1
|
Zhu L, Yang Y, Xu F, Lu X, Shuai M, An Z, Chen X, Li H, Martin FL, Vikesland PJ, Ren B, Tian ZQ, Zhu YG, Cui L. Open-set deep learning-enabled single-cell Raman spectroscopy for rapid identification of airborne pathogens in real-world environments. SCIENCE ADVANCES 2025; 11:eadp7991. [PMID: 39772685 PMCID: PMC11708874 DOI: 10.1126/sciadv.adp7991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
Pathogenic bioaerosols are critical for outbreaks of airborne disease; however, rapidly and accurately identifying pathogens directly from complex air environments remains highly challenging. We present an advanced method that combines open-set deep learning (OSDL) with single-cell Raman spectroscopy to identify pathogens in real-world air containing diverse unknown indigenous bacteria that cannot be fully included in training sets. To test and further enhance identification, we constructed the Raman datasets of aerosolized bacteria. Through optimizing OSDL algorithms and training strategies, Raman-OSDL achieves 93% accuracy for five target airborne pathogens, 84% accuracy for untrained air bacteria, and 36% reduction in false positive rates compared to conventional close-set algorithms. It offers a high detection sensitivity down to 1:1000. When applied to real air containing >4600 bacterial species, our method accurately identifies single or multiple pathogens simultaneously within an hour. This single-cell tool advances rapidly surveilling pathogens in complex environments to prevent infection transmission.
Collapse
Affiliation(s)
- Longji Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yunan Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Fei Xu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xinyu Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mingrui Shuai
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- Anhui University, Hefei 230601, China
| | - Zhulin An
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Hu Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Francis L. Martin
- Biocel UK Ltd., Hull HU10 6TS, UK
- Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool FY3 8NR, UK
| | - Peter J. Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
2
|
Tehrani AM, Berijani N, Hajiketabi S, Samadi M. Tracking bioaerosol exposure among municipal solid waste workers using hematological and inflammatory biomarkers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124124. [PMID: 38723706 DOI: 10.1016/j.envpol.2024.124124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/20/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024]
Abstract
High levels of bioaerosols may exist in the air of municipal solid waste (MSW) management facilities, constituting a significant occupational hazard for workers. In this study, we investigated the potential association between exposure to bioaerosols and inflammatory biomarkers among municipal solid waste workers (MSWWs) at both the landfill site and the municipal solid waste transfer station (MSWTS), in comparison to a control group without exposure. Air sampling was conducted at six points around the landfill, two points at the MSWTS, and one point in a public park (as a control area) during the spring and summer of 2019. The results of our study revealed that airborne pathogens were highly prevalent at the sampling points, especially in the active zone and leachate collection pond. Aspergillus species were the predominant fungal species detected in this study, with the highest occurrence observed for Aspergillus flavus (83.3%), Aspergillus niger, and Aspergillus fumigatus (75.0%). Furthermore, Staphylococcus species accounted for over 75% of the total bacterial bioaerosols detected across all study areas. The blood test results of workers revealed a significant increase in platelets (PLT), immunoglobulin G (IgG), white blood cells (WBC), neutrophils, basophils, and high-sensitivity C-reactive protein (hs-CRP) compared to the control group. Conversely, platelet distribution width (PDW), mean platelet volume (MPV), and platelet-large cell ratio (P-LCR) in the exposed subjects exhibited a decreasing trend compared to the control group. These findings suggest a potential association between exposure to bioaerosols, particularly in the vicinity of open dumpsites, and elevated levels of hematologic and inflammatory markers in circulation. Furthermore, the influence of smoking status and confounding factors appears to be significant in both the control and exposure groups.
Collapse
Affiliation(s)
- Ashraf Mazaheri Tehrani
- Social Determinants of Health Research Center, Kashan University of Medical Sciences, Kashan, Iran; Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Sajjad Hajiketabi
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadtaghi Samadi
- Research Center for Health Sciences, Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
3
|
Li W, Sun B, Li H, An Z, Li J, Jiang J, Song J, Wu W. Association between short-term exposure to PM 2.5 and nasal microbiota dysbiosis, inflammation and oxidative stress: A panel study of healthy young adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115156. [PMID: 37343487 DOI: 10.1016/j.ecoenv.2023.115156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Fine particulate matter (PM2.5) is the primary environmental stressor and a significant threat to public health. However, the effect of PM2.5 exposure on human nasal microbiota and its pathophysiological implication remain less understood. This study aimed to explore the associations of PM2.5 exposure with indices of nasal microbiota and biomarkers of nasal inflammation and oxidative stress. We conducted a panel study with 75 students in Xinxiang, Henan Province, China, from September to December 2017. Biomarkers of nasal inflammation and oxidative stress including interleukin-6 (IL-6), IL-8, tumor necrosis factor-α (TNF-α), 8-epi-prostaglandin F2 alpha (8-epi-PGF2α) and indices of nasal microbiota diversity and phenotypes were measured. Linear mixed-effect models and bioinformatic analyses were performed to assess the association of PM2.5 concentrations with the abovementioned biomarkers and indices. It was found that per 1 μg/m3 increase in PM2.5 was associated with increments of 13.15% (95 % CI: 5.53-20.76 %) and 78.98 % (95 % CI: 21.61-136.36 %) in TNF-α on lag2 and lag02. Indices of microbial diversity and phenotypes including equitability, Shannon index, biofilm forming, and oxidative stress tolerant decreased to different extent with the increment in PM2.5. Notably, thirteen differential microbes in Clostridia, Bacilli, and Gammaproteobacteria classes were recognized as keystone taxa and eight of them were associated with TNF-α, IL-6, or 8-epi-PGF2α. Moreover, environmental adaptation was the most critical functional pathway of nasal microbiota associated with PM2.5 exposure. In summary, short-term exposure to PM2.5 is associated with nasal inflammation, microbiota diversity reduction, and the microbiota phenotype alterations.
