1
|
Schwantes U. Impact of anthropogenous environmental factors on the marine ecosystem of trophically transmitted helminths and hosting seabirds: Focus on North Atlantic, North Sea, Baltic and the Arctic seas. Helminthologia 2023; 60:300-326. [PMID: 38222492 PMCID: PMC10787638 DOI: 10.2478/helm-2023-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 09/21/2023] [Indexed: 01/16/2024] Open
Abstract
Alongside natural factors, human activities have a major impact on the marine environment and thus influence processes in vulnerable ecosystems. The major purpose of this review is to summarise the current understanding as to how manmade factors influence the marine biocenosis of helminths, their intermediate hosts as well as seabirds as their final hosts. Moreover, it highlights current knowledge gaps regarding this ecosystem, which should be closed in order to gain a more complete understanding of these interactions. This work is primarily focused on helminths parasitizing seabirds of the North Atlantic and the Arctic Ocean. The complex life cycles of seabird helminths may be impacted by fishing and aquaculture, as they interfere with the abundance of fish and seabird species, while the latter also affects the geographical distribution of intermediate hosts (marine bivalve and fish species), and may therefore alter the intertwined marine ecosystem. Increasing temperatures and seawater acidification as well as environmental pollutants may have negative or positive effects on different parts of this interactive ecosystem and may entail shifts in the abundance or regional distribution of parasites and/or intermediate and final hosts. Organic pollutants and trace elements may weaken the immune system of the hosting seabirds and hence affect the final host's ability to control the endoparasites. On the other hand, in some cases helminths seem to function as a sink for trace elements resulting in decreased concentrations of heavy metals in birds' tissues. Furthermore, this article also describes the role of helminths in mass mortality events amongst seabird populations, which beside natural causes (weather, viral and bacterial infections) have anthropogenous origin as well (e.g. oil spills, climate change, overfishing and environmental pollution).
Collapse
Affiliation(s)
- U. Schwantes
- Verein Jordsand zum Schutz der Seevögel und der Natur e.V., Ahrensburg, Germany
| |
Collapse
|
2
|
Monnolo A, Clausi MT, Del Piano F, Santoro M, Fiorentino ML, Barca L, Fusco G, Degli Uberti B, Ferrante L, Mercogliano R, Ferrante MC. Do Organochlorine Contaminants Modulate the Parasitic Infection Degree in Mediterranean Trout ( Salmo trutta)? Animals (Basel) 2023; 13:2961. [PMID: 37760361 PMCID: PMC10526105 DOI: 10.3390/ani13182961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
We investigated the occurrence of organochlorine pollutants (OCs) in the muscle of brown trout and evaluated their potential modulation of parasite infection. The toxicological risk for consumer health was assessed, too. Trout were collected from the Sila National Park (Calabria region, South of Italy). The highest concentrations emerged for the sum of the 6 non-dioxin-like (ndl) indicator polychlorinated biphenyls (Σ6ndl-PCBs), followed by the 1,1,1-trichloro-2,2-di(4-chlorophenyl)-ethane (DDT), dioxin-like PCBs, hexachlorobenzene (HCB), and dieldrin. Measured on lipid weight (LW), the mean value of Σ6ndl-PCBs amounted to 201.9 ng g-1, that of ΣDDTs (the sum of DDT-related compounds) to 100.2 ng g-1, with the major contribution of the DDT-metabolite p,p'-DDE which was detected in all sample units (97.6 ng g-1 on average). Among dioxin-like congeners, PCB 118 showed the highest mean concentration (21.96 ng g-1 LW) and was detected in all sample units. Regression analysis of intestinal parasites on OC concentration was performed, controlling for two potential confounding factors, namely sex and sexual stage. The results evidenced the existence of interactions between the dual stressors in the host-parasite system in the wild. A negative and statistically significant correlation was estimated, suggesting that OCs may decrease parasite infection degree. Regarding the toxicological risk evaluation, OC concentrations were consistently below the current European Maximum Residue Limits.
