1
|
Li Z, Fu Q, Su H, Yang W, Chen H, Zhang B, Hua L, Xu Q. Model development of bioelectrochemical systems: A critical review from the perspective of physiochemical principles and mathematical methods. WATER RESEARCH 2022; 226:119311. [PMID: 36369684 DOI: 10.1016/j.watres.2022.119311] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Bioelectrochemical systems (BESs) are promising devices for wastewater treatment and bio-energy production. Since various processes are interacted and affect the overall performance of the device, the development of theoretical modeling is an efficient approach to understand the fundamental mechanisms that govern the performance of the BES. This review aims to summarize the physiochemical principle and mathematical method in BES models, which is of great importance for the establishment of an accurate model while has received little attention in previous reviews. In this review, we begin with a classification of existing models including bioelectrochemical models, electronic models, and machine learning models. Subsequently, physiochemical principles and mathematical methods in models are discussed from two aspects: one is the description of methodology how to build a framework for models, and the other is to further review additional methods that can enrich model functions. Finally, the advantages/disadvantages, extended applications, and perspectives of models are discussed. It is expected that this review can provide a viewpoint from methodologies to understand BES models.
Collapse
Affiliation(s)
- Zhuo Li
- Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education of China, Chongqing University, Chongqing 400044, PR China
| | - Qian Fu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education of China, Chongqing University, Chongqing 400044, PR China
| | - Huaneng Su
- Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, PR China
| | - Wei Yang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu, 610065, PR China
| | - Hao Chen
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Bo Zhang
- Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, PR China
| | - Lun Hua
- Tsinghua University Suzhou Automotive Research Institute, Suzhou, 215200, PR China
| | - Qian Xu
- Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
2
|
Goren AY, Okten HE. Energy production from treatment of industrial wastewater and boron removal in aqueous solutions using microbial desalination cell. CHEMOSPHERE 2021; 285:131370. [PMID: 34252811 DOI: 10.1016/j.chemosphere.2021.131370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 06/17/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
As a result of a much needed paradigm shift worldwide, treated saline water is being considered as a viable option for replacing freshwater resources in agricultural irrigation. Vastly produced geothermal brine in Turkey may pose a significant environmental risk due to its high ionic strength, specifically due to boron. Boron species, which are generally found uncharged in natural waters, are costly to remove using high-throughput membrane technologies such as reverse osmosis. Recent advances in bioelectrochemical systems (BES) has facilitated development of energetically self-sufficient wastewater treatment and desalination. In this study, removal of boron from synthetic solutions and real geothermal waters, along with simultaneous energy production, using the microbial desalination cell (MDC) were investigated. Optimization studies were conducted by varying boron concentrations (5, 10, and 20 mg L-1), air flow rates (0, 1, and 2 L min-1), electrode areas (18, 24, 36, and 72 cm2), catholyte solutions, and operating modes. Even though the highest concentration decrease was observed for 20 mg-B L-1, 5 mg-B L-1 concentration experiment gave the closest result to the 2.4 mg-B L-1 limit value asserted by WHO. Effect of electrode surface area was proven to be significant on boron removal efficiency. Employing the optimum conditions acquired with synthetic solutions, boron and COD removal efficiencies from real geothermal brine were 44.3% and 90.6%, respectively. MDC, being in its early levels of technology readiness, produced promising desalination and energy production results in removal of boron from geothermal brine.
Collapse
Affiliation(s)
- A Y Goren
- Izmir Institute of Technology, Department of Environmental Engineering, İzmir, Turkey
| | - H E Okten
- Izmir Institute of Technology, Department of Environmental Engineering, İzmir, Turkey; Environmental Development Application and Research Center, İzmir, Turkey.
| |
Collapse
|
3
|
Jadhav DA, Carmona-Martínez AA, Chendake AD, Pandit S, Pant D. Modeling and optimization strategies towards performance enhancement of microbial fuel cells. BIORESOURCE TECHNOLOGY 2021; 320:124256. [PMID: 33120058 DOI: 10.1016/j.biortech.2020.124256] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Considering the complexity associated with bioelectrochemical processes, the performance of a microbial fuel cell (MFC) is governed by input operating parameters. For scaled-up applications, a MFC system needs to be modeled from engineering perspectives in terms of optimum operating conditions to get higher performance and energy recovery. Several conceptual numerical models to advanced computational simulation approaches have been developed to represent simple-form of a complex MFC system. Application of mathematical and computation models are explored to establish the relationship between operating input-variables and power output. The present review discusses about the complexity of system, modeling strategies used and reality of such modeling for scaling-up applications of MFCs. Additionally, the selection of an appropriate mathematical model reduces the computational duration and provides better understanding of the system process. It also explores the possibility and progress towards commercialization of MFCs and thus the need of development of model-based optimization and process-control approaches.