Collapse
Affiliation(s)
- Wenlong Li
- Henan International Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China; Institute of Infectious Disease Prevention and Control, Zhengzhou Center for Disease Control and Prevention, Zhengzhou, Henan Province 450000, China
| | - Beibei Sun
- Henan International Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Huijun Li
- Henan International Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Zhen An
- Henan International Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Juan Li
- Henan International Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jing Jiang
- Henan International Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jie Song
- Henan International Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Weidong Wu
- Henan International Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
4
|
Taushiba A, Dwivedi S, Zehra F, Shukla PN, Lawrence AJ. Assessment of indoor air quality and their inter-association in hospitals of northern India-a cross-sectional study. AIR QUALITY, ATMOSPHERE, & HEALTH 2023; 16:1023-1036. [PMID: 37213469 PMCID: PMC9985081 DOI: 10.1007/s11869-023-01321-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/01/2023] [Indexed: 05/23/2023]
Abstract
This study was commenced to evaluate the indoor and outdoor air quality concentrations of PM2.5, sub-micron particles (PM>2.5, PM1.0-2.5, PM0.50 -1.0, PM0.25-0.50, and PM<0.25), heavy metals, and microbial contaminants along with their identification in three different hospitals of Lucknow City. The study was conducted from February 2022 to April 2022 in hospitals situated in the commercial, residential, and industrial belts of the city. The indoor concentration trend of particulate matter as observed during the study suggested that most of the highest concentrations belonged to the hospital situated in an industrial area. The highest obtained indoor and outdoor concentrations for PM1.0-2.5, PM0.50-1.0, PM0.25-0.50, and PM<0.25 are 40.44 µg/m3, 56.08 µg/m3, 67.20 µg/m3, 74.50 µg/m3, 61.9 µg/m3, 79.3 µg/m3, 82.0 µg/m3, and 93.9 µg/m3, respectively, which belonged to hospital C situated in the industrial belt. However, for PM>2.5, the highest indoor concentration obtained belonged to hospital B, i.e., 30.7 µg/m3, which is situated in the residential belt of the city. Regarding PM2.5, the highest indoor and outdoor concentrations obtained are 149.41 µg/m3 and 227.45 µg/m3, which were recorded at hospital A and hospital C, respectively. The present study also observed that a high bacterial load of 1389.21 CFU/m3 is recorded in hospital B, and the fungi load was highest in hospital C with 786.34 CFU/m3. Henceforth, the present study offers thorough information on the various air pollutants in a crucial indoor setting, which will further aid the researchers in the field to identify and mitigate the same more precisely.
Collapse
Affiliation(s)
- Anam Taushiba
- Department of Chemistry, Isabella Thoburn College, Lucknow, India
- Department of Environmental Science, Integral University, Lucknow, India
| | - Samridhi Dwivedi
- Department of Chemistry, Isabella Thoburn College, Lucknow, India
| | - Farheen Zehra
- Department of Chemistry, Isabella Thoburn College, Lucknow, India
| | - Pashupati Nath Shukla
- Department of Pharmacology & Microbial Technology, National Botanical Research Institute, Lucknow, India
| | | |
Collapse
|
5
|
Faridi S, Yousefian F, Roostaei V, Harrison RM, Azimi F, Niazi S, Naddafi K, Momeniha F, Malkawi M, Moh'd Safi HA, Rad MK, Hassanvand MS. Source apportionment, identification and characterization, and emission inventory of ambient particulate matter in 22 Eastern Mediterranean Region countries: A systematic review and recommendations for good practice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119889. [PMID: 35932896 DOI: 10.1016/j.envpol.2022.119889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/16/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Little is known about the main sources of ambient particulate matter (PM) in the 22 Eastern Mediterranean Region (EMR) countries. We designed this study to systematically review all published and unpublished source apportionment (SA), identification and characterization studies as well as emission inventories in the EMR. Of 440 articles identified, 82 (11 emission inventory ones) met our inclusion criteria for final analyses. Of 22 EMR countries, Iran with 30 articles had the highest number of studies on source specific PM followed by Pakistan (n = 15 articles) and Saudi Arabia (n = 8 papers). By contrast, there were no studies in Afghanistan, Bahrain, Djibouti, Libya, Somalia, Sudan, Syria, Tunisia, United Arab Emirates and Yemen. Approximately 72% of studies (51) were published within a span of 2015-2021.48 studies identified the sources of PM2.5 and its constituents. Positive matrix factorization (PMF), principal component analysis (PCA) and chemical mass balance (CMB) were the most common approaches to identify the source contributions of ambient PM. Both secondary aerosols and dust, with 12-51% and 8-80% (33% and 30% for all EMR countries, on average) had the greatest contributions in ambient PM2.5. The remaining sources for ambient PM2.5, including mixed sources (traffic, industry and residential (TIR)), traffic, industries, biomass burning, and sea salt were in the range of approximately 4-69%, 4-49%, 1-53%, 7-25% and 3-29%, respectively. For PM10, the most dominant source was dust with 7-95% (49% for all EMR countries, on average). The limited number of SA studies in the EMR countries (one study per approximately 9.6 million people) in comparison to Europe and North America (1 study per 4.3 and 2.1 million people respectively) can be augmented by future studies that will provide a better understanding of emission sources in the urban environment.
Collapse
Affiliation(s)
- Sasan Faridi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Yousefian
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Vahid Roostaei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Roy M Harrison
- School of Geography Earth and Environmental Science, University of Birmingham, Birmingham, UK; Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Faramarz Azimi
- Environmental Health Research Center, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sadegh Niazi
- International Laboratory for Air Quality and Health, School of Earth and Atmospheric Sciences, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Kazem Naddafi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Momeniha
- Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Mazen Malkawi
- Environmental Health Exposures Centre for Environmental Health Action (CEHA), World Health Organization (WHO), Jordan
| | - Heba Adel Moh'd Safi
- Environmental Health Exposures Centre for Environmental Health Action (CEHA), World Health Organization (WHO), Jordan
| | - Mona Khaleghy Rad
- Environmental Health Exposures Centre for Environmental Health Action (CEHA), World Health Organization (WHO), Jordan
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Kayta G, Manilal A, Tadesse D, Siraj M. Indoor air microbial load, antibiotic susceptibility profiles of bacteria, and associated factors in different wards of Arba Minch General Hospital, southern Ethiopia. PLoS One 2022; 17:e0271022. [PMID: 35797393 PMCID: PMC9262214 DOI: 10.1371/journal.pone.0271022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022] Open
Abstract
The levels of indoor air microbial load in hospitals are very crucial to the health of patients and health care workers and are to be regularly monitored and maintained at an acceptable level. However, this problem remains overlooked, particularly in developing countries including Ethiopia. A hospital-based cross-sectional study is designed to determine the indoor air microbial load (settle plate technique), microbial isolates (standard microbiological techniques), bacterial susceptibility profiles (Kirby-Bauer disk diffusion technique), and associated factors, in different wards of the title Hospital, southern Ethiopia. An observational checklist was used to collect relevant information related to the associated factors; descriptive and inferential statistics were applied using Statistical Package for Social Sciences (SPSS); p-values ≤ 0.05 in the multivariable analysis were considered statistically significant. The total average bacterial and fungal load of the selected wards was 1914±1081.4 Colony Forming Units (CFU)/m3 (95% CI: 1718.5–2109.48 CFU/m3) and 1533.7±858.8 CFU/m3 (95% CI: 1378.5-1688CFU/m3) respectively. The highest mean bacterial (1914±1081.4 CFU/m3) and fungal (1533.7±858.8 CFU/m3) loads were found in the male surgical and female medical wards respectively. A total of 229 bacterial and 139 fungal isolates were obtained; Gram-positive bacteria were the predominant type, 130 (56.7%), particularly the isolates of Staphylococcus aureus, 46 (20.1%). The predominant fungal isolates were Aspergillus sp., 53(38%). Percentages of multidrug-resistant (MDR), extended-spectrum beta-lactamase (ESBL), and carbapenemase producers respectively were 48.5, 26.5, and 25%. High room crowd index [p = 0.003; Adjusted Odds Ratio (AOR) 12.5 (Confidence Interval (CI) 95%: 2.42–65)], presence of damp/wet materials [p = 0.025; AOR 7 (CI 95%: 1.3–37.4)], intense room traffic [p = 0.004; AOR 9.6 (CI 95%: 1.2–79.3)], inappropriate storage of food and drugs [p = 0.008; AOR 7.5 (CI 95%: 1.7–32)], and unclean environment [p = 0.03; AOR 5.8 (CI 95%: 1.2–28)] showed statistical significance concerning the indoor air microbial loads; most of the wards in Arba Minch General Hospital (AMGH) stand high and not in an acceptable level as per the WHO and the European Commission standards on indoor air microbial load. Periodic air surveillance and infection prevention control programs are required to reduce the transmission of these microbes to inpatients, visitors, and health care workers.