Collapse
Affiliation(s)
- Anna Monnolo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy; (A.M.); (F.D.P.); (R.M.)
| | - Maria Teresa Clausi
- Experimental Zooprophylactic Institute of Southern Italy, Calabria Section, 88100 Catanzaro, Italy;
| | - Filomena Del Piano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy; (A.M.); (F.D.P.); (R.M.)
| | - Mario Santoro
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy;
| | - Maria Lorena Fiorentino
- Environmental Research Center, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy;
| | - Lorella Barca
- Experimental Zooprophylactic Institute of Southern Italy, Calabria Section, 87100 Cosenza, Italy;
| | - Giovanna Fusco
- Experimental Zooprophylactic Institute of Southern Italy, 80055 Portici, Italy; (G.F.); (B.D.U.)
| | - Barbara Degli Uberti
- Experimental Zooprophylactic Institute of Southern Italy, 80055 Portici, Italy; (G.F.); (B.D.U.)
| | - Luigia Ferrante
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy;
| | - Raffaelina Mercogliano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy; (A.M.); (F.D.P.); (R.M.)
| | - Maria Carmela Ferrante
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy; (A.M.); (F.D.P.); (R.M.)
| |
Collapse
|
3
|
González-Gómez X, Figueiredo-González M, Villar-López R, Martínez-Carballo E. Biomonitoring of organic pollutants in pet dog plasma samples in North-Western Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161462. [PMID: 36623653 DOI: 10.1016/j.scitotenv.2023.161462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Most of organic pollutants (OPs) have the ability to interfere with biological systems causing negative effects in living beings, including humans. In the last decades, pets have been used as bioindicators of human exposure because they share the same habitat with their homeowners. We sought to determine levels of approximately 70 OPs, including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated biphenyl ethers (PBDEs), organophosphate pesticides (OPPs), polycyclic aromatic hydrocarbons (PAHs) and pyrethroids (PYRs) in plasma samples from 39 pet dogs from Ourense (north-western Spain). The results revealed that PAHs were the dominant OPs (mean value 175 ± 319 ng/g lipid weight (lw)), followed by PYRs (132 ± 352 ng/g lw), PCBs (122 ± 96 ng/g lw), OCPs (33 ± 17 ng/g lw), PBDEs (19 ± 18 ng/g lw) and OPPs (2.1 ± 2.7 ng/g lw) in plasma samples. We have previously detected the target OPs in hair samples of pets, collected simultaneously and similar trend of some OPs has been observed. Moreover, pyrene and chrysene showed correlations between levels detected in both matrices.
Collapse
Affiliation(s)
- Xiana González-Gómez
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, Constantino Candeira S/N, Santiago de Compostela 15782, Spain.
| | - María Figueiredo-González
- Food and Health Omics, Department of Analytical and Food Chemistry, Faculty of Sciences, Campus da Auga, University of Vigo, Ourense 32004, Spain.
| | - Roberto Villar-López
- Food and Health Omics, Department of Analytical and Food Chemistry, Faculty of Sciences, Campus da Auga, University of Vigo, Ourense 32004, Spain
| | - Elena Martínez-Carballo
- Food and Health Omics, Department of Analytical and Food Chemistry, Faculty of Sciences, Campus da Auga, University of Vigo, Ourense 32004, Spain.
