1
|
Yao L, Hu Y, Yang JH, Wu R, Chen FL, Zhou X. Wastewater surveillance for chronic disease drugs in wastewater treatment plants: Mass load, removal, and sewage epidemiology. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137661. [PMID: 39986104 DOI: 10.1016/j.jhazmat.2025.137661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/08/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
As the number of chronic disease patients continues to climb, vast quantities of chronic disease drugs are continuously discharged into the wastewater treatment plants (WWTPs) and then are released to the receiving environment. However, the situations of pollution, removal, and consumption of chronic disease drugs in China were not studied. Here we investigated the mass load and removal efficiency of 14 chronic disease drugs in seven wastewater treatment plants (WWTPs) of Guangdong Province, China, and estimated the proportional usage of chronic disease drugs and the prevalence of chronic diseases by wastewater-based epidemiology (WBE) method. The results showed that all target chronic disease drugs were detected in the WWTPs, among which gliclazide, valsartan, and bezafibrate were the mainly detected antidiabetic drug, antihypertensive drug, and antihyperlipidemic drug, respectively. The aqueous removal rates of chronic disease drugs ranged from -163 %-100 % in studied WWTPs, and most chronic disease drugs were mainly removed at anaerobic stage in WWTPs that using Anaerobic-Anoxic-Oxic treatment technologies. Mean mass loads of chronic disease drugs in the influent of seven WWTPs ranged at 72-318099 mg·d-1 (valsartan), and mean emission of chronic disease drugs in seven WWTPs ranged at 0-56.3 mg·d-1·1000 inhabitant-1 (valsartan). Based on the WBE method, the prevalence of diabetes, hypertension, and dyslipidemia estimated by gliclazide, glipizide, valsartan, and bezafibrate in this study was consistent with those obtained via cross-sectional survey. The results formulated the contamination characteristics of chronic disease drugs in China and assessed the accuracy of chronic disease drugs used for disease prevalence estimation.
Collapse
Affiliation(s)
- Li Yao
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China.
| | - Yang Hu
- Soil and Landscape Science, School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA 6102, Australia
| | - Jia-Hui Yang
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Rui Wu
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Fei-Long Chen
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Xi Zhou
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China.
| |
Collapse
|
2
|
Nieto-Juárez JI, Sarzosa-Cano NR, Serna-Galvis EA, Torres-Palma RA, Fabregat-Safont D, Botero-Coy AM, Hernández F. Evaluation of contaminants of emerging concern in surface waters (rivers and lake) from Peru: Occurrence and environmental risk assessment. ENVIRONMENT INTERNATIONAL 2025; 200:109522. [PMID: 40378476 DOI: 10.1016/j.envint.2025.109522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/29/2025] [Accepted: 05/08/2025] [Indexed: 05/19/2025]
Abstract
This study represents one of the first efforts to investigate the presence and environmental risk of contaminants of emerging concern (CECs) in surface water of the main watersheds of the Department of Lima (Rímac River, Chillón River, and Lurin River), Department of Arequipa (Chili-Quilca-Vítor River, Cámana-Majes River, and Tambo River), and Department of Puno (Lake Titicaca) from Peru. Water samples were collected during two sampling campaigns (June and September-October 2023) in Lima and Arequipa, and one sampling campaign (April-May 2023) in Puno. A strategy combining qualitative and quantitative analysis of CECs was applied, based on liquid chromatography coupled to ion mobility-high resolution mass spectrometry (LC-IMS-HRMS) and tandem mass spectrometry (LC-MS/MS), respectively. A total of 16 pharmaceutically active compounds (PhACs) and other compounds (sweeteners, stimulants, UV filters, and preservatives) and 16 metabolites were identified by LC-IMS-HRMS with a high level of confidence, in addition to the 39 target PhACs quantified by LC-MS/MS. The watersheds of Lima showed the highest pollution in terms of the number of pharmaceuticals and concentration levels compared to the watersheds of Arequipa and Lake Titicaca (Puno), with antibiotics persisting from the upper watersheds to the lower watersheds in the rivers and the lake. For the environmental risk assessment, five different scenarios were considered depending on the water uses/destinations, and the multicriteria scoring method allowed to identification of relevant/concerning PhACs. Azithromycin, clarithromycin, erythromycin, ciprofloxacin, flumequine, trimethoprim, diclofenac, acetaminophen, losartan, valsartan, atorvastatin and metabolite O-desmethyl venlafaxine posed a high level of risk/concern. This information will facilitate the design of a Watch List for CECs, with future monitoring programs and environment risk assessments to protect vulnerable areas most affected by anthropogenic pollution.
Collapse
Affiliation(s)
- Jessica I Nieto-Juárez
- Grupo de Investigación en Calidad Ambiental y Bioprocesos (GICAB), Facultad de Ingeniería Química y Textil, Universidad Nacional de Ingeniería UNI, Av. Túpac Amaru N° 210, Rímac, Lima, Peru.
