1
|
Dailianis S, Charalampous N, Giokas S, Vlastos D, Efthimiou I, Dormousoglou M, Cocilovo C, Faggio C, Shehu A, Shehu J, Lyberatos G, Ntaikou I. Chemical and biological tracking in decentralized sanitation systems: The case of artificial constructed wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113799. [PMID: 34560464 DOI: 10.1016/j.jenvman.2021.113799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/18/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Given that the social and economic sustainability of rural areas is highly based on the protection of natural resources, biodiversity and human health, simple-operated and cost-effective wastewater treatment systems, like artificial constructed wetlands (CWs), are widely proposed for minimizing the environmental and human impact of both water and soil pollution. Considering that the optimization of wastewater treatment processes is vital for the reduction of effluents toxic potential, there is imperative need to establish appropriate management strategies for ensuring CW performance and operational efficiency. To this end, the present study aimed to assess the operational efficiency of a horizontal free water surface CW (HFWS-CW) located in a world heritage area of Western Greece, via a twelve-month duration Toxicity Identification Evaluation (TIE)-like approach, including both chemical and biological tracking tools. Conventional chemical tracking, by means of pH, conductivity, total COD, and nitrogen-derived components, like nitrates and ammonia-nitrogen, were monthly recorded in both influents and effluents to monitor whether water quality standards are maintained, and to assess potent CW operational deficiencies occurring over time. In parallel, Whole Effluent Toxicity (WET) bioassays were thoroughly applied, using freshwater algae and higher plant species (producers), crustaceans and rotifers (consumers), as well as human lymphocytes (in terms of Cytokinesis Block Micronucleus assay) to evaluate the acute and short-term toxic and hazardous potential of both influents and effluents. The integrated analysis of abiotic (physicochemical parameters) and biotic (toxic endpoints) parameters, as well as the existence of "cause-effect" interrelations among them, revealed that CW operational deficiencies, mainly based on poorly removal rates, could undermine the risk posed by treated sewage. Those findings reinforce the usage of WET testing, thus giving rise to the importance of applying appropriate water management strategies and optimization actions, like oxygen enrichment of surface and bottom of HFWS-CW basins, expansion of the available land, the enhancement of bed depth and seasonal harvesting of plants, for ensuring sewage quality, in favor of water resources protection and sustainable growth in rural areas.
Collapse
Affiliation(s)
- Stefanos Dailianis
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, 26500, GR, Patras, Greece.
| | - Nikolina Charalampous
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, 26500, GR, Patras, Greece
| | - Sinos Giokas
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, 26500, GR, Patras, Greece
| | - Dimitris Vlastos
- Department of Environmental Engineering, University of Patras, 30100, Agrinio, Greece
| | - Ioanna Efthimiou
- Department of Environmental Engineering, University of Patras, 30100, Agrinio, Greece
| | | | - Claudia Cocilovo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31 98166, S. Agata-Messina, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31 98166, S. Agata-Messina, Italy
| | - Alma Shehu
- Department of Chemistry, Faculty of Natural Sciences, University of Tirana, Blv. "ZOG I", Tirana, Albania
| | - Julian Shehu
- Flora and Fauna Research Center, Faculty of Natural Sciences, University of Tirana, Albania
| | - Gerasimos Lyberatos
- School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece; Institute of Chemical Engineering Sciences, Foundation of Research & Technology Hellas (ICEHT/FORTH), 10 Stadiou St., Platani, 26504, Patras, Greece
| | - Ioanna Ntaikou
- Institute of Chemical Engineering Sciences, Foundation of Research & Technology Hellas (ICEHT/FORTH), 10 Stadiou St., Platani, 26504, Patras, Greece
| |
Collapse
|
2
|
Kalamaras G, Kloukinioti M, Antonopoulou M, Ntaikou I, Vlastos D, Eleftherianos A, Dailianis S. The Potential Risk of Electronic Waste Disposal into Aquatic Media: The Case of Personal Computer Motherboards. TOXICS 2021; 9:toxics9070166. [PMID: 34357909 PMCID: PMC8309724 DOI: 10.3390/toxics9070166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022]
Abstract
Considering that electronic wastes (e-wastes) have been recently recognized as a potent environmental and human threat, the present study aimed to assess the potential risk of personal computer motherboards (PCMBs) leaching into aquatic media, following a real-life scenario. Specifically, PCMBs were submerged for 30 days in both distilled water (DW) and artificial seawater (ASW). Afterwards, PCMBs leachates were chemically characterized (i.e., total organic carbon, ions, and trace elements) and finally used (a) for culturing freshwater (Chlorococcum sp. and Scenedesmus rubescens) and saltwater (Dunaliella tertiolecta and Tisochrysis lutea) microalgae for 10 days (240 h), (b) as the exposure medium for mussel Mytilus galloprovincialis (96 h exposure), and (c) for performing the Cytokinesis Block Micronucleus (CBMN) assay in human lymphocytes cultures. According to the results, PCMBs could mediate both fresh- and marine algae growth rates over time, thus enhancing the cytotoxic, oxidative, and genotoxic effects in the hemocytes of mussels (in terms of lysosomal membrane impairment, lipid peroxidation, and NO content and micronuclei formation, respectively), as well as human lymphocytes (in terms of MN formation and CBPI values, respectively). The current findings clearly revealed that PCMBs leaching into the aquatic media could pose detrimental effects on both aquatic organisms and human cells.
