, 240050 Râmnicu Vâlcea, Romania
| | - Violeta-Carolina Niculescu
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 4th Uzinei Street, 240050 Râmnicu Vâlcea, Romania
| | - Roxana-Elena Ionete
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 4th Uzinei Street, 240050 Râmnicu Vâlcea, Romania
| |
Collapse
|
7
|
Sanganyado E, Lu Z, Liu W. Application of enantiomeric fractions in environmental forensics: Uncertainties and inconsistencies. ENVIRONMENTAL RESEARCH 2020; 184:109354. [PMID: 32182482 DOI: 10.1016/j.envres.2020.109354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 05/27/2023]
Abstract
The assumption that only biological processes are enantioselective introduces challenges in the reliability of enantioselective analysis as a tool for discriminating biotic and abiotic processes in the environmental fate of chiral pollutants. Enantioselectivity does not depend on the nature of the fate process a chiral contaminant undergoes but on the interaction of the chiral contaminant with homochirality inducing external agents (e.g. chiral molecules, macromolecules or surfaces such as enzymes, blood plasma, proteins, chiral co-pollutants, humic acid and soil organominerals). The environmental behavior of a chiral contaminant is difficult to anticipate because the interactions between the chiral contaminants and the homochirality inducing external agents is often complex and strongly influenced by local environment conditions such as pH, redox conditions, organic carbon, organic nitrogen, humic acid, and redox conditions. Furthermore, the use of enantioselective analysis in environmental forensics depend on the adequate separation and accurate identification and quantification of the enantiomers of the chiral contaminant. Matrix effects, instrument effects, inadequate enantioselective separation, and poor quantification techniques introduce uncertainties in the determination of enantiomeric composition. Here we present the weaknesses of this assumption and recommend using enantiomeric fractions as chemical markers of biotransformation with caution. We recommend using stable isotopes, including abiotic controls to determine if enantioselective sorption occurs, and determining stability of enantiomers in solvent or at elevated temperatures to account for confounding factors arising from matrix effects, enantioselective abiotic processes, and enantiomerization due solvent and thermal lability of the chiral analyte, respectively to maintain the integrity of the utility of enantiomeric composition changes as an environmental forensics tool.
Collapse
Affiliation(s)
- Edmond Sanganyado
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong, 515063, China
| | - Zhijiang Lu
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong, 515063, China.
| |
Collapse
|
8
|
Ruan Y, Zhang K, Lam JCW, Wu R, Lam PKS. Stereoisomer-specific occurrence, distribution, and fate of chiral brominated flame retardants in different wastewater treatment systems in Hong Kong. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:211-218. [PMID: 31005053 DOI: 10.1016/j.jhazmat.2019.04.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the occurrence and fate of 1,2,5,6,9,10-hexabromocyclododecane (HBCD) and 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH), two chiral brominated flame retardants (BFRs) with sixteen different stereoisomers, in four Hong Kong wastewater treatment plants (WWTPs) featuring diverse treatment processes during a two-year sampling campaign. More effective HBCD removal was achieved via biodegradation as compared to sludge sorption, whereas both chemically enhanced primary treatment and secondary treatment yielded high TBECH elimination (>90%). α-HBCD (54-75%) predominated in all samples, and its proportions were increased in effluent as compared to influent and sludge. α- and β-TBECH (72.3-84.4% in total) were the predominant TBECH diastereomers, with a proportional shift from the latter to the former diastereomer mostly observed after treatment. More rapid biodegradation and preferential sorption of γ-HBCD as compared to α-HBCD as well as β-TBECH as compared to α-TBECH might account for this changing pattern. This is the first study to report the enantiomer-specific behavior of chiral BFRs in different wastewater treatment processes. A preferential elimination of (+)-α- and (+)-γ-HBCD and E2-β-TBECH (the second enantiomeric elution order) took place consistently after biological treatment, possibly due to enantioselective adsorption and microbial degradation. Our results highlight the importance of conducting enantiospecific analysis for chiral pollutants in wastewater samples.