| | - Noelia R Sarzosa-Cano
- Grupo de Investigación en Calidad Ambiental y Bioprocesos (GICAB), Facultad de Ingeniería Química y Textil, Universidad Nacional de Ingeniería UNI, Av. Túpac Amaru N° 210, Rímac, Lima, Peru
| | - Efraím A Serna-Galvis
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquía UdeA, Calle 70 N° 52-21 Medellín, Colombia
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquía UdeA, Calle 70 N° 52-21 Medellín, Colombia
| | - David Fabregat-Safont
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Univ. Jaume I, Castellón, Spain; Applied Metabolomics Research Group, Hospital del Mar Research Institute, Barcelona, Spain
| | - Ana M Botero-Coy
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Univ. Jaume I, Castellón, Spain
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Univ. Jaume I, Castellón, Spain
| |
Collapse
|
3
|
Hussain B, Ma H, Wu Y, Ganesan S, Yu C, Dixit S, Singh S, Pu S. Efficient immobilization of enzyme on covalent organo-framework for remediation of pyrene-contaminated soil and degradation mechanism. Int J Biol Macromol 2025; 305:141234. [PMID: 39971053 DOI: 10.1016/j.ijbiomac.2025.141234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/04/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
Bioremediation of polycyclic aromatic hydrocarbons (PAHs) using immobilized enzymes has garnered significant interest due to its cost-effectiveness, stability, and efficiency. In this regard enzyme laccase have been extensively used for the remediation of organic contaminants in aqueous solutions. However, the use of a single and/or free enzyme may not show better results due to its rapid degradation and loss of activity. Moreover, the use of immobilized enzymes for remediating specific PAH compounds in soil remains underexplored. Therefore, the aim of the present study was to prepare laccase (Trametes versicolor) immobilized on a covalent framework for pyrene remediation in soil. Results showed that the immobilized enzyme retained 51.13 % of the relative activity throughout the course of 50 days of storage and outperformed the free enzyme in terms of relative activity at higher pH values (6 and 7), and temperatures (60 °C and 70 °C). The immobilized enzyme achieved a 92.38 % pyrene degradation rate in soil and enhanced soil phenol oxidase (S-PhOx), peroxidase (S-POD), and catalase (S-CAT) activities by 95.15 %, 50.03 %, and 54.77 %, respectively, on day 50 compared to the control. Furthermore, it boosted the soil bacterial population, including Gemmatimonas, Luteimonas, Lysobacter, Massilia, Longimicrobiaceae, Symbiobacterium, Ponibacter, Bacillus, and Sphingomonas. PCA analysis revealed a strong positive correlation between pyrene degradation percentage and S-CAT, S-POD, Gemmatimonas, Longimicrobiaceae, and Symbiobacterium. Thus, the immobilized enzyme offers a promising and sustainable approach for PAH removal from soil.
Collapse
Affiliation(s)
- Babar Hussain
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Hui Ma
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - You Wu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Sivarasan Ganesan
- Department of Material Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Chenglong Yu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Saurav Dixit
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140417, Punjab, India; Division of research and innovation, Uttaranchal University, Dehradun, India
| | - Subhav Singh
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India; Division of research and development, Lovely Professional University, Phagwara, Punjab, India
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
4
|
Uhlhorn J, Ng KT, Barron LP, Ford AT, Miller TH. Chemical profiling of surface water and biota in protected marine harbours impacted by combined sewer overflows. ENVIRONMENT INTERNATIONAL 2025; 199:109417. [PMID: 40194897 DOI: 10.1016/j.envint.2025.109417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/28/2025] [Accepted: 03/26/2025] [Indexed: 04/09/2025]
Abstract
Few studies exist that focus on contaminants of emerging concern (CECs) in transitional and coastal waterbodies. This study presents chemical profiling of two protected marine harbours on the South coast of the UK sampled in 2022. Across 21 sites, 105 unique compounds were detected (0.05 ng L-1 --1798 ng L-1, median: 11 ng L-1) in water samples and biota, including 67 pharmaceuticals, 29 pesticides and nine recreational drugs. There were significant differences between campaigns with increased chemical numbers and concentrations that coincided with increased rainfall and combined sewer overflow (CSO) discharges. The comparison with CSO discharges revealed that they were an important source for loading of specific chemicals with concentrations increasing for some cases by three-orders of magnitude. High relative risks were estimated for sites sampled during recorded CSO discharges for five compounds with risk quotients (RQs) ranging from 1.1 up to 9.3, with the highest risk from the neonicotinoid, imidacloprid. To understand the exposure in biota, six species; one macroalgae (Fucus vesiculosus) and five fauna (Hediste diversicolor, Patella vulgate, Crassostrea gigas, Carcinus maenas, Echinogammarus marinus) were analysed (n = 5/species) at a CSO-impacted site. Between eight to 18 compounds were detected with Fucus vesiculosus (seaweed) showing the highest accumulation with mean cumulative burdens reaching up to 343 ± 71 ng g-1. Surface water contamination did not correlate with body burdens. Overall, the work highlights the complexity of the chemical space present in a transitional waterbody showing dynamic contamination patterns that are further influenced by tide, rainfall and salinity. CSOs demonstrated an important but compound specific role for CEC input and pulsing into receiving waters.
Collapse
Affiliation(s)
- Jasmin Uhlhorn
- Centre for Pollution Research & Policy, Department of Life Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
| | - Keng Tiong Ng
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Leon P Barron
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Alex T Ford
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, PO4 9LY, UK.
| | - Thomas H Miller
- Centre for Pollution Research & Policy, Department of Life Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK.
| |
Collapse
|
5
|
García-Espinoza JD, Treviño-Reséndez J, Robles I, Acosta-Santoyo G, Godínez LA. A review of electro-Fenton and ultrasound processes: towards a novel integrated technology for wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:10530-10552. [PMID: 37737947 DOI: 10.1007/s11356-023-29877-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023]
Abstract
Nowadays, the presence of persistent dissolved pollutants in water has received increasing attention due to their toxic effects on living organisms. Considering the limitations of conventional wastewater treatment processes for the degradation of these compounds, advanced oxidation processes such as electro-Fenton and sono-chemical process, as well as their combination, appear as potentially effective options for the treatment of wastewater contaminated with bio-recalcitrant pollutants. In view of the importance of the development of processes using real effluents, this review aims to provide a comprehensive perspective of sono-electro-Fenton-related processes applied for real wastewater treatment. In the first section, the fundamentals and effectiveness of both homogeneous and heterogeneous electro-Fenton approaches for the treatment of real wastewater are presented. While the second part of this work describes the fundamentals of ultrasound-based processes, the last section focuses on the coupling of the two methods for real wastewater treatment and on the effect of the main operational parameters of the process. On the basis of the information presented, it is suggested that sono-electro-Fenton processes substantially increase the efficiency of the treatment as well as the biodegradability of the treated wastewater. The combined effect results from mass transfer improvement, electrode cleaning and activation, water electrolysis, and the electro-Fenton-induced production of hydroxyl radicals. The information presented in this work is expected to be useful for closing the gap between laboratory-scale assays and the development of novel wastewater technologies.