| |
Collapse
|
4
|
Capriotti M, Cocci P, Bracchetti L, Cottone E, Scandiffio R, Caprioli G, Sagratini G, Mosconi G, Bovolin P, Palermo FA. Microplastics and their associated organic pollutants from the coastal waters of the central Adriatic Sea (Italy): Investigation of adipogenic effects in vitro. CHEMOSPHERE 2021; 263:128090. [PMID: 33140724 DOI: 10.1016/j.chemosphere.2020.128090] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/28/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Even though microplastic (MP) pollution in aquatic environment is nowadays widely studied, a huge gap of knowledge exists on their actual biological effects. In this study we first reported environmental baseline data on the occurrence and characterization of floating MPs in Italian coastal waters of the Central Adriatic Sea by using a standardized monitoring protocol. Further, we analyzed the concentrations of MP-associated chemicals and evaluated their potential adipogenic effects using 3T3-L1 preadipocytes. MPs were found in each sampling stations showing the highest abundance (1.88 ± 1.78 items/m3) in the sites more distant from the coast with fragments as the most common shape category. All targeted organic pollutants (i.e. polychlorinated biphenyls - PCBs, polycyclic aromatic hydrocarbons -PAHs, organophosphorus - OP, and organochlorine - OC pesticides) have been detected on the surface of the collected MPs. The highest concentrations of PAHs were found on MPs from inshore (i.e. <1.5 NM) surface waters with low-ring PAHs as dominant components. Similarly, MPs from inshore waters had higher ΣPCB concentrations (64.72 ng/g plastic) than those found in offshore (i.e. >6 NM) waters (10.37 ng/g plastic). Among pesticides, all measured OPs were detected in each sample analyzed with pirimiphos-methyl as the most representative compound. For OCs, the sum of all concentrations of congeners was higher in coastal with respect to offshore waters. Moreover, in vitro 3T3-L1 screening of MP extracts indicated potential metabolic effects resulting in both adipogenesis and lipid uptake/storage.
Collapse
Affiliation(s)
- Martina Capriotti
- Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Rd, Groton, CT, USA; School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy
| | - Paolo Cocci
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy
| | - Luca Bracchetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy
| | - Erika Cottone
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, TO, Italy
| | - Rosaria Scandiffio
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, TO, Italy
| | - Giovanni Caprioli
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032, Camerino, MC, Italy
| | - Gianni Sagratini
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032, Camerino, MC, Italy
| | - Gilberto Mosconi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy
| | - Patrizia Bovolin
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032, Camerino, MC, Italy
| | - Francesco Alessandro Palermo
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy.
| |
Collapse
|
5
|
Molbert N, Alliot F, Leroux-Coyau M, Médoc V, Biard C, Meylan S, Jacquin L, Santos R, Goutte A. Potential Benefits of Acanthocephalan Parasites for Chub Hosts in Polluted Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5540-5549. [PMID: 32267695 DOI: 10.1021/acs.est.0c00177] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Some parasites are expected to have beneficial impacts on wild populations in polluted environments because of their bioaccumulation potential of pollutants from their hosts. The fate of organic micropollutants in host-parasite systems and the combined effect of parasitism and pollution were investigated in chub Squalius cephalus, a freshwater fish, infected (n = 73) or uninfected (n = 45) by acanthocephalan parasites Pomphorhynchus sp. from differently contaminated riverine sites. Several ubiquitous pollutants (polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated diphenyl-ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), phthalates, insecticides, pyrethroids, and N,N-diethyl-meta-toluamide (DEET)) and some of their metabolites were characterized for the first time in parasites and various fish matrices (muscle, liver, and stomach content). Most organic pollutants reached higher levels in parasites than in chub matrices. In contrast, metabolite levels were lower in parasite tissues compared to fish matrices. Infected and uninfected chub exhibited no significant differences in their pollutant load. Body condition, organo-somatic indices, and immunity were not affected by parasitism, and few correlations were found with chemical pollution. Interestingly, infected chub exhibited lower oxidative damage compared to uninfected fish, irrespective of their pollutant load. In light of these results, this correlative study supports the hypothesis that acanthocephalan parasites could bring benefits to their hosts to cope with organic pollution.