Collapse
Affiliation(s)
- Gebre Kayta
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Aseer Manilal
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Dagimawie Tadesse
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
- * E-mail:
| | - Munira Siraj
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| |
Collapse
|
7
|
Rafiee A, Delgado-Saborit JM, Sly PD, Amiri H, Hoseini M. Exploring urinary biomarkers to assess oxidative DNA damage resulting from BTEX exposure in street children. ENVIRONMENTAL RESEARCH 2022; 203:111725. [PMID: 34302825 DOI: 10.1016/j.envres.2021.111725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 05/12/2023]
Abstract
Children are highly susceptible to environmental contaminants as their physiology and some metabolic pathways differ from adults. The present cross-sectional study aimed to assess whether exposure to benzene, toluene, ethylbenzene, o,p-xylene, and m-xylene (BTEX) affects oxidative DNA damage in street children using a biomonitoring approach. Thirty-five boys (7-13 years of age), exposed by working at a busy intersection, and 25 unexposed boys of similar age and living in the neighborhood near the busy intersection were recruited. Urinary un-metabolized BTEX levels were quantified by a headspace gas chromatography-mass spectrometry (GC-MS). Urinary malonaldehyde (MDA) was measured with spectrophotometry. Sociodemographic and lifestyle conditions information was collected by interviews using administered questionnaires. Exposed subjects provided urine before (BE) and after work exposure (AE), while unexposed boys gave a single morning sample. Urinary BTEX concentrations in BE samples were similar to unexposed. Concentrations in AE samples were 2.36-fold higher than observed in BE samples (p < 0.05) and higher than those in the unexposed group (p < 0.05). In addition, urinary MDA levels in AE samples were 3.2 and 3.07-times higher than in BE samples and in the unexposed group (p < 0.05). Environmental tobacco smoke (ETS) increased urinary BTEX and MDA levels in both groups. Our findings confirm that street children working at busy intersections are significantly exposed to BTEX, which is associated with oxidative stress. Implementing protective measures is crucial to reduce exposure and to improve health outcomes in this group.
Collapse
Affiliation(s)
- Ata Rafiee
- Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| | - Juana Maria Delgado-Saborit
- Universitat Jaume I, Perinatal Epidemiology, Environmental Health and Clinical Research, School of Medicine, Castellon, Spain; ISGlobal Barcelona Institute for Global Health, Barcelona Biomedical Research Park, Barcelona, Spain; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, United Kingdom; Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Center, The University of Queensland, South Brisbane, Australia
| | - Hoda Amiri
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hoseini
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
Tabatabaei Z, Baghapour MA, Hoseini M, Fararouei M, Abbasi F, Baghapour M. Assessing BTEX concentrations emitted by hookah smoke in indoor air of residential buildings: health risk assessment for children. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1653-1665. [PMID: 34900296 PMCID: PMC8617227 DOI: 10.1007/s40201-021-00721-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/07/2021] [Indexed: 05/24/2023]
Abstract
Hookah smoke is one of the major indoor sources of Volatile Organic Compounds (VOCs), including Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX). The present study aimed to investigate potential exposure to BTEX compounds among primary school children whose parents smoked hookah at home. BTEX concentrations in indoor air were measured in 60 residential buildings of Khesht, southwestern Iran (case = 30 and control = 30). Target compounds were sampled by charcoal tubes, and the samples were then analyzed by GC-FID. Monte Carlo simulation was used to assess the carcinogenic and non-carcinogenic risks of BTX exposure for the children aged 7-13 years. The concentrations of benzene (7.19 ± 3.09 vs. 0.82 ± 0.5 μg/m3), toluene (1.62 ± 0.69 vs. 0.3 ± 0.22 μg/m3), and xylenes (2.9 ± 1.66 vs. 0.31 ± 0.22 μg/m3) were considerably higher in the indoor air of the case houses compared with the control houses (p < 0.05). The Incremental Lifetime Cancer Risk (ILCR) of benzene for non-smoking and smoking houses were estimated 1.8 × 10-6 and 15 × 10-6, respectively, exceeding the recommendations of the World Health Organization (WHO) and the Environmental Protection Agency (EPA) (1 × 10-6). Moreover, Hazard Quotients (HQs) of all BTX compounds were < 1. The indoor benzene concentration was significantly influenced by the floor at which families lived and type of the kitchen. In order to prevent children's exposure to BTX emitted by hookah, banning indoor smoking is the only way to eliminate these compounds in the indoor air.
Collapse
Affiliation(s)
- Zeynab Tabatabaei
- Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Baghapour
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hoseini
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Fararouei
- Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fariba Abbasi
- Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Melika Baghapour
- Department of Biology, Faculty of Science, York University, Toronto, Canada
| |
Collapse
|
9
|
Mosalaei S, Amiri H, Rafiee A, Abbasi A, Baghani AN, Hoseini M. Assessment of fungal bioaerosols and particulate matter characteristics in indoor and outdoor air of veterinary clinics. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1773-1780. [PMID: 34900306 PMCID: PMC8617105 DOI: 10.1007/s40201-021-00732-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/23/2021] [Indexed: 06/08/2023]
Abstract
Veterinary staff are frequently exposed to various occupational hazards. The present study was aimed to investigate the air characteristics of veterinary clinics in terms of fungal bioaerosols and particulate matters. Air samples were taken every six days from the operating room, examination room and outdoor air of three veterinary clinics in Shiraz, southwest Iran. The concentrations of fungal bio-aerosols ranged from 8.05 CFU/m 3 in the outdoor air of clinic B to 47.21 CFU/m 3 in the operating room of clinic A. The predominant fungal genera identified in the studied clinics were Penicillium and Aspergillus niger, respectively. The concentrations of PM2.5 ranged from 41.88 μg/m 3 in the operating room of clinic C to 60.31 μg/m 3 in the outdoor air of the same clinic. The corresponding values for PM10 ranged from 114.40 μg/m 3 in the operating room of clinic C to 256.70 μg/m 3 in the outdoor air of the same clinic. The results of this study showed a positive correlation between the concentration of fungal bioaerosols and relative humidity (p < 0.05; r = 0.622). Besides, a negative correlation was found between the concentration of fungal bioaerosols and temperature (p < 0.05; r = 0.369). To better assess the individual exposure of veterinarians and staff in veterinary clinics, tests including nasopharyngeal sampling are recommended.