Collapse
Affiliation(s)
- Josué D García-Espinoza
- Centro de Investigación en Química para la Economía Circular, CIQEC, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, 76010, Querétaro, Querétaro, Mexico
| | - José Treviño-Reséndez
- Centro de Investigación en Química para la Economía Circular, CIQEC, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, 76010, Querétaro, Querétaro, Mexico
| | - Irma Robles
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C. Parque Tecnológico Querétaro Sanfandila SN, Pedro Escobedo, 76703, Querétaro, Mexico
| | - Gustavo Acosta-Santoyo
- Centro de Investigación en Química para la Economía Circular, CIQEC, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, 76010, Querétaro, Querétaro, Mexico
| | - Luis A Godínez
- Centro de Investigación en Química para la Economía Circular, CIQEC, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, 76010, Querétaro, Querétaro, Mexico.
| |
Collapse
|
6
|
Díaz-Cárdenas MY, Bustos-Terrones V, López-Aguilar SG, Sánchez-Ponce A, Uruchurtu-Chavarín J, Moeller-Chávez GE. Theoretical and experimental studies of cephalexin adsorption on aluminium as a new alternative of removal from wastewater. ENVIRONMENTAL TECHNOLOGY 2025; 46:1412-1422. [PMID: 39157963 DOI: 10.1080/09593330.2024.2390150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 07/31/2024] [Indexed: 08/20/2024]
Abstract
Cephalexin (CPX) is an antibiotic widely used to treat many infections. CPX has become an emerging pollutant present in wastewater. On the other hand, it is well known that organic compounds can be adsorbed over metal surfaces when the metal is in active state such as when it is rusting. This work proposes an alternative for the elimination of CPX from wastewater, applying electrochemical principles using a conventional and cheap substrate, aluminium. The first part consisted of obtaining the active states of aluminium electrodes carrying out voltametric curves at different pH (4, 7 and 9) to find the particular condition of interaction between CPX and metal surface. The potential was used in the potentiostatic tests to set the activation potential of metal at different times. After the treatment, electrolyte solutions were analysed using UV-vis spectra, and the aluminium surfaces were studied by optical micrographs and X-ray diffraction. In addition, aluminium-CPX interactions were corroborated by quantum-chemical calculations and adsorption isotherms. All results indicate that it was possible for the CPX removal at basic pH conditions, where the molecule adsorption on the aluminium substrate occurs due to a strong electrostatic interaction.
Collapse
Affiliation(s)
- María Yesenia Díaz-Cárdenas
- Laboratorio de Investigación en Tecnología Ambiental, Universidad Politécnica del Estado de Morelos, Jiutepec, México
- Departamento de Ingeniería Química e Ingeniería en Sistemas, Tecnológico de Estudios Superiores de Coacalco, Coacalco, México
| | - Victoria Bustos-Terrones
- Laboratorio de Investigación en Tecnología Ambiental, Universidad Politécnica del Estado de Morelos, Jiutepec, México
| | - Samantha Giselle López-Aguilar
- Departamento de Ingeniería Química e Ingeniería en Sistemas, Tecnológico de Estudios Superiores de Coacalco, Coacalco, México
| | - Angélica Sánchez-Ponce
- Departamento de Ingeniería Química e Ingeniería en Sistemas, Tecnológico de Estudios Superiores de Coacalco, Coacalco, México
| | - Jorge Uruchurtu-Chavarín
- Centro de Investigación en Ingeniería y Ciencias Aplicadas, Laboratorio de Fenómenos de Interfase, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | | |
Collapse
|
7
|
Dezorzi GD, Dos Santos KS, Storck TR, Tassinari A, Schneider SI, de Castro Vasconcelos M, de Oliveira JA, Zanella R, Prestes OD, Brunetto G, Tiecher TL, Clasen B. Can wastes and pesticides' discharge into the soil affect the water quality of a water resource in Southern Brazil? ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:489. [PMID: 40163155 DOI: 10.1007/s10661-025-13966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Ineffective or absent sewage treatment poses risks to human and animal health, as untreated sewage often contains metals and pharmaceuticals discharged into nearby water bodies. Similarly, pesticide use near water resources is a major cause of environmental contamination, leading to water pollution and quality degradation. This study assessed the contamination potential of a site exposed to wastewater and pesticide discharge. Physical-chemical and microbiological analyses were conducted on wastewater and water resources near the sewage discharge point. Additionally, metal levels in water and waste, as well as pharmaceuticals and pesticides' concentrations in water, were also assessed. Results revealed metals such as potassium (15.73 mg L-1), calcium (2.37 mg L-1), magnesium (3.81 mg L-1), copper (0.4097 mg L-1), zinc (0.6248 mg L-1) in surface water. Pesticides, including clomazone (0.225 µg L⁻1), 2,4-D (0.208 µg L⁻1), carbendazim (0.076 µg L-1), imazethapyr (0.076 µg L-1), and picoxystrobin (< LOQ) were present at all sampling points. Pharmaceuticals such as caffeine (69.361 µg L⁻1), diclofenac (0.229 µg L⁻1), and paracetamol (23.630 µg L⁻1) were also prevalent. The findings indicate that metal contamination results from natural processes and anthropogenic activities, while pesticides are associated with agricultural practices and pharmaceuticals are linked to improper waste management. These pollutants contribute to site degradation, emphasizing the role of wastewater discharge and runoff in contaminant transport. The study highlights the urgent need for effective waste treatment to mitigate contamination and protect environmental and human health.