Collapse
Affiliation(s)
- Noëlie Molbert
- Sorbonne Université, CNRS, EPHE, UMR METIS, F-75005 Paris, France
| | - Fabrice Alliot
- Sorbonne Université, CNRS, EPHE, UMR METIS, F-75005 Paris, France
- EPHE, PSL Research University, UMR METIS, F-75005 Paris, France
| | - Mathieu Leroux-Coyau
- Sorbonne Université, UPEC, Paris 7, CNRS, INRA, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, F-75005 Paris, France
| | - Vincent Médoc
- Equipe Neuro Ethologie Sensorielle, ENES/Neuro-PSI CNRS UMR 9197, Université de Lyon/Saint-Etienne, F-42100 Saint-Etienne, France
| | - Clotilde Biard
- Sorbonne Université, UPEC, Paris 7, CNRS, INRA, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, F-75005 Paris, France
| | - Sandrine Meylan
- Sorbonne Université, UPEC, Paris 7, CNRS, INRA, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, F-75005 Paris, France
| | - Lisa Jacquin
- Laboratoire Evolution & Diversité Biologique EDB, UMR 5174, Université Toulouse 3 Paul Sabatier; UPS; CNRS; IRD, F-31062 Toulouse, France
| | - Raphaël Santos
- Ecology and Engineering of Aquatic Systems Research Group, HEPIA, University of Applied Sciences Western Switzerland, CH-1254 Jussy, Switzerland
| | - Aurélie Goutte
- Sorbonne Université, CNRS, EPHE, UMR METIS, F-75005 Paris, France
- EPHE, PSL Research University, UMR METIS, F-75005 Paris, France
| |
Collapse
|
6
|
Ginés R, Camacho M, Henríquez-Hernández LA, Izquierdo M, Boada LD, Montero D, Robaina L, Zumbado M, Luzardo OP. Reduction of persistent and semi-persistent organic pollutants in fillets of farmed European seabass (Dicentrarchus labrax) fed low fish oil diets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:1239-1247. [PMID: 30189540 DOI: 10.1016/j.scitotenv.2018.06.223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/17/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Traditionally, a major part of aquaculture technology requires fish oil (FO) and fish meal (FM) to produce the aquafeed for farmed species. FO is the main source of persistent organic pollutants (POPs) in fish feed. In recent years, the use of vegetable-origin ingredients in fish feeds has been increasingly studied as an alternative to reduce the levels of these lipophilic pollutants in farmed species. The aim of this study was to evaluate the effect of the use of dietary vegetable oils in the farming of European sea bass (Dicentrarchus labrax) on the contents in persistent - polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) - and semi persistent pollutants - polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenyl ethers (BDEs) - of their edible parts. A total of 60 seabass muscle pools were obtained from fish farmed employing six experimental diets, which contained different percentages of FO (6 vs. 3%) and FM (20%, 10% and 5%). We did not observe differences in the contamination level of seabass muscle in relation to the percentage of FM in their diet. However, the fish farmed using feed which had lower levels of FO (3%) showed significantly lower muscle levels of ΣPCBs and carcinogenic PAHs (Σc-PAHs), with a reduction of 25.6% and 95.11% (respectively), as compared with those fished raised with feed with higher levels of FO (6%). Also much lower levels were found in OCPs such as sum of DDTs (30.88% of reduction), sum of chlordanes (42.85% of reduction), and sum of BDEs (48.16% of reduction) in those seabass fed with a lower percentage of FO. The results of this study indicate that the use of alternative feed ingredients that allow the employment of low percentage of FO in feeds help to reduce the load of several toxic pollutants in the fillets of European seabass.
Collapse
Affiliation(s)
- Rafael Ginés
- Grupo de Investigación en Acuicultura (GIA), Parque Científico Tecnológico Marino de Taliarte, Universidad de Las Palmas de Gran Canaria (ULPGC), Spain
| | - María Camacho
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Spain
| | | | - Marisol Izquierdo
- Grupo de Investigación en Acuicultura (GIA), Parque Científico Tecnológico Marino de Taliarte, Universidad de Las Palmas de Gran Canaria (ULPGC), Spain
| | - Luis D Boada
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Spain
| | - Daniel Montero
- Grupo de Investigación en Acuicultura (GIA), Parque Científico Tecnológico Marino de Taliarte, Universidad de Las Palmas de Gran Canaria (ULPGC), Spain
| | - Lidia Robaina
- Grupo de Investigación en Acuicultura (GIA), Parque Científico Tecnológico Marino de Taliarte, Universidad de Las Palmas de Gran Canaria (ULPGC), Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Spain.