Collapse
Affiliation(s)
- Dipak A Jadhav
- Department of Agricultural Engineering, Maharashtra Institute of Technology, Aurangabad, Maharashtra 431010, India.
| | - Alessandro A Carmona-Martínez
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Ashvini D Chendake
- Shiv Shankar College of Agricultural Engineering, Mirajgaon, Ahmednagar, Maharashtra 414401, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201306, India
| | - Deepak Pant
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| |
Collapse
|
4
|
Deniz F, Akarsu C. Operating Cost and Treatment of Boron from Aqueous Solutions by Electrocoagulation in Low Concentration. GLOBAL CHALLENGES (HOBOKEN, NJ) 2018; 2:1800011. [PMID: 31565336 PMCID: PMC6607143 DOI: 10.1002/gch2.201800011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/10/2018] [Indexed: 06/10/2023]
Abstract
The objective of this study is to determine the optimum parameters of electrocoagulation process in treatment of boron in low concentrations. Especially, studies on electrode optimization in low boron concentrated waters are insufficient. Therefore, the effect of electrode combination (Al-Al, Al-Fe, Al-SS, Fe-Al, Fe-Fe, and Fe-SS), pH (5-9), current density (8-24 mA cm-2), distance (1-3 cm), and electrolysis time (10-90 min) on treatment of boron containing wastewater is studied to obtain maximum removal efficiency. The maximum removal efficiency of boron is obtained as 95.6%. Operation conditions for maximum removal are the electrode combination of Fe-Al, current density of 16 mA cm-2, pH 7.0, concentration of 30 mg L-1 and the reaction time of 70 min. Operating cost of the electrocoagulation process is calculated as 2.35 $ m-3. This study indicates that the electrocoagulation process can be successfully applied in order to treat boron-polluted wastewaters at low initial concentrations.
Collapse
Affiliation(s)
- Fatma Deniz
- Department of Environmental EngineeringEngineering FacultyMersin University33343MersinTurkey
| | - Ceyhun Akarsu
- Department of Environmental EngineeringEngineering FacultyMersin University33343MersinTurkey
| |
Collapse
|
5
|
Study of the Equilibrium, Kinetics, and Thermodynamics of Boron Removal from Waters with Commercial Magnesium Oxide. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2018. [DOI: 10.1155/2018/6568548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present work, the equilibrium, thermodynamics, and kinetics of boron removal from aqueous solutions by the adsorption on commercial magnesium oxide powder were studied in a batch reactor. The adsorption efficiency of boron removal increases with temperature from 25°C to 50°C. The experimental results were fitted to the Langmuir, Freundlich, and Dubinin–Radushkevich (DR) adsorption isotherm models. The Freundlich model provided the best fitting, and the maximum monolayer adsorption capacity of MgO was 36.11 mg·g−1. In addition, experimental kinetic data interpretations were attempted for the pseudo-first-order kinetic model and pseudo-second-order kinetic model. The results show that the pseudo-second-order kinetic model provides the best fit. Such result suggests that the adsorption process seems to occur in two stages due to the two straight slopes obtained through the application of the pseudo-first-order kinetic model, which is confirmed by the adjustment of the results to the pseudo-second-order model. The calculated activation energy (Ea) was 45.5 kJ·mol−1, and the values calculated for ∆G°, ∆H°, and ∆S° were −4.16 kJ·mol−1, 21.7 kJ·mol−1, and 87.3 kJ·mol−1, respectively. These values confirm the spontaneous and endothermic nature of the adsorption process and indicated that the disorder increased at the solid-liquid interface. The results indicate that the controlling step of boron adsorption process on MgO is of a physical nature.
Collapse
|
6
|
Chorghe D, Sari MA, Chellam S. Boron removal from hydraulic fracturing wastewater by aluminum and iron coagulation: Mechanisms and limitations. WATER RESEARCH 2017; 126:481-487. [PMID: 29028491 DOI: 10.1016/j.watres.2017.09.057] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 06/07/2023]
Abstract
One promising water management strategy during hydraulic fracturing is treatment and reuse of flowback/produced water. In particular, the saline flowback water contains many of the chemicals employed for fracking, which need to be removed before possible reuse as "frac water." This manuscript targets turbidity along with one of the additives; borate-based cross-linkers used to adjust the rheological characteristics of the frac-fluid. Alum and ferric chloride were evaluated as coagulants for clarification and boron removal from saline flowback water obtained from a well in the Eagle Ford shale. Extremely high dosages (> 9000 mg/L or 333 mM Al and 160 mM Fe) corresponding to Al/B and Fe/B mass ratios of ∼70 and molar ratios of ∼28 and 13 respectively were necessary to remove ∼80% boron. Hence, coagulation does not appear to be feasible for boron removal from high-strength waste streams. X-ray photoelectron spectroscopy revealed BO bonding on surfaces of freshly precipitated Al(OH)3(am) and Fe(OH)3(am) suggesting boron uptake was predominantly via ligand exchange. Attenuated total reflection-Fourier transform infrared spectroscopy provided direct evidence of inner-sphere boron complexation with surface hydroxyl groups on both amorphous aluminum and iron hydroxides. Only trigonal boron was detected on aluminum flocs since possible presence of tetrahedral boron was masked by severe AlO interferences. Both trigonal and tetrahedral conformation of boron complexes were identified on Fe(OH)3 surfaces.
Collapse
Affiliation(s)
- Darpan Chorghe
- Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Mutiara Ayu Sari
- Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Shankararaman Chellam
- Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA; Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA.
| |
Collapse
|
7
|
Mardanpour MM, Yaghmaei S. Dynamical Analysis of Microfluidic Microbial Electrolysis Cell via Integrated Experimental Investigation and Mathematical Modeling. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.01.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|