Collapse
Affiliation(s)
- Shamim Mosalaei
- Department of environmental health, School of health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hoda Amiri
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Ata Rafiee
- Department of Medicine, University of Alberta, Edmonton, AB Canada
| | - Alireza Abbasi
- Department of environmental health, School of health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Norouzian Baghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hoseini
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Shahsavani S, Fararouei M, Soveid M, Hoseini M, Dehghani M. The association between the urinary biomarkers of polycyclic aromatic hydrocarbons and risk of metabolic syndromes and blood cell levels in adults in a Middle Eastern area. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1667-1680. [PMID: 34900297 PMCID: PMC8617240 DOI: 10.1007/s40201-021-00722-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
PURPOSE Limited studies have been published on the association between the urinary biomarkers of Polycyclic Aromatic Hydrocarbons (PAHs) and risk of Metabolic Syndromes (MetS) and blood cell levels in adults in the Middle East. The present study aimed to evaluate the exposure to PAHs and the distribution of urinary OH-PAH levels in the general population of Shiraz, Iran, as well as, the association between OH-PAHs and the prevalence of MetS and blood cell levels. METHODS In this study, 200 participants were randomly selected from the adult population, and their first-morning void urine samples were collected. RESULTS The mean concentrations of 1-OHNap, 2-OHNap, 2-OHFlu, 9-OHPhe, and 1-OHP were 639.8, 332.1, 129, 160.3, and 726.9 ng/g creatinine, respectively. The prevalence of MetS was 26% according to the National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATP III) criteria. The results showed that urinary OH-PAHs, especially 1-OHP, were positively and significantly associated with higher waist circumstance (p < 0.001), triglyceride level (p < 0.001), systolic blood pressure (p < 0.001), diastolic blood pressure (p < 0.001), number of white blood cells (p = 0.041) and red blood cells (p < 0.001). It also caused lower levels of High Density Lipoprotein-Cholesterol (HDL-C). In conclusion, the results emphasized the adverse health effects of PAHs on human health, including obesity, hypertension, dyslipidemia, and decreased number of blood cells. CONCLUSION Therefore, in order to identify the PAHs sources and to develop methods for decreasing the amount of emissions to the environment, broader researches are needed.
Collapse
Affiliation(s)
- Samaneh Shahsavani
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Fararouei
- Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Mahmood Soveid
- Endocrinology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hoseini
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, P.O.Box: 111, 71645, Shiraz, Iran
| | - Mansooreh Dehghani
- Research Center for Health Sciences, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, P.O.Box: 111, 71645 Shiraz, Iran
| |
Collapse
|
11
|
Faridi S, Yousefian F, Janjani H, Niazi S, Azimi F, Naddafi K, Hassanvand MS. The effect of COVID-19 pandemic on human mobility and ambient air quality around the world: A systematic review. URBAN CLIMATE 2021; 38:100888. [PMID: 36536793 PMCID: PMC9750834 DOI: 10.1016/j.uclim.2021.100888] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/18/2021] [Accepted: 06/13/2021] [Indexed: 05/19/2023]
Abstract
We conducted this systematic review to identify and appraise studies investigating the coronavirus disease 2019 (COVID-19) effect on ambient air pollution status worldwide. The review of studies was conducted using determined search terms via three major electronic databases (PubMed, Web of Science, and Scopus) according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) approach. A total of 26 full-text studies were included in our analysis. The lockdown measures related to COVID-19 pandemic caused significant decreases in the concentrations of PM2.5, NO2, PM10, SO2 and CO globally in the range of 2.9%-76.5%, 18.0%-96.0%, 6.0%-75.0%, 6.8%-49.0% and 6.2%-64.8%, respectively. However, O3 concentration increased in the range of 2.4%-252.3%. The highest decrease of PM2.5 was found in 16 states of Malaysia (76.5%), followed by Zaragoza (Spain) with 58.0% and Delhi (India) with 53.1%. The highest reduction of NO2 was found in Salé city (Morocco) with 96.0%, followed by Mumbai (India) with 75.0%, India with 70.0%, Valencia (Spain) with 69.0%, and São Paulo (Brazil) with 68.0%, respectively. The highest increase of O3 was recorded for Milan (Italy) with 252.3% and 169.9% during the first and third phases of lockdown measures, and for Kolkata (India) with 87% at the second phase of lockdown measures. Owing to the lockdown restrictions in the studied countries and cities, driving and public transit as a proxy of human mobilities and the factors affecting emission sources of ambient air pollution decreased in the ranges of 30-88% and 45-94%, respectively. There was a considerable variation in the reduction of ambient air pollutants in the countries and cities as the degree of lockdown measures had varied there. Our results illustrated that the COVID-19 pandemic had provided lessons and extra motivations for comprehensive implementing policies to reduce air pollution and its health effects in the future.
Collapse
Affiliation(s)
- Sasan Faridi
- Centre for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Yousefian
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Hosna Janjani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Niazi
- Queensland University of Technology (QUT), Faculty of Science, School of Earth and Atmospheric Siences, Brisbane 4001, Australia
| | - Faramarz Azimi
- Department of Environment Health Engineering, Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Kazem Naddafi
- Centre for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Hassanvand
- Centre for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Cardiovascular health effects of wearing a particulate-filtering respirator to reduce particulate matter exposure: a randomized crossover trial. J Hum Hypertens 2021; 36:659-669. [PMID: 34031547 DOI: 10.1038/s41371-021-00552-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/23/2021] [Accepted: 05/13/2021] [Indexed: 12/07/2022]
Abstract
This randomized crossover trial sought to determine whether wearing a high-efficiency particulate-filtering respirator (PFR) improves cardiovascular function over 48 h among healthy college students in Tehran. This trial was conducted from February 14th to 23rd, 2019 and twenty-six participants completed two 48-h intervention periods. Brachial blood pressure (BP) measured by 24-h ambulatory monitoring was the primary health outcome. Secondary outcomes included 48-h heart rate variability (HRV) indices, high-sensitive cardiac troponin (hs-TnT) and other biomarkers. The participants wore the PFR between 10.2 and 11.1 h while awake during the interventions. More than 80% of participants reported increased respiratory resistance while wearing the PFR due to a lack of an exhalation valve. There were no significant differences in brachial BP levels between subjects who wore PFR respirator and those did not. Except for high frequency (HF) power and heart rate (HR), no significant differences between interventions were observed for other HRV metrics. Wearing the PFR led to an increase of 66.0 ms2 (95% confidence interval [CI], 9.6-110.5) and 79.6 ms2 (95% CI, 19.0-140.1) in HF power during the first day when the two groups of participants wore the PFR. Night-time HR was significantly increased during the PFR intervention period. Other secondary outcomes were not significantly different between interventions. It is plausible that incomplete exposure reduction due to wearing the PFR less than half of the time or increased respiratory resistance mitigated potential health benefits. Additional trials are warranted to validate the CV protection of wearing PFRs in heavily-polluted cities.