| |
Collapse
|
7
|
Yavuz O, Arslan HH, Esin C, Das YK, Aksoy A. Determination of plasma concentrations of organochlorine pesticides and polychlorinated biphenyls in pet cats and dogs. Toxicol Ind Health 2018; 34:541-553. [DOI: 10.1177/0748233718773182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aim of this study was the determination of plasma concentrations of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in cats and dogs and evaluation of their prevalence and possible effects. The concentrations of nine OCPs, such as α-hexachlorocyclohexane (HCH), β-HCH, γ-HCH, hexachlorobenzene (HCB), aldrin, 2,4′-dichlorodiphenyltrichloroethane (2,4′-DDT), 4,4′-DDT, 2,4′-dichlorodiphenyldichloroethylene (2,4′-DDE) and 4,4′-DDE and 16 PCBs (PCB-28, -52, -70, -74, -81, -99, -101, -118, -138, -153, -156, -170, -180, -183, -187 and -208) were evaluated in the plasma samples of pet cats ( n = 15) and dogs ( n = 21). The concentrations of OCPs ranged from 1.12 ng g−1 lipid weight (lw) to 7.65 ng g−1 lw in cats and from 1.25 ng g−1 lw to 6.79 ng g−1 lw in dogs. In addition, mean PCB levels were 0.58–5.66 and 0.52–6.62 ng g−1 lw in cats and dogs, respectively. β-HCH, γ-HCH and PCB-138 levels were significantly higher in dogs ( p < 0.05). As far as could be determined, OCPs and PCBs were detected in the plasma samples of domestic cats and dogs in Turkey for the first time. Their concentrations were similar to those reported in earlier studies abroad. However, in contrast to other research, the levels of some OCPs were higher in dogs than in cats. It is concluded that, because of their high prevalence and potential health effects in animals and humans, OCP and PCB levels should be monitored systematically in domestic cats and dogs.
Collapse
Affiliation(s)
- Oguzhan Yavuz
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Handan Hilal Arslan
- Department of Internal Medicine, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Cagatay Esin
- Department of Internal Medicine, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Yavuz Kursad Das
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Abdurrahman Aksoy
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
8
|
Henríquez-Hernández LA, Luzardo OP, Zumbado M, Serra-Majem L, Valerón PF, Camacho M, Álvarez-Pérez J, Salas-Salvadó J, Boada LD. Determinants of increasing serum POPs in a population at high risk for cardiovascular disease. Results from the PREDIMED-CANARIAS study. ENVIRONMENTAL RESEARCH 2017; 156:477-484. [PMID: 28415042 DOI: 10.1016/j.envres.2017.03.053] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 11/17/2022]
Abstract
Persistent organic pollutants (POPs) are well-known ubiquitous environmental chemicals which have been related to adverse health outcomes, including cardiovascular disease (CVD). The purpose of this study was to evaluate POPs burden, and its determinants, in a population at high risk of suffering CVD enrolled in the PREDIMED Study (Spanish acronym for PREvention by means of MEDiterranean Diet). This cohort was formed by 343 participants (55-80 y.o.), which were selected for a preventive nutritional intervention for CVD based on the Mediterranean Diet. Relevant information on demographic, behavioral, dietary, and socioeconomic characteristics was obtained from each participant through a specific questionnaire, and their anthropometric and clinical measurements were recorded. In addition, the levels of 35 POPs were determined in serum samples taken before the beginning of the nutritional intervention. All the samples showed detectable levels of, at least, one POP, being DDT-derivatives and marker-PCBs the most frequently detected compounds. Our results showed that people at high risk for CVD showed a higher level of contamination by POPs as compared to other studies done in cohorts of Western people at no special risk of CVD. Although educational level seems to be a relevant determinant for POPs burden in our population, the main determining factor seems to be the diet. Thus, while the intake of food of animal origin was significantly associated with levels of PCBs, especially in men, the intake of vegetal-origin food was positively related to levels of organochlorine pesticides, indicating a different dietary source for these two groups of chemicals. Our results showing that subjects at high risk for cardiovascular disease present elevated POPs burden might have a relevant public health impact given the generalized and difficult to avoid exposure to POPs and the elevated worldwide frequency of the CVD.