Collapse
Affiliation(s)
- Gabriela Dias Dezorzi
- Programa de Pós-Graduação em Engenharia Ambiental - Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Kelly Silva Dos Santos
- Programa de Pós-Graduação em Engenharia Ambiental - Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Tamiris Rosso Storck
- Programa de Pós-Graduação em Engenharia Ambiental - Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Adriele Tassinari
- Programa de Pós-Graduação Em Ciência Do Solo - Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Silvana Isabel Schneider
- Programa de Pós-Graduação em Engenharia Ambiental - Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | - Júlia Antunes de Oliveira
- Laboratório de Análises de Resíduos de Pesticidas (LARP) - Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Renato Zanella
- Laboratório de Análises de Resíduos de Pesticidas (LARP) - Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Osmar Damian Prestes
- Laboratório de Análises de Resíduos de Pesticidas (LARP) - Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Gustavo Brunetto
- Programa de Pós-Graduação Em Ciência Do Solo - Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Tadeu Luis Tiecher
- Instituto Federal de Educação, Ciência e Tecnologia Do Rio Grande Do Sul, Campus Restinga, Porto Alegre, RS, Brazil
| | - Barbara Clasen
- Programa de Pós-Graduação em Engenharia Ambiental - Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
- Laboratório de Toxicologia Ambiental, Departamento de Ciências Ambientais, Universidade Estadual Do Rio Grande Do Sul, Porto Alegre, RS, 90010-191, Brazil.
| |
Collapse
|
8
|
Narayanan N, Gupta S, Saini P, Singh N. Unraveling fate of sulfonamide antibiotics in sandy loam soil and water of India and environmental risk assessment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:341. [PMID: 40019551 DOI: 10.1007/s10661-025-13782-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
Antibiotic resistance is an alarming issue nowadays due to the increased use of antibiotics in humans, veterinary, fisheries, etc. Sulfonamides are one group of highly used antibiotics frequently detected in the environmental matrices. So, in the present study, we evaluated the sorption and dissipation of two commonly detected sulfonamide antibiotics in water (sulfamethazine (SMZ) and sulfamethoxazole (SMXZ)) in sandy loam soil and irrigation waters in the tropical region. Soil samples were processed using modified QuEChERS and the residues were quantified using LC-MS/MS. Optimized sample processing methods gave recoveries in the range of 88-91% from soil and water. The sulfonamides persisted in soil and irrigation waters with an average half-life of 12-22 days for SMZ and 20-33 days for SMXZ in different moisture regimes in soil and 13 days (SMZ) and 9 days (SMXZ) in irrigation water. The sorption data fitted well to Freundlich isotherm and indicated hydrophobic partitioning as the major mechanism behind sorption. The antibiotics exhibited unfavorable sorption in sandy loam soil which led to their stronger potential to leach to groundwater as indicated by the Groundwater Ubiquity Scores (GUS) (2.19 for SMZ and 3.09 for SMXZ). The sorption was favored at acidic pH and the incorporation of compost in soil also favored the sorption process leading to high retention of these antibiotics onto the soil surface. The environmental risk assessment also indicates their tendency to develop antimicrobial resistance. So, these antibiotics should be used with proper measures to avoid adverse impacts on humans and the environment.
Collapse
Affiliation(s)
- Neethu Narayanan
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Suman Gupta
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Priya Saini
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Neera Singh
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
9
|
Uddin MM, Dip TM, Tushar SI, Sayam A, Anik HR, Aktar Arin MR, Talukder A, Sharma S. Triboelectric Nanogenerators for Self-Powered Degradation of Chemical Pollutants. ACS OMEGA 2025; 10:26-54. [PMID: 39829514 PMCID: PMC11740385 DOI: 10.1021/acsomega.4c07889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025]
Abstract
Environmental and human health is severely threatened by wastewater and air pollution, which contain a broad spectrum of organic and inorganic pollutants. Organic contaminants include dyes, volatile organic compounds (VOCs), medical waste, antibiotics, pesticides, and chemical warfare agents. Inorganic gases such as CO2, SO2, and NO x are commonly found in polluted water and air. Traditional methods for pollutant removal, such as oxidation, physicochemical techniques, biotreatment, and enzymatic decomposition, often prove to be inefficient, costly, or energy-intensive. Contemporary solutions like nanofiber-based filters, activated carbon, and plant biomass also face challenges such as generating secondary contaminants and being time-consuming. In this context, triboelectric nanogenerators (TENGs) are emerging as promising alternatives. These devices harvest ambient mechanical energy and convert it to electrical energy, enabling the self-powered degradation of chemical pollutants. This Review summarizes recent progress and challenges in using TENGs as self-powered electrochemical systems (SPECs) for pollutant degradation via photocatalysis or electrocatalysis. The working principles of TENGs are discussed, focusing on their structural flexibility, operational modes, and ability to capture energy from low-frequency mechanical stimuli. The Review concludes with perspectives and suggestions for future research in this field, hoping to inspire further interest and innovation in developing TENG-based SPECs, which represent sustainable and eco-friendly solutions for pollutant treatment.
