1
|
Xing L, Sun W, Sun X, Peng J, Li Z, Zhu P, Zheng X. Semicarbazide Accumulation, Distribution and Chemical Forms in Scallop ( Chlamys farreri) after Seawater Exposure. Animals (Basel) 2021; 11:ani11061500. [PMID: 34064266 PMCID: PMC8224293 DOI: 10.3390/ani11061500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Semicarbazide is considered the characteristic metabolite of nitrofurazone and it is often used as a marker to monitor the illegal use of nitrofurazone in foods. Recent studies have indicated that semicarbazide pollution can be introduced in many ways and this compound is a newly recognized pollutant type in the environment that accumulates in aquatic organisms throughout the food chain. Scallops are the third most consumed shellfish in China. We therefore studied the accumulation, chemical forms, and distribution of semicarbazide in scallop tissues. Semicarbazide added to tank seawater resulted in its accumulation in both free and tissue-bound forms and the levels varied according to tissue and were present in all tissues examined. The levels were highest in viscera and the lowest in muscle. The levels of semicarbazide in the environment and in cultured shellfish should be monitored to ensure food quality and safety and human health. Abstract Semicarbazide is a newly recognized marine pollutant and has the potential to threaten marine shellfish, the ecological equilibrium and human health. In this study, we examined the accumulation, distribution, and chemical forms of semicarbazide in scallop tissues after exposure to 10, 100, and 1000 μg/L for 30 d at 10 °C. We found a positive correlation between semicarbazide residues in the scallops and the exposure concentration (p < 0.01). Semicarbazide existed primarily in free form in all tissues while bound semicarbazide ranged from 12.1 to 32.7% and was tissue-dependent. The time for semicarbazide to reach steady-state enrichment was 25 days and the highest levels were found in the disgestive gland, followed by gills while levels in gonads and mantle were similar and were lowest in adductor muscle. The bioconcentration factor (BCF) of semicarbazide at low exposure concentrations was higher than that at high exposure concentrations. These results indicated that the scallop can uptake semicarbazide from seawater and this affects the quality and safety of these types of products when used as a food source.
Collapse
Affiliation(s)
- Lihong Xing
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China; (L.X.); (X.S.); (J.P.); (P.Z.); (X.Z.)
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Weihong Sun
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China; (L.X.); (X.S.); (J.P.); (P.Z.); (X.Z.)
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: (W.S.); (Z.L.)
| | - Xiaojie Sun
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China; (L.X.); (X.S.); (J.P.); (P.Z.); (X.Z.)
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jixing Peng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China; (L.X.); (X.S.); (J.P.); (P.Z.); (X.Z.)
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Zhaoxin Li
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China; (L.X.); (X.S.); (J.P.); (P.Z.); (X.Z.)
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: (W.S.); (Z.L.)
| | - Panpan Zhu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China; (L.X.); (X.S.); (J.P.); (P.Z.); (X.Z.)
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xuying Zheng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China; (L.X.); (X.S.); (J.P.); (P.Z.); (X.Z.)
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
2
|
Yu W, Tang Y, Sang Y, Liu W, Wang S, Wang X. Preparation of a carboxylated single-walled carbon-nanotube-chitosan functional layer and its application to a molecularly imprinted electrochemical sensor to quantify semicarbazide. Food Chem 2020; 333:127524. [PMID: 32679418 DOI: 10.1016/j.foodchem.2020.127524] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/21/2020] [Accepted: 07/05/2020] [Indexed: 12/26/2022]
Abstract
Semicarbazide (SEM) is a protein-bound nitrofurazone metabolite that is detrimental to human health. Therefore, to ensure food safety, it is necessary to detect SEM in food samples. To this end, we developed a novel electrochemical sensor to detect SEM by using a molecularly imprinted polymer (MIP) as the recognition element. Computer-aided molecular modelling was performed to guide the synthesis of the MIP, and subsequently, MIP/carboxylated single-walled carbon-nanotubes/chitosan (MIP/SWNTs-COOH/CS) was prepared as the sensing platform to develop the electrochemical sensor. The linear range of the sensor was 0.04-7.6 ng mL-1, with a detection limit of 0.025 ng mL-1. The sensor was successfully applied to detect SEM in four different real samples, with recoveries ranging from 83.16% to 93.40%. The results indicated that the fabricated electrochemical sensor can be widely applied to detect SEM in the environment and in agri-food products.