Collapse
Affiliation(s)
- Yuefei Ruan
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kai Zhang
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong Special Administrative Region, China
| | - James C W Lam
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Science and Environmental Studies, The Education University of Hong of Kong, Hong Kong Special Administrative Region, China.
| | - Rongben Wu
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
9
|
Xu C, Lin X, Yin S, Zhao L, Liu Y, Liu K, Li F, Yang F, Liu W. Enantioselectivity in biotransformation and bioaccumulation processes of typical chiral contaminants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1274-1286. [PMID: 30268979 DOI: 10.1016/j.envpol.2018.09.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 09/03/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
Chirality is a critical topic in the medicinal and agrochemical fields. One quarter of all agrochemicals was chiral in 1996, and this proportion has increased remarkably with the introduction of new compounds over time. Despite scientists have made great efforts to probe the enantiomeric selectivity of chiral chemicals in the environment since early 1990s, the different behaviours of individual enantiomers in biologically mediated processes are still unclear. In the present review, we highlight state-of-the-knowledge on the stereoselective biotransformation and accumulation of chiral contaminants in organisms ranging from invertebrates to humans. Chiral insecticides, fungicides, and herbicides, polychlorinated biphenyls (PCBs), pharmaceuticals, flame retardants hexabromocyclododecane (HBCD), and perfluorooctane sulfonate (PFOS) are all included in the target compounds. Key findings included: a) Changes in the enantiomeric fractions in vitro and in vivo models revealed that enantioselectivity commonly occurs in biotransformation and bioaccumulation. b) Emerging contaminants have become more important in the field of enantioselectivity together with their metabolites in biological transformation process. c) Chiral signatures have also been regarded as powerful tools for tracking pollution sources when the contribution of precursor is unknown. Future studies are needed in order to understand not only preliminary enrichment results but also detailed molecular mechanisms in diverse models to comprehensively understand the behaviours of chiral compounds.
Collapse
Affiliation(s)
- Chenye Xu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; School of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xinmeng Lin
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shanshan Yin
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lu Zhao
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingxue Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kai Liu
- Department of Environmental Science and Engineering, W. M. Keck Laboratories, California Institute of Technology, 1200 East California Blvd., Pasadena, CA, 91125, USA
| | - Fang Li
- School of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Fangxing Yang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weiping Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Lara A, Caballo C, Sicilia M, Rubio S. Speeding up the extraction of hexabromocyclododecane enantiomers in soils and sediments based on halogen bonding. Anal Chim Acta 2018; 1027:47-56. [DOI: 10.1016/j.aca.2018.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/25/2018] [Accepted: 05/01/2018] [Indexed: 12/18/2022]
|
11
|
Wang W, Choo G, Cho HS, Park K, Shin YJ, Oh JE. The occurrence and distribution of hexabromocyclododecanes in freshwater systems, focusing on tissue-specific bioaccumulation in crucian carp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:470-478. [PMID: 29677672 DOI: 10.1016/j.scitotenv.2018.03.262] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
The occurrence and distribution of hexabromocyclododecanes (HBCDs) were investigated in freshwater, sediment, and selected crucian carp (Carassius carassius) tissues (muscle, liver, egg, and blood) to evaluate the potential for HBCDs bioaccumulation. The HBCDs concentration ranged from not detected to 0.35ng/L in freshwater, and from 0.037 to 35.4ng/g-dw in sediment. The highest HBCDs concentration was detected in crucian carp liver (5.14±8.15ng/g-ww), followed by egg (3.88±10.1ng/g-ww), blood (0.61±0.63ng/mL), and muscle (0.38±0.70ng/g-ww). In all crucian carp tissues, α-HBCD was the predominant stereoisomer, and the fraction of α-HBCD as a proportion of the total HBCDs in liver tissue (96%) was higher than that in egg tissue (79%). There was a positive correlation between the HBCDs concentration in crucian carp muscle and body size (p<0.01, Spearman). The biota-sediment accumulation factor (BSAF) (0.14) and bioconcentration factor (BCF) (137,000L/kg) values were estimated in crucian carp muscle using field-based data.
Collapse
Affiliation(s)
- Wenting Wang
- Department of Civil and Environmental Engineering, Pusan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Gyojin Choo
- Department of Civil and Environmental Engineering, Pusan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Hyeon-Seo Cho
- College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 550-749, Republic of Korea
| | - Kyunghwa Park
- National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Yu-Jin Shin
- National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea.
| |
Collapse
|