Collapse
|
13
|
Faridi S, Akbari H, Faridi H, Keshmiri S, Adibzadeh A. Human, Forest and vegetation health metrics of ground-level ozone (SOMO35, AOT40f and AOT40v) in Tehran. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:1351-1358. [PMID: 33312647 PMCID: PMC7721827 DOI: 10.1007/s40201-020-00552-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/28/2020] [Indexed: 06/12/2023]
Abstract
PURPOSE We aimed to investigate the spatial O3 indices (SOMO35: annual sum of maximum daily 8-h ozone means over 35 ppb, AOT40: the accumulated exposure over an hourly threshold of 40 ppb during daylight hours between 8:00 and 20:00 in the growing seasons of plants) in Tehran (2019-2020). METHODS The data of ambient O3 concentrations, measured at twenty-three regulatory ambient air quality monitoring stations (AQMSs) in Tehran, were obtained. RESULTS The annual mean O3 concentrations were found to be 15.8-25.7 ppb; the highest and lowest annual mean concentration of ambient O3 were observed in Shahrdari 22 and Shahr-e-Rey stations, respectively. Spatial distribution of exposure to O3 across Tehran was in the range of 1.36-1.64; the highest O3 concentrations were observed in the northern, west and south-western parts of Tehran, while the central and south areas of Tehran city experienced low to moderate concentrations. The indices of SOMO35, AOT40f and AOT40v across AQMSs in Tehran was in the range of 1830-6437 ppb. Days, 10,613-39,505 ppb.h and 4979-16,804 ppb.h, respectively. For Tehran city, the indices of SOMO35 and AOT40f were 4138 ppb. days and 27,556 ppb.h respectively. Our results revealed that the value of SOMO35 across AQMSs of Tehran was higher than the recommended target value of 3000 ppb. days. CONCLUSIONS To reduce O3 pollution and its effects on both human and plants health, the governmental organizations should take appropriate sustainable control policies.
Collapse
Affiliation(s)
- Sasan Faridi
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hesam Akbari
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamed Faridi
- Department of Public Health, School of Nursing and Midwifery Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Saeed Keshmiri
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Amir Adibzadeh
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Karimi H, Nikaeen M, Gholipour S, Hatamzadeh M, Hassanzadeh A, Hajizadeh Y. PM 2.5-associated bacteria in ambient air: Is PM 2.5 exposure associated with the acquisition of community-acquired staphylococcal infections? JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:1007-1013. [PMID: 33312619 PMCID: PMC7721920 DOI: 10.1007/s40201-020-00522-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/13/2020] [Indexed: 05/19/2023]
Abstract
Particulate matter (PM), a major component of air pollution, is an important carrier medium of various chemical and microbial compounds. Air pollution due to PM could increase the level of bacteria and associated adverse health effects. Staphylococci as important opportunistic pathogens that cause hospital- and community-acquired infections may transmit through air. This study aimed to obtain knowledge about the concentration of airborne bacteria as well as staphylococci associated with particulate matter with a diameter of less than 2.5 micrometers (PM2.5) in ambient air. The impact of meteorological factors including ultraviolet (UV) index, wind speed, temperature, and moisture on microbial concentrations was also investigated. Quartz filters were used to collect PM2.5 and associated bacteria in ambient air of a semiarid area. Airborne bacteria were quantified by culture method and Staphylococcus species identified by molecular methods. The mean (SD) concentration of PM2.5 and airborne bacteria was 64.83 (24.87) µg/m3 and 38 (36) colony forming unit (CFU)/m3, respectively. The results showed no significant correlation between the levels of PM2.5 and concentrations of bacteria (p < 0.05). Staphylococcus species were detected in 8 of 37 (22%) samples in a concentration from 3 to 213 CFU/m3. S. epidermidis was detected with the highest frequency followed by S. gallinarum and S. hominis, but S. aureus and methicillin-resistant Staphylococcus aureus (MRSA) were not detected. No significant correlation between the concentrations of bacteria with meteorological parameters was observed (p < 0.05). Our finding showed that, although the study area is sometimes subject to air pollution from PM2.5, the concentration of PM2.5- associated bacteria is relatively low. According to the results, PM2.5 may not be a source of community-associated staphylococcal infections.
Collapse
Affiliation(s)
- Hossein Karimi
- Student Research Committee and Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Diseases, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Gholipour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Hatamzadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Akbar Hassanzadeh
- Department of Statistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yaghoub Hajizadeh
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Diseases, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
15
|
Montazeri A, Zandi H, Teymouri F, Soltanianzadeh Z, Jambarsang S, Mokhtari M. Microbiological analysis of bacterial and fungal bioaerosols from burn hospital of Yazd (Iran) in 2019. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:1121-1130. [PMID: 33312628 PMCID: PMC7721834 DOI: 10.1007/s40201-020-00531-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/03/2020] [Indexed: 05/13/2023]
Abstract
INTRODUCTION Bioaerosols play an important role in incidence of infections in indoor and outdoor air of hospitals. Microorganisms play a critical role in the health of human beings and they are found everywhere in the environment, including different wards of a hospital. So, quantitative and qualitative analysis of microorganisms is highly important in hospital air. The aim of this study was to evaluate the diversity and density of bacteria and fungi in the air of Shohadaye Mehrab Hospital in Yazd City, Iran. MATERIALS AND METHODS Sampling was performed using a single-stage pump (Quick Take30) at a flow rate of 28.3 l per minute for five minutes. As a result, 288 indoor and outdoor hospital air samples were collected. Numbers and types of bacterial and fungal colonies were identified using colony morphology, gram staining, and standard microbial tests. Chi-square test, PCA and linear mixed model were run by SPSS version 24.0 for data analysis. RESULTS The highest bacterial contaminations were found in the burns ward (294 CFU/m3), operating theater (147 CFU/m3), and emergency department (124 CFU/m3), respectively. Fungal contamination was higher in the derm ward (110 CFU/m3) than other sampling sites. The dominant genus of gram-positive bacteria was Staphylococcus epidermidis (n = 60, 62.5%) and the dominant genus of gram-negative bacteria was Citrobacter freundi (n = 11, 11.5%). The most fungal gens isolated from the hospital air samples were Penicillium (n = 73, 76%), Alternaria (n = 51, 53.1%), Aspergillus niger (n = 40, 41.7%), and Aspergillus flavus (n = 34, 35.4%), respectively. CONCLUSION Considering that the burn wounds represent a susceptible site for opportunistic microorganisms, even low concentration of fungi/bacteria in air can be considered as a risk factor that facilitates transmission of the infectious agents in the hospital. Therefore, control measures should be taken to reduce the infection hazard in health staff and patients. These measures include ensuring effective ventilation, cleaning and decontaminating surfaces and equipment, restricting the personnel and patient companions' movement across the wards.