Collapse
Affiliation(s)
- Wenlong Yu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, PR China
| | - Yiwei Tang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, PR China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, PR China
| | - Weihua Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, PR China
| | - Shuo Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, PR China; Medical College, Nankai University, Tianjin, PR China
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, PR China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), PR China.
| |
Collapse
|
3
|
Yu W, Liu M, Liu R, Sang Y, Wang S, Wang X. Development of biomimetic enzyme-linked immunosorbent assay based on molecular imprinting technique for semicarbazide detection. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1692789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Wenlong Yu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, People’s Republic of China
| | - Minxuan Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, People’s Republic of China
| | - Ruobing Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, People’s Republic of China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, People’s Republic of China
| | - Shuo Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, People’s Republic of China
- Medical College, Nankai University, Tianjin, People’s Republic of China
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, People’s Republic of China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, People’s Republic of China
| |
Collapse
|
5
|
Lin W, Jiang R, Shen Y, Xiong Y, Hu S, Xu J, Ouyang G. Effect of dissolved organic matter on pre-equilibrium passive sampling: A predictive QSAR modeling study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:53-59. [PMID: 29660727 DOI: 10.1016/j.scitotenv.2018.04.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/08/2018] [Accepted: 04/08/2018] [Indexed: 06/08/2023]
Abstract
UNLABELLED Pre-equilibrium passive sampling is a simple and promising technique for studying sampling kinetics, which is crucial to determine the distribution, transfer and fate of hydrophobic organic compounds (HOCs) in environmental water and organisms. Environmental water samples contain complex matrices that complicate the traditional calibration process for obtaining the accurate rate constants. This study proposed a QSAR model to predict the sampling rate constants of HOCs (polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and pesticides) in aqueous systems containing complex matrices. A homemade flow-through system was established to simulate an actual aqueous environment containing dissolved organic matter (DOM) i.e. humic acid (HA) and (2-Hydroxypropyl)-β-cyclodextrin (β-HPCD)), and to obtain the experimental rate constants. Then, a quantitative structure-activity relationship (QSAR) model using Genetic Algorithm-Multiple Linear Regression (GA-MLR) was found to correlate the experimental rate constants to the system state including physicochemical parameters of the HOCs and DOM which were calculated and selected as descriptors by Density Functional Theory (DFT) and Chem 3D. The experimental results showed that the rate constants significantly increased as the concentration of DOM increased, and the enhancement factors of 70-fold and 34-fold were observed for the HOCs in HA and β-HPCD, respectively. The established QSAR model was validated as credible (RAdj.2=0.862) and predictable (Q2=0.835) in estimating the rate constants of HOCs for complex aqueous sampling, and a probable mechanism was developed by comparison to the reported theoretical study. MAIN FINDING OF THE WORK The present study established a QSAR model of passive sampling rate constants and calibrated the effect of DOM on the sampling kinetics.
Collapse
Affiliation(s)
- Wei Lin
- MOE Key Laboratory of Aquatic Product Safety, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Ruifen Jiang
- Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| | - Yong Shen
- MOE Key Laboratory of Aquatic Product Safety, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yaxin Xiong
- MOE Key Laboratory of Aquatic Product Safety, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Sizi Hu
- MOE Key Laboratory of Aquatic Product Safety, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianqiao Xu
- MOE Key Laboratory of Aquatic Product Safety, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Aquatic Product Safety, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|