Collapse
Affiliation(s)
- Md Mazbah Uddin
- Department
of Textiles, Merchandising, and Interiors, University of Georgia, Athens, Georgia 30602, United States
| | - Tanvir Mahady Dip
- Department
of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
- Department
of Yarn Engineering, Bangladesh University
of Textiles, Dhaka 1208, Bangladesh
| | - Shariful Islam Tushar
- Department
of Textiles, Merchandising, and Interiors, University of Georgia, Athens, Georgia 30602, United States
- Department
of Design and Merchandising, Oklahoma State
University, Stillwater, Oklahoma 74078, United States
| | - Abdullah Sayam
- Department
of Textile Engineering, Ahsanullah University
of Science and Technology, Dhaka 1208, Bangladesh
| | - Habibur Rahman Anik
- Department
of Textiles, Merchandising, and Interiors, University of Georgia, Athens, Georgia 30602, United States
- Department
of Apparel Engineering, Bangladesh University
of Textiles, Dhaka 1208, Bangladesh
- Department
of Chemistry & Chemical and Biomedical Engineering, University of New Haven, New Haven, Connecticut 30605, United States
| | - Md. Reasat Aktar Arin
- Department
of Fabric Engineering, Bangladesh University
of Textiles, Dhaka 1208, Bangladesh
| | - Amit Talukder
- Department
of Textiles, Merchandising, and Interiors, University of Georgia, Athens, Georgia 30602, United States
| | - Suraj Sharma
- Department
of Textiles, Merchandising, and Interiors, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
10
|
Sanchez-Aceves LM, Gómez-Olivan LM, Pérez-Alvarez I, Rosales-Pérez KE, Hernández-Navarro MD, Amado-Piña D, Natividad R, Galar-Martínez M, García-Medina S, Ramírez-García JJ, Becerril ME, Dávila-Estrada M. Effects of effluents from the Villa Victoria Reservoir (Mexico) on the development of Danio rerio at early life stages through apoptotic response and oxidative-induced state. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177581. [PMID: 39566642 DOI: 10.1016/j.scitotenv.2024.177581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
As one of Mexico's most crucial water storage facilities, the Villa Victoria Reservoir (VVR) supplies water to over six million people residing in the Mexico City Metropolitan Area. In recent years, this water resource has been subjected to significant risks due to several factors, including human population growth, alterations in global climate patterns, excessive resource utilization, and insufficient protective regulations, thereby endangering not only the biocenosis itself, but also the water supply for numerous inhabitants. This study aimed to evaluate the current state of the reservoir through the determination of conventional and emerging pollutants present in the sampling points, as well as embryotoxicity and oxidative damage in Danio rerio embryos exposed to effluents from the VVR. Embryotoxicity was quantified using the General Morphology Score (GMS) and teratogenic index, whereas oxidative damage was assessed based on lipid peroxidation, hydroperoxide content, oxidized proteins, antioxidant enzyme activity, and gene expression. These results revealed the presence of heavy metals, diverse pharmaceutical compounds, and pesticides. In addition, elevated lipid, hydroperoxide, and protein oxidation accompanied by alterations in superoxide dismutase (SOD) and catalase (CAT) enzymatic activity were observed during exposure. GMS resulted in impaired embryo development and teratogenic effects, including pericardial, axial, and skeletal edema. Furthermore, the upregulation of genes associated with apoptotic processes and antioxidant defense reflects a comprehensive response to oxidative stress. The study concluded that pollutants in VVR water induced oxidative damage, modified antioxidant activity, elicited embryotoxicity, and upregulated oxidative damage-related genes. The findings underscore the necessity of undertaking restoration efforts for water sources, as pollution can potentially endanger aquatic organisms and human well-being.
Collapse
Affiliation(s)
- Livier M Sanchez-Aceves
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Olivan
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| | - Itzayana Pérez-Alvarez
- Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan/Jesús Carranza s/n. Toluca, 50120 Toluca, Estado de México, Mexico
| | - Karina Elisa Rosales-Pérez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - María Dolores Hernández-Navarro
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Deysi Amado-Piña
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco, km 14.5, San Cayetano, Toluca 50200, Mexico
| | - Reyna Natividad
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco, km 14.5, San Cayetano, Toluca 50200, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Delegación Gustavo A. Madero, Ciudad de México 07738, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Delegación Gustavo A. Madero, Ciudad de México 07738, Mexico
| | - J J Ramírez-García
- Laboratorio de Química Analítica, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón esq. Paseo Tollocan, CP 50120 Toluca, Estado de México, Mexico
| | - M E Becerril
- Laboratorio de Química Analítica, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón esq. Paseo Tollocan, CP 50120 Toluca, Estado de México, Mexico
| | - M Dávila-Estrada
- Laboratorio de Química Analítica, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón esq. Paseo Tollocan, CP 50120 Toluca, Estado de México, Mexico
| |
Collapse
|
11
|
Puga A, Moreira MM, Sanromán MA, Pazos MM, Delerue-Matos C. Antidepressants and COVID-19: Increased use, occurrence in water and effects and consequences on aquatic environment. A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175993. [PMID: 39244044 DOI: 10.1016/j.scitotenv.2024.175993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/31/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
The COVID-19 pandemic changed the consumption of many drugs, among which antidepressants stand out. This review evaluated the frequency of antidepressant use before and after COVID-19. Once the most consumed antidepressants were identified, detecting a variation in the frequency of consumption on the different continents, an overview of their life cycle was carried out, specifying which antidepressants are mostly detected and the places where there is a greater concentration. In addition, the main metabolites of the most used antidepressants were also investigated. A correlation between the most consumed drugs and the most detected was made, emphasizing the lack of information on the occurrence of some of the most consumed antidepressants. Subsequently, studies on the effects on aquatic life were also reviewed, evaluated through different living beings (fish, crustaceans, molluscs, planktonic crustaceans and algae). Likewise, many of the most used antidepressants lack studies on potential adverse effects on aquatic living beings. This review underscores the need for further research, particularly focusing on the life cycle of the most prescribed antidepressants. In particular, it is a priority to know the occurrence and adverse effects in the aquatic environment of the most used antidepressants after the pandemic.
Collapse
Affiliation(s)
- Antón Puga
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; CINTECX, University of Vigo, BIOSUV Group, Department of Chemical Engineering, Campus Lagoas-Marcosende, 36310 Vigo, Spain.
| | - Manuela M Moreira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - M Angeles Sanromán
- CINTECX, University of Vigo, BIOSUV Group, Department of Chemical Engineering, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Marta M Pazos
- CINTECX, University of Vigo, BIOSUV Group, Department of Chemical Engineering, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| |
Collapse
|
12
|
Jiang T, Wu W, Ma M, Hu Y, Li R. Occurrence and distribution of emerging contaminants in wastewater treatment plants: A globally review over the past two decades. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175664. [PMID: 39173760 DOI: 10.1016/j.scitotenv.2024.175664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/20/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Emerging contaminants are pervasive in aquatic environments globally, encompassing pharmaceuticals, personal care products, steroid hormones, phenols, biocides, disinfectants and various other compounds. Concentrations of these contaminants are detected ranging from ng/L to μg/L. Even at trace levels, these contaminants can pose significant risks to ecosystems and human health. This article systematically summarises and categorizes data on the concentrations of 54 common emerging contaminants found in the influent and effluent of wastewater treatment plants across various geographical regions: North America, Europe, Oceania, Africa, and Asia. It reviews the occurrence and distribution of these contaminants, providing spatial and causal analyses based on data from these regions. Notably, the maximum concentrations of the pollutants observed vary significantly across different regions. The data from Africa, in particular, show more frequent detection of pharmaceutical maxima in wastewater treatment plants.