Collapse
Affiliation(s)
- Luis A Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Instituto Canario de Investigación del Cáncer (ICIC), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Instituto Canario de Investigación del Cáncer (ICIC), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Instituto Canario de Investigación del Cáncer (ICIC), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Lluis Serra-Majem
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Spain; Preventive Medicine Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Pilar F Valerón
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Instituto Canario de Investigación del Cáncer (ICIC), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - María Camacho
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Instituto Canario de Investigación del Cáncer (ICIC), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Jacqueline Álvarez-Pérez
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Spain; Preventive Medicine Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Jordi Salas-Salvadó
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Spain; Human Nutrition Unit, Faculty of Medicine and Health Sciences, IISPV, Rovira i Virgili University, Reus, Spain
| | - Luis D Boada
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Instituto Canario de Investigación del Cáncer (ICIC), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Spain
| |
Collapse
|
9
|
Henríquez-Hernández LA, Carretón E, Camacho M, Montoya-Alonso JA, Boada LD, Bernal Martín V, Falcón Cordón Y, Falcón Cordón S, Zumbado M, Luzardo OP. Potential Role of Pet Cats As a Sentinel Species for Human Exposure to Flame Retardants. Front Vet Sci 2017; 4:79. [PMID: 28620612 PMCID: PMC5449440 DOI: 10.3389/fvets.2017.00079] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/08/2017] [Indexed: 11/16/2022] Open
Abstract
Flame retardants are a wide group of chemicals used by the industry to avoid combustion of materials. These substances are commonly found in plastics, electronic equipment, fabrics, and in many other everyday articles. Subsequently, ubiquitous environmental contamination by these common chemical is frequently reported. In the present study, we have evaluated the level of exposure to polychlorinated biphenyls (PCBs), brominated diphenyl ethers (BDEs), and organophosphorous flame retardants (OPFRs) in pet cats through the analysis of their serum. We also analyzed the level exposure to such chemicals in a series of 20 cat owners, trying to disclose the role of pet cats as sentinel species of human exposure to FRs. Our results showed that PCBs, banned 40 years ago, showed the lowest levels of exposure, followed by BDEs—banned recently. Congeners PCB-138 and PCB-180 were detected in ≥50% of the series, while BDE-47 was detected in near 90% of the pet cats. On the other hand, the highest levels were that of OPFRs, whose pattern of detection was similar to that observed in humans, thus suggesting a potential role of cats as a sentinel species for human exposure to these currently used FRs. Six out of 11 OPFRs determined [2-ethylhexyldiphenyl phosphate, tributylphosphate, triisobutylphosphate, triphenylphosphate, tris (2-chloroethyl) phosphate, and tris (2-chloroisopropyl) phosphate] were detected in 100% of the samples. It will be interesting to perform future studied aimed to elucidating the potential toxicological effects of these highly detected chemicals both, in cats and humans.
Collapse
Affiliation(s)
- Luis A Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Elena Carretón
- Internal Medicine Service, Faculty of Veterinary Medicine, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - María Camacho
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - José Alberto Montoya-Alonso
- Internal Medicine Service, Faculty of Veterinary Medicine, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Luis D Boada
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain.,Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Las Palmas, Spain
| | - Verónica Bernal Martín
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Yaiza Falcón Cordón
- Internal Medicine Service, Faculty of Veterinary Medicine, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Soraya Falcón Cordón
- Internal Medicine Service, Faculty of Veterinary Medicine, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain.,Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Las Palmas, Spain
| |
Collapse
|