Collapse
Affiliation(s)
- Georgios Kalamaras
- Department of Biology, Faculty of Sciences, University of Patras, GR-26500 Rio-Patra, Greece; (G.K.); (M.K.)
| | - Maria Kloukinioti
- Department of Biology, Faculty of Sciences, University of Patras, GR-26500 Rio-Patra, Greece; (G.K.); (M.K.)
| | - Maria Antonopoulou
- Department of Environmental Engineering, University of Patras, GR-30100 Agrinio, Greece; (M.A.); (D.V.)
| | - Ioanna Ntaikou
- Institute of Chemical Engineering Sciences, Foundation of Research & Technology Hellas (ICEHT/FORTH), 10 Stadiou st., Platani, GR-26504 Patras, Greece;
| | - Dimitris Vlastos
- Department of Environmental Engineering, University of Patras, GR-30100 Agrinio, Greece; (M.A.); (D.V.)
| | - Antonios Eleftherianos
- Akrokeramos Sewerage Laboratory, Athens Water Supply and Sewerage Company (EYDAP SA), GR-18755 Keratsini, Greece;
| | - Stefanos Dailianis
- Department of Biology, Faculty of Sciences, University of Patras, GR-26500 Rio-Patra, Greece; (G.K.); (M.K.)
- Correspondence:
| |
Collapse
|
3
|
Jovanović J, Kolarević S, Milošković A, Radojković N, Simić V, Dojčinović B, Kračun-Kolarević M, Paunović M, Kostić J, Sunjog K, Timilijić J, Djordjević J, Gačić Z, Žegura B, Vuković-Gačić B. Evaluation of genotoxic potential in the Velika Morava River Basin in vitro and in situ. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:1289-1299. [PMID: 29056382 DOI: 10.1016/j.scitotenv.2017.10.099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 06/07/2023]
Abstract
The Velika Morava River is the greatest national Serbian river and the significant tributary of the Danube River. The major problems in the Velika Morava River Basin (VMRB) represent untreated industrial and municipal wastewaters. In this study, the level of genotoxic potential at the sites along the VMRB was evaluated by parallel in vitro and in situ approach. Within in vitro testing, genotoxicity of native water samples collected from the sites in VMRB was evaluated by SOS/umuC test on Salmonella typhimurium TA1535/pSK1002 and by the comet assay on HepG2 cells. DNA damage in situ was assessed in bleak (Alburnus alburnus) erythrocytes by the comet (alkaline and Fpg-modified comet) and micronucleus assays. Additionally, the concentration of heavy metals in fish tissue was measured and this data, compiled with the data of the physico-chemical parameters measured in water, was used as a measure of the pollution pressure at the sites. Results showed that applied in vitro tests with native water samples are less sensitive in comparison with in situ tests and should be taken with precaution when making predictions on the status of the ecosystem. Within applied battery of in situ assays differential sensitivity of assays was observed where alkaline comet assay showed the highest potential in differentiation of the sites based on genotoxic potential. Integrated biomarker response showed that usage of the battery of bioassays provides better insight in a genotoxic effects in animals, and consequently, that the holistic approach is more suitable for this type of study.
Collapse
Affiliation(s)
- Jovana Jovanović
- University of Belgrade, Faculty of Biology, Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, Studentski trg 16, 11000 Belgrade, Serbia
| | - Stoimir Kolarević
- University of Belgrade, Faculty of Biology, Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, Studentski trg 16, 11000 Belgrade, Serbia.
| | - Aleksandra Milošković
- University of Kragujevac, Faculty of Science, Institute of Biology and Ecology, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Nataša Radojković
- University of Kragujevac, Faculty of Science, Institute of Biology and Ecology, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Vladica Simić
- University of Kragujevac, Faculty of Science, Institute of Biology and Ecology, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Biljana Dojčinović
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, 11000 Belgrade, Serbia
| | - Margareta Kračun-Kolarević
- University of Belgrade, Institute for Biological Research "Siniša Stanković", Despota Stefana 142, 11000 Belgrade, Serbia
| | - Momir Paunović
- University of Belgrade, Institute for Biological Research "Siniša Stanković", Despota Stefana 142, 11000 Belgrade, Serbia
| | - Jovana Kostić
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Karolina Sunjog
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Jovana Timilijić
- University of Belgrade, Faculty of Biology, Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, Studentski trg 16, 11000 Belgrade, Serbia
| | - Jelena Djordjević
- University of Belgrade, Faculty of Biology, Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, Studentski trg 16, 11000 Belgrade, Serbia
| | - Zoran Gačić
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Bojana Žegura
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Branka Vuković-Gačić
- University of Belgrade, Faculty of Biology, Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, Studentski trg 16, 11000 Belgrade, Serbia
| |
Collapse
|