Collapse
Affiliation(s)
- Tingting Jiang
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China; College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Wenyong Wu
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China; College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, China.
| | - Meng Ma
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| | - Yaqi Hu
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| | - Ruoxi Li
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| |
Collapse
|
13
|
Royano S, Navarro I, Torre ADL, Martínez MÁ. Investigating the presence, distribution and risk of pharmaceutically active compounds (PhACs) in wastewater treatment plants, river sediments and fish. CHEMOSPHERE 2024; 368:143759. [PMID: 39551192 DOI: 10.1016/j.chemosphere.2024.143759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
The increasing consumption of medicines and the lack of efficient technologies in wastewater treatment plants (WWTPs) can release pharmaceutically active compounds (PhACs) into any given river with the subsequent risk to the environment and human health. To assess the occurrence and transfer pathways of PhACs through the river ecosystem, 22 PhACs and one metabolite were analyzed in WWTPs, river sediments and fish collected alongside the Tagus River basin between 2020 and 2022. All the matrices presented at least two drugs being azithromycin the only one quantified in all of them. Analgesics, anti-inflammatories, antihypertensives, antidepressants and beta-blockers were the main PhACs in influents, with median concentrations up to 19 μg/L. In effluents, antihypertensives and antidepressants were the PhACs with the highest contribution. For acetaminophen, ibuprofen, ketoprofen, naproxen, atorvastatin, azithromycin, clarithromycin, sulfamethoxazole, trimethoprim, and valsartan WWTPs treatments reached removal efficiencies above 75%. Compounds with a high tendency to bind to organic matter were retained in sludge (clotrimazole, 96 ng/g before digester, 100%). However, results showed that applied treatments were not effective in removing PhACs from this matrix. Although the total mass balance revealed a high removal rate of some PhACs, many of them were still present in the effluent and their release into rivers became the main source of PhAC pollution of the aquatic ecosystem. The most hydrophobic ones (irbesartan, 24 ng/g, 61%), positively charged (o-desmethylvenlafaxine, 95 ng/g, 68%) and those with affinity to organic matter (clotrimazole, 21 ng/g, 61%) reached sediment samples. Only clotrimazole (7.8 ng/g) and azithromycin (160 ng/g) were found in fish samples. Risk assessment revealed a high risk for (i) acetaminophen, clarithromycin, erythromycin A, and venlafaxine in phototrophic organisms and (ii) acetaminophen and venlafaxine in fish.
Collapse
Affiliation(s)
- Silvia Royano
- Unit of Persistent Organic Pollutants and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Avda. Complutense 40, 28040, Madrid, Spain; International Doctoral School of the UNED (EIDUNED), National University of Distance Education (UNED), Madrid, Spain.
| | - Irene Navarro
- Unit of Persistent Organic Pollutants and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Avda. Complutense 40, 28040, Madrid, Spain.
| | - Adrián de la Torre
- Unit of Persistent Organic Pollutants and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Avda. Complutense 40, 28040, Madrid, Spain.
| | - María Ángeles Martínez
- Unit of Persistent Organic Pollutants and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Avda. Complutense 40, 28040, Madrid, Spain.
| |
Collapse
|
14
|
Razzaq U, Nguyen TB, Saleem MU, Le VR, Chen CW, Bui XT, Dong CD. Recent progress in electro-Fenton technology for the remediation of pharmaceutical compounds in aqueous environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174253. [PMID: 38936713 DOI: 10.1016/j.scitotenv.2024.174253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
The global focus on wastewater treatment has intensified in the contemporary era due to its significant environmental and human health impacts. Pharmaceutical compounds (PCs) have become an emerging concern among various pollutants, as they resist conventional treatment methods and pose a severe environmental threat. Advanced oxidation processes (AOPs) emerge as a potent and environmentally benign approach for treating recalcitrant pharmaceuticals. To address the shortcomings of traditional treatment methods, a technology known as the electro-Fenton (EF) method has been developed more recently as an electrochemical advanced oxidation process (EAOP) that connects electrochemistry to the chemical Fenton process. It has shown effective in treating a variety of pharmaceutically active compounds and actual wastewaters. By producing H2O2 in situ through a two-electron reduction of dissolved O2 on an appropriate cathode, the EF process maximizes the benefits of electrochemistry. Herein, we have critically reviewed the application of the EF process, encompassing diverse reactor types and configurations, the underlying mechanisms involved in the degradation of pharmaceuticals and other emerging contaminants (ECs), and the impact of electrode materials on the process. The review also addresses the factors influencing the efficiency of the EF process, such as (i) pH, (ii) current density, (iii) H2O2 concentration, (iv) and others, while providing insight into the scalability potential of EF technology and its commercialization on a global scale. The review delves into future perspectives and implications concerning the ongoing challenges encountered in the operation of the electro-Fenton process for the treatment of PCs and other ECs.