Collapse
Affiliation(s)
- Akram Montazeri
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hengamah Zandi
- Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fahimeh Teymouri
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zahra Soltanianzadeh
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sara Jambarsang
- Research Center of Prevention and Epidemiology of Non-Communicable Disease, Department of Biostatistics and Epidemiology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehdi Mokhtari
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
16
|
Faridi S, Niazi S, Yousefian F, Azimi F, Pasalari H, Momeniha F, Mokammel A, Gholampour A, Hassanvand MS, Naddafi K. Spatial homogeneity and heterogeneity of ambient air pollutants in Tehran. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134123. [PMID: 31484089 DOI: 10.1016/j.scitotenv.2019.134123] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/14/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
To investigate spatial inequality of ambient air pollutants and comparison of their heterogeneity and homogeneity across Tehran, the following quantitative indicators were utilized: coefficient of divergence (COD), the 90th percentile of the absolute differences between ambient air pollutant concentrations and coefficient of variation (CV). Real-time hourly concentrations of particulate matter (PM) and gaseous air pollutants (GAPs) of twenty-two air quality monitoring stations (AQMSs) were obtained from Tehran Air Quality Control Company (TAQCC) in 2017. Annual mean concentrations of PM2.5, PM10-2.5, and PM10 (PMX) ranged from 21.7 to 40.5, 37.3 to 75.0 and 58.0 to 110.4 μg m-3, respectively. Annual mean PM2.5 and PM10 concentrations were higher than the World Health Organization air quality guideline (WHO AQG) and national standard levels. NO2, O3, SO2 and CO annual mean concentrations ranged from 27.0 to 76.8, 15.5 to 25.1, 4.6 to 12.2 ppb, and 1.9 to 3.8 ppm over AQMSs, respectively. Our generated spatial maps exhibited that ambient PMX concentrations increased from the north into south and south-western areas as the hotspots of ambient PMX in Tehran. O3 hotspots were observed in the north and south-west, while NO2 hotspots were in the west and south. COD values of PMX demonstrated more results lower than the 0.2 cut off compared to GAPs; indicating high to moderate spatial homogeneity for PMX and moderate to high spatial heterogeneity for GAPs. Regarding CV approach, the spatial variabilities of air pollutants followed in the order of O3 (87.3%) > SO2 (65.2%) > CO (61.8%) > PM10-2.5 (52.5%) > PM2.5 (48.9%) > NO2 (48.1%) > PM10 (42.9%), which were mainly in agreement with COD results, except for NO2. COD values observed a statistically (P < 0.05) positive correlation with the values of the 90th percentile across AQMSs. Our study, for the first time, highlights spatial inequality of ambient PMX and GAPs in Tehran in detail to better facilitate establishing new intra-urban control policies.
Collapse
Affiliation(s)
- Sasan Faridi
- Centre for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Niazi
- International Laboratory for Air Quality and Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Fatemeh Yousefian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Faramarz Azimi
- Nutrition Health Research Centre, Department of Environment Health, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hasan Pasalari
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Momeniha
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Adel Mokammel
- Department of Environmental Health Engineering, School of Public Health, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Akbar Gholampour
- Department of Environmental Health Engineering, School of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sadegh Hassanvand
- Centre for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Kazem Naddafi
- Centre for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Naddafi K, Nabizadeh R, Rostamy R, Ebrahimi Kalan M, Hassanvand MS, Fazlzadeh M. Indoor air quality in waterpipe cafés: exposure level to particulate matter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:26605-26616. [PMID: 31290048 DOI: 10.1007/s11356-019-05546-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/21/2019] [Indexed: 05/11/2023]
Abstract
Waterpipe is increasingly being used worldwide. Despite waterpipe cafés gaining popularity among Iranian population, there is a paucity of research measuring exposures and assessing the health effects of waterpipe smoke in these places. The objective of the current study was to investigate the exposure to PM10, PM2.5, and PM1 concentrations and risk assessment of PM2.5 exposures in different age groups in the indoor air of waterpipe cafés. The study samples were taken from indoor air of 50 waterpipe cafés in Ardabil, Iran. The PM10, PM2.5, and PM1 concentrations were assessed using a portable GRIMM dust monitors. The mean (±SD) concentrations of indoor air PM10, PM2.5, and PM1 were 765 ± 352, 624 ± 327, and 500 ± 305 μg/m3, respectively. The mean of HQ (hazard quotient) for PM2.5 in all age groups of 16 and older was > 1, which corresponds to an unacceptably high risk for human health. Also, the mean of ELCRs (excess lifetime cancer risk) for PM2.5 in different age groups exceeded the limit value by the USEPA. The results indicated that the PM concentration is significantly influenced by the number of waterpipe smokers, type of ventilation system, and kind of tobacco. Therefore, waterpipe cafés are a potential source for exposure to PM10, PM2.5, and PM1 and increase the risk of respiratory diseases and cardiovascular problems among waterpipe smokers.
Collapse
Affiliation(s)
- Kazem Naddafi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Roohollah Rostamy
- Research Center for Health Sciences and Technologies, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohammad Ebrahimi Kalan
- Department of Epidemiology, Robert Stempel College of Public Health, Florida International University, Miami, FL, USA
| | - Mohammad Sadegh Hassanvand
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Fazlzadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Social Determinants of Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
18
|
Naddafi K, Nabizadeh R, Baghani AN, Fazlzadeh M. Bioaerosols in the waterpipe cafés: genera, levels, and factors influencing their concentrations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20297-20307. [PMID: 31098913 DOI: 10.1007/s11356-019-05413-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/07/2019] [Indexed: 05/05/2023]
Abstract
This study was conducted in order to assess the exposure to bacterial and fungal bioaerosols in the air of waterpipe cafés (AWPCs), in the hose of waterpipe (HWP), and in the water bowl of the waterpipe (WBWP) and to investigate the factors influence increasing the contamination levels in waterpipe cafés in Ardabil. From all the 50 cafés studied, the samples were taken from air and from water contained in water bowl and hose for bacterial and fungal analyses. The results demonstrated that the mean numbers of bacteria and fungi in the indoor air of café, hose, and water bowl were 33.90 ± 14.86 and 25.24 ± 1.99 CFU/m3, 72.16 ± 29.55 and 72.78 ± 42.45 CFU/plate, 53.7 ± 25.46 and 25.26 ± 13.94 CFU/ml, respectively. The predominant bacterial genera in waterpipe cafés were Pseudomonas and Bacillus in air, Staphylococcus and Pseudomonas in the hose, and Staphylococcus and Pseudomonas in the water bowl, respectively. The predominant fungal species in waterpipe cafés were Penicillium and Cladosporium in air, yeast and Fusarium in the hose, and Paecilomyces and yeast in the water bowl, respectively. The results of statistical analysis showed that there was a significant relationship between the mean concentrations of bacterial aerosol and qualitative variables such as type of heating system, materials of wall and ceiling, traditional restaurants, interior supermarkets, moisturized walls, the number of people, area of cafés, and temperature. But there was no significant relationship between these variables and the mean concentration of fungal aerosols. The results also showed that the levels of bioaerosols were high in the air, hose, and water bowl of the waterpipe. Therefore, cafés can be a potential source for the transmission of pathogenic agents and increase the risk of respiratory diseases among waterpipe smoking individuals.