Collapse
Affiliation(s)
- Uzma Razzaq
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Muhammad Usman Saleem
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Science and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan; Department of Environmental Engineering, University of Engineering and Technology, Taxila 47050, Pakistan
| | - Van-Re Le
- Ho Chi Minh City University of Industry and Trade (HUIT), 140 Le Trong Tan Street, Tan Phu District, Ho Chi Minh City 700000, Viet Nam
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc city, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
15
|
Oliveira TMA, Mansano AS, Holanda CA, Pinto TS, Reis JB, Azevedo EB, Verbinnen RT, Viana JL, Franco TCRS, Vieira EM. Occurrence and Environmental Risk Assessment of Contaminants of Emerging Concern in Brazilian Surface Waters. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2199-2210. [PMID: 39073366 DOI: 10.1002/etc.5953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/13/2024] [Accepted: 06/18/2024] [Indexed: 07/30/2024]
Abstract
We investigated the occurrence and the environmental risk of eight contaminants of emerging concern (CECs; acetaminophen, naproxen, diclofenac, methylparaben, 17β-estradiol, sulfathiazole, sulfadimethoxine, and sulfamethazine) in three Brazilian water bodies, namely, the Monjolinho River Basin (São Paulo State), the Mogi Guaçu River (São Paulo State), and the Itapecuru River (Maranhão State) in three sampling campaigns. The CECs were only quantified in surface water samples collected at the Monjolinho River Basin. Acetaminophen, naproxen, and methylparaben were detected in the range of <200 to 575.9 ng L-1, <200 to 224.7 ng L-1, and <200 to 303.6 ng L-1, respectively. The detection frequencies of the three measured compounds were between 33% and 67%. The highest concentrations of CECs were associated with intense urbanization and untreated sewage discharge. Furthermore, CEC concentrations were significantly correlated with total organic carbon, electrical conductivity, and dissolved oxygen levels, suggesting that domestic pollution from urban areas is an important source in the distribution of CECs in the Monjolinho River Basin. The environmental risk assessment indicated a high risk for acetaminophen (risk quotient [RQ] values between 2.1 and 5.8), a medium risk for naproxen (RQs between 0.6 and 0.7), and a low risk for methylparaben (RQs < 0.1) to the freshwater biota of the Monjolinho River Basin. Our findings show potential threats of CECs in Brazilian water bodies, especially in vulnerable areas, and reinforce the need for improvements in environmental regulations to include monitoring and control of these compounds in aquatic systems. Environ Toxicol Chem 2024;43:2199-2210. © 2024 SETAC.
Collapse
Affiliation(s)
- Thiessa M A Oliveira
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
- Santa Luzia Faculty, Santa Inês, Maranhão, Brazil
| | - Adrislaine S Mansano
- Department of Hydrobiology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Carlos A Holanda
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
- Licentiate Coordination of Natural Sciences, Federal University of Maranhão, Imperatriz, Maranhão, Brazil
| | - Tiago S Pinto
- Water Resources and Applied Ecology Center, São Carlos School of Engineering, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Jonas B Reis
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Eduardo B Azevedo
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Raphael T Verbinnen
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
- Analytical Chemistry and Ecotoxicology Laboratory, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - José Lucas Viana
- Analytical Chemistry and Ecotoxicology Laboratory, Federal University of Maranhão, São Luís, Maranhão, Brazil
- Environmental Studies Centre, São Paulo State University, Rio Claro, Brazil
| | - Teresa C R S Franco
- Analytical Chemistry and Ecotoxicology Laboratory, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Eny M Vieira
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| |
Collapse
|
16
|
Cobarrubias-Escamilla DL, Saldarriaga-Noreña HA, Vergara-Sánchez J, Murillo-Tovar MA, Moeller-Chávez GE. Removal of ibuprofen, naproxen and 17-β-estradiol in water using L. octovalvis constructed wetlands. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 27:74-83. [PMID: 39254325 DOI: 10.1080/15226514.2024.2400619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
This study was developed to evaluate the removal potential of ibuprofen, naproxen and 17-β-estradiol in artificial wetlands constructed on a laboratory scale, using eight experimental devices planted with L. octovalvis species, tested with gravel substrate and without gravel substrate, which were fortified with synthetic mixtures at concentrations of 1, 2 and 5 mg/L of the three compounds, during a batch exposure time of nine days. The removal efficiency for 17-β-estradiol was 94.5 ± 2.47%, followed by ibuprofen 94.03 ± 1.96% and naproxen 81.57 ± 8.74%, respectively. The treatment with the highest removal was the one performed without the presence of gravel substrate. The highest removal efficiency occurred from the third day of exposure for the three compounds, so it was established as the optimum residence time. The model that best explained the adsorption process of the three compounds studied, was the Langmuir isotherm. The observed results demonstrate that L. octovalvis can be used as a native species in artificial wetlands for the efficient removal of pharmaceutical compounds.
Collapse
|
17
|
Hernández-Tenorio R, Villanueva-Rodríguez M, Guzmán-Mar JL, Hinojosa-Reyes L, Hernández-Ramírez A, Vigil-Castillo HH. Priority list of pharmaceutical active compounds in aquatic environments of Mexico considering their occurrence, environmental and human health risks. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104502. [PMID: 39002617 DOI: 10.1016/j.etap.2024.104502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Pharmaceutical active compounds (PhACs) are detected pollutants in aquatic environments worldwide at concentrations ranging from ng L-1 to µg L-1. Currently, PhAC monitoring is poorly realized in Mexico. This study proposes a priority list of PhACs in Mexican aquatic environments, considering their occurrence and environmental and human health risks. Ecological risks were assessed as Risk Quotients (RQ) values using the PhAC concentrations detected in surface water, obtaining high risks (RQ > 1) against aquatic organisms, especially of naproxen, ibuprofen, diclofenac, acetaminophen, 17β-estradiol, carbamazepine, ketoprofen, caffeine. In contrast, potential human health risks (RQH) were assessed on the Mexican population using the concentrations quantified in groundwater, demonstrating potential risks (RQH > 0.2) on the population, particularly of DCF and CBZ. Thus, a priority list of PhACs can be used as a reference for environmental monitoring in Mexican water supplies as well as PhACs monitoring in countries of the Caribbean region and Central America.