Collapse
Affiliation(s)
- Kazem Naddafi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Norouzian Baghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Fazlzadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Social Determinants of Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
19
|
Mbareche H, Morawska L, Duchaine C. On the interpretation of bioaerosol exposure measurements and impacts on health. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2019; 69:789-804. [PMID: 30821643 DOI: 10.1080/10962247.2019.1587552] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bioaerosols are recognized as one of the main transmission routes for infectious diseases and are responsible for other various types of health effects through inhalation and potential ingestion. Associating exposure with bioaerosol and health problems is challenging, and adequate exposure monitoring is a top priority for aerosol scientists. The multiple factors affecting bioaerosol content, the variability in the focus of each bioaerosol exposure study, and the variations in experimental design and the standardization of methods make bioaerosol exposure studies very difficult. Therefore, the health impacts of bioaerosol exposure are still poorly understood. This paper presents a brief description of a state-of-the-art development in bioaerosol exposure studies supported by studies on several related subjects. The main objective of this paper is to propose new considerations for bioaerosol exposure guidelines and the development of tools and study designs to better interpret bioaerosol data. The principal observations and findings are the discrepancy of the applicable methods in bioaerosol studies that makes result comparison impossible. Furthermore, the silo mentality helps in creating a bigger gap in the knowledge accumulated about bioaerosol exposure. Innovative and original ideas are presented for aerosol scientists and health scientists to consider and discuss. Although many examples cited herein are from occupational exposure, the discussion has relevance to any human environment. This work gives concrete suggestions for how to design a full bioaerosol study that includes all of the key elements necessary to help understand the real impacts of bioaerosol exposure in the short term. The creation of the proposed bioaerosol public database could give crucial information to control the public health. Implications: How can we move toward a bioaerosol exposure guidelines? The creation of the bioaerosol public database will help accumulate information for long-term association studies and help determine specific exposure biomarkers to bioaerosols. The implementation of such work will lead to a deeper understanding and more efficient utilization of bioaerosol studies to prevent public health hazards.
Collapse
Affiliation(s)
- Hamza Mbareche
- a Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec , Quebec City , Quebec , Canada
- b Département de biochimie, de microbiologie et de bio-informatique , Faculté des sciences et de génie, Université Laval , Quebec City , Quebec , Canada
| | - Lidia Morawska
- c School of Chemistry, Physics, and Mechanical Engineering, Department of Environmental Technologies , Queensland University of Technology , Brisbane , Queensland , Australia
| | - Caroline Duchaine
- a Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec , Quebec City , Quebec , Canada
- b Département de biochimie, de microbiologie et de bio-informatique , Faculté des sciences et de génie, Université Laval , Quebec City , Quebec , Canada
| |
Collapse
|
20
|
Mousavi MS, Hadei M, Majlesi M, Hopke PK, Yarahmadi M, Emam B, Kermani M, Shahsavani A. Investigating the effect of several factors on concentrations of bioaerosols in a well-ventilated hospital environment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:407. [PMID: 31165312 DOI: 10.1007/s10661-019-7559-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
This study characterized and quantified the bacterial and fungal bioaerosols in nine wards of the Razavi Hospital (Mashhad, Iran) that is equipped with an advanced heating, ventilating, and air conditioning (HVAC) system including HEPA filters for air cleaning. In this study, 432 samples were taken from the indoor air of multiple hospital wards during the morning and afternoon shifts during summer and autumn. The particle number concentrations with sizes of > 0.3, > 0.5, > 1, > 2, > 5, and > 10 μm were measured using a 6-channel handheld particle counter. A greater diversity of bioaerosol types were observed during the morning shifts and during summer. The microbial load was not affected significantly by the temperature, relative humidity, working shift, season, and number of visitors, indicating the effectiveness of a well-designed ventilation system to eliminate site-specific variations. For microbial number concentrations, a significant correlation was only observed between the number of particles with a diameter of > 10 μm and the airborne microbial loading. Thus, passive sampling may not properly reflect the actual concentrations of smaller bioaerosols. In conclusion, HEPA filters in the HVAC system successfully decreased the bioaerosol concentrations in the hospital environment. Additionally, we recommend that active sampling be used in cases where a well-functioning HVAC system exists.
Collapse
Affiliation(s)
| | - Mostafa Hadei
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Monireh Majlesi
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, 13699, USA
| | - Maryam Yarahmadi
- Environmental and Occupational Health Center, Ministry of Health and Medical Education, Tehran, Iran
| | - Bahahran Emam
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Shahsavani
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Tolabi Z, Alimohammadi M, Hassanvand MS, Nabizadeh R, Soleimani H, Zarei A. The investigation of type and concentration of bio-aerosols in the air of surgical rooms: A case study in Shariati hospital, Karaj. MethodsX 2019; 6:641-650. [PMID: 30989056 PMCID: PMC6447748 DOI: 10.1016/j.mex.2019.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 03/15/2019] [Indexed: 12/28/2022] Open
Abstract
The presence of bio-aerosols is one of the main causes of hospital infections that can be dangerous especially for immunocompromised patients. This research aimed to determine the relationship between hospital infections and surgical incision size in addition to determining the concentration and bacterial and fungal bioaerosols found in the operating rooms. This cross-sectional descriptive-analytic study was carried out in the operating rooms of Shariati Hospital in Karaj, Iran during the years 2016 and 2017. A total of 198 bacterial samples and 198 fungal samples were collected and analyzed using a passive sampling standard method (1/1/1) for 180 days. Tryptic Soy Agar (TSA) and Sabouraud Dextrose Agar (SDA) medium were used for bacterial and fungal samples, respectively. Relevant differential tests were used to determine the genus and species of bacteria and fungi such as DNase test, Bile-esculin, motility test urease test. In general, this work presents: The present evaluated the relationship between bioaerosols concentration and surgical incision size. The intraoperative concentration of bacterial and fungal bioaerosols in indoor air of the orthopedic, internal and cesarean operating rooms was significantly higher than their preoperative concentration (p-value<0.05). Also, there was not significant difference between the bacterial and fungal concentrations in various operating rooms) p-value<0.05).
Collapse
Affiliation(s)
- Zahra Tolabi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alimohammadi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Hassanvand
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Soleimani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Zarei
- Department of Environmental Health Engineering, School of Public Health, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
22
|
Bolookat F, Hassanvand MS, Faridi S, Hadei M, Rahmatinia M, Alimohammadi M. Assessment of bioaerosol particle characteristics at different hospital wards and operating theaters: A case study in Tehran. MethodsX 2018; 5:1588-1596. [PMID: 30622921 PMCID: PMC6313819 DOI: 10.1016/j.mex.2018.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This study was aimed to investigate the types and number of bacterial and fungal bioaerosols in indoor air of hospitals according to the type of wards and operating theaters. Bacterial and fungal samples were collected using the passive sampling method of 1/1/1 scheme during a six months' period in the Khatam-Al-Anbia hospital, Tehran, Iran. A simple linear regression was used to determine the relationship between bioaerosol concentrations and the number of active beds. Bacterial bioaerosol concentrations were mainly higher than fungi in all sampling sites. A significant association was found between airborne fungal concentrations and the numbers of beds (R2 = 0.76, p < 0.05), but not observed for bacteria (R2 = 0.02, p < 0.05). Our findings provided an exposure database of airborne bacterial and fungal bioaerosol in hospital wards and operating theaters in Tehran. •Due to the importance of the exposure risk to bioaerosols for patients and medical personnel, we focused on identification of the density and diversity of bacterial and fungal bioaerosols in different wards and operating theaters.•Our results showed that the numbers of the beds have a significant effect on airborne fungal concentrations.•The results of this study can be used to set indoor air quality standards for hospital wards and operating theatres.
Collapse
Affiliation(s)
- Fatemeh Bolookat
- Department of Environment Engineering, Faculty of Environment & Energy, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sasan Faridi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Hadei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Rahmatinia
- Student Research Committee, Department of Environmental Health Engineering, School of Public Health and safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Alimohammadi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
- Health Equity Research Center (HERC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Nabizadeh R, Yousefi M, Azimi F. Study of particle number size distributions at Azadi terminal in Tehran, comparing high-traffic and no traffic area. MethodsX 2018; 5:1549-1555. [PMID: 30547006 PMCID: PMC6282095 DOI: 10.1016/j.mex.2018.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Vehicle traffic is known as the anthropogenic aerosol source in megacities. Exposure to ambient air pollution, especially particulate matter has become the most environmental risk factor. The main aim of this study is to determine the particle number and their size distribution in Tehran at Azadi terminal (located in the West of Tehran), crossing of Nawab and Azadi streets the area with high traffic, and campus of Tehran University as an area without traffic. Particle size distribution (0.3-1 μm) was measured using a Grimm Environmental Dust Monitor and was conducted in two seasons, hot and cold (summer 2016 and winter 2016). The measurement was performed twice per month. Although the average number of particles at Azadi Terminal was more than the other two locations in both seasons but it was not significant) p > 0.05). The average number of particles larger than 0.3 μm was 286.72 ± 129.55 and 183.61 ± 86.79 cm-3 in winter and summer respectively. In relation to particles size distribution, the average number of particles larger than 0.4, 0.5, 0.65, 0.8 and 1 μm in winter and summer were 111.5 ± 120, 29.3 ± 23.7, 8.2 ± 5.8, 4 ± 3, 2 ± 1.5 and 52.5 ± 37, 14.4 ± 10.8, 6.1 ± 5, 3.8 ± 3.5, 2.3 ± 2 cm-3 respectively. In the current study the highest number of particles significantly observed in winter time in comparison to summer. In addition, had no significant difference between the number of particles at three sampling locations.
Collapse
Affiliation(s)
- Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Yousefi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Faramarz Azimi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Faridi S, Shamsipour M, Krzyzanowski M, Künzli N, Amini H, Azimi F, Malkawi M, Momeniha F, Gholampour A, Hassanvand MS, Naddafi K. Long-term trends and health impact of PM 2.5 and O 3 in Tehran, Iran, 2006-2015. ENVIRONMENT INTERNATIONAL 2018; 114:37-49. [PMID: 29477017 DOI: 10.1016/j.envint.2018.02.026] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 05/22/2023]
Abstract
The main objectives of this study were (1) investigation of the temporal variations of ambient fine particulate matter (PM2.5) and ground level ozone (O3) concentrations in Tehran megacity, the capital and most populous city in Iran, over a 10-year period from 2006 to 2015, and (2) estimation of their long-term health effects including all-cause and cause-specific mortality. For the first goal, the data of PM2.5 and O3 concentrations, measured at 21 regulatory monitoring network stations in Tehran, were obtained and the temporal trends were investigated. The health impact assessment of PM2.5 and O3 was performed using the World Health Organization (WHO) AirQ+ software updated in 2016 by WHO European Centre for Environment and Health. Local baseline incidences in Tehran level were used to better reveal the health effects associated with PM2.5 and O3. Our study showed that over 2006-2015, annual mean concentrations of PM2.5 and O3 varied from 24.7 to 38.8 μg m-3 and 35.4 to 76.0 μg m-3, respectively, and were significantly declining in the recent 6 years (2010-2015) for PM2.5 and 8 years (2008-2015) for O3. However, Tehran citizens were exposed to concentrations of annual PM2.5 exceeding the WHO air quality guideline (WHO AQG) (10 μg m-3), U.S. EPA and Iranian standard levels (12 μg m-3) during entire study period. We estimated that long-term exposure to ambient PM2.5 contributed to between 24.5% and 36.2% of mortality from cerebrovascular disease (stroke), 19.8% and 24.1% from ischemic heart disease (IHD), 13.6% and 19.2% from lung cancer (LC), 10.7% and 15.3% from chronic obstructive pulmonary disease (COPD), 15.0% and 25.2% from acute lower respiratory infection (ALRI), and 7.6% and 11.3% from all-cause annual mortality in the time period. We further estimated that deaths from IHD accounted for most of mortality attributable to long-term exposure to PM2.5. The years of life lost (YLL) attributable to PM2.5 was estimated to vary from 67,970 to 106,706 during the study period. In addition, long-term exposure to O3 was estimated to be responsible for 0.9% to 2.3% of mortality from respiratory diseases. Overall, long-term exposure to ambient PM2.5 and O3 contributed substantially to mortality in Tehran megacity. Air pollution is a modifiable risk factor. Appropriate sustainable control policies are recommended to protect public health.
Collapse
Affiliation(s)
- Sasan Faridi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansour Shamsipour
- Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nino Künzli
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Heresh Amini
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Faramarz Azimi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mazen Malkawi
- Environmental Health Exposures Centre for Environmental Health Action (CEHA), World Health Organization (WHO), Jordan
| | - Fatemeh Momeniha
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Akbar Gholampour
- Department of Environmental Health Engineering, School of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Kazem Naddafi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|