Collapse
Affiliation(s)
- Rafael Hernández-Tenorio
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Sede Noreste, Vía de la Innovación 404, Autopista Monterrey-Aeropuerto Km 10, Parque PIIT, Apodaca, Nuevo León C.P. 66628, Mexico.
| | - Minerva Villanueva-Rodríguez
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Av. Universidad s/n, San Nicolás de los Garza, Nuevo León 66455, Mexico
| | - Jorge Luis Guzmán-Mar
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Av. Universidad s/n, San Nicolás de los Garza, Nuevo León 66455, Mexico
| | - Laura Hinojosa-Reyes
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Av. Universidad s/n, San Nicolás de los Garza, Nuevo León 66455, Mexico
| | - Aracely Hernández-Ramírez
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Av. Universidad s/n, San Nicolás de los Garza, Nuevo León 66455, Mexico
| | - Héctor H Vigil-Castillo
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Av. Universidad s/n, San Nicolás de los Garza, Nuevo León 66455, Mexico
| |
Collapse
|
18
|
Coutinho R, Hoshima HY, Vianna MTG, Marques M. Sustainable application of modified Luffa cylindrica biomass for removal of trimethoprim in water by adsorption with process optimization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55280-55300. [PMID: 39227535 DOI: 10.1007/s11356-024-34797-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
The present study describes a set of methodological procedures (seldom applied together), including (i) development of an alternative adsorbent derived from abundant low-cost plant biomass; (ii) use of simple low-cost biomass modification techniques based on physical processing and chemical activation; (iii) design of experiments (DoE) applied to optimize the removal of a pharmaceutical contaminant from water; (iv) at environmentally relevant concentrations, (v) that due to initial low concentrations required determination by ultra-performance liquid phase chromatography coupled to mass spectrometry (UPLC-MS/MS). A central composite rotational design (CCRD) was employed to investigate the performance of vegetable sponge biomass (Luffa cylindrica), physically processed (crushing and sieving) and chemically activated with phosphoric acid, in the adsorption of the antibiotic trimethoprim (TMP) from water. The optimized model identified pH as the most significant variable, with maximum drug removal (91.1 ± 5.7%) achieved at pH 7.5, a temperature of 22.5 °C, and an adsorbent/adsorbate ratio of 18.6 mg µg-1. The adsorption mechanisms and surface properties of the adsorbent were examined through characterization techniques such as scanning electron microscopy (SEM), point of zero charge (pHpzc) measurement, thermogravimetric analysis (TGA), specific surface area, and Fourier-transform infrared spectroscopy (FTIR). The best kinetic fit was obtained by the Avrami fractional-order model. The hypothesis of a hybrid behavior of the adsorbent was suggested by the equilibrium results presented by the Langmuir and Freundlich models and reinforced by the Redlich-Peterson model, which achieved the best fit (R2 = 0.982). The thermodynamic study indicated an exothermic, spontaneous, and favorable process. The maximum adsorption capacity of the material was 2.32 × 102 µg g-1 at an equilibrium time of 120 min. Finally, a sustainable and promising adsorbent for the polishing of aqueous matrices contaminated by contaminants of emerging concern (CECs) at environmentally relevant concentrations is available for future investigations.
Collapse
Affiliation(s)
- Rodrigo Coutinho
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| | - Henrique Yahagi Hoshima
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Marco Tadeu Gomes Vianna
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Marcia Marques
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Kötke D, Gandrass J, Bento CP, Ferreira CS, Ferreira AJ. Occurrence and environmental risk assessment of pharmaceuticals in the Mondego river (Portugal). Heliyon 2024; 10:e34825. [PMID: 39157411 PMCID: PMC11328081 DOI: 10.1016/j.heliyon.2024.e34825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
In this case study pharmaceuticals were analysed in the Mondego river (Portugal) and their environmental risk assessed by means of risk quotients based on an extensive retrieval of ecotoxicological data for freshwater and saltwater species. The Mondego river crosses Coimbra, the most populated city in the Portuguese Centro Region hosting a complex of regional hospitals. Environmentally relevant and prioritised pharmaceuticals were investigated in this study and their potential hazards were evaluated by conducting a separate risk assessment for the freshwater and estuary parts of the examined river section. A target analysis approach with method detection limits down to 0.01 ng L-1 was used to determine pharmaceuticals. Twenty-one prioritised target analytes out of seven therapeutical classes (antibiotics, iodinated X-ray contrast media (ICM), analgesics, lipid reducers, antiepileptics, anticonvulsants, beta-blockers) were investigated by applying ultra-high pressure liquid chromatography coupled to a triple quadrupole mass spectrometer equipped with an electrospray ionisation source. The relative pattern of pharmaceuticals along the middle to the lower Mondego showed a quite uniform picture while an approximately 40fold increase of absolute concentrations was observed downstream of the wastewater treatment plant (WWTP) discharge of Coimbra. The most frequently measured substance groups were the ICM, represented by the non-ionic ICM iopromide (βmin: 3.03 ng L-1 - βmax: 2,810 ng L-1). Environmentally more critical substances such as carbamazepine, diclofenac, and bezafibrate, with concentrations up to and 52.6 ng L-1, 59.8 ng L-1, and 10.2 ng L-1 respectively, may potentially affect aquatic wildlife. Carbamazepine revealed elevated risk quotients (RQs >1) along the middle and lower Mondego with a maximum RQ of 53 downstream of Coimbra. Especially for saltwater species, carbamazepine and clarithromycin pose high potential risks. Especially in periods of low water discharge of the Mondego river, other pharmaceuticals as diclofenac and bezafibrate may pose additional risks downstream of the WWTP.
Collapse
Affiliation(s)
- Danijela Kötke
- Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Organic Environmental Chemistry, Geesthacht, 21502, Germany
| | - Juergen Gandrass
- Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Organic Environmental Chemistry, Geesthacht, 21502, Germany
| | - Célia P.M. Bento
- Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Organic Environmental Chemistry, Geesthacht, 21502, Germany
- Wageningen Environmental Research, Wageningen UR, 6708 PB, Wageningen, the Netherlands
| | - Carla S.S. Ferreira
- Research Centre for Natural Resources, Environment and Society (CERNAS), Agrarian Technical School, Polytechnic Institute of Coimbra, P-3040-316, Coimbra, Portugal
- Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, SE-106 91, Stockholm, Sweden
| | - António J.D. Ferreira
- Research Centre for Natural Resources, Environment and Society (CERNAS), Agrarian Technical School, Polytechnic Institute of Coimbra, P-3040-316, Coimbra, Portugal
| |
Collapse
|
20
|
Rodríguez-Rodríguez CE, Ramírez-Morales D, Gutiérrez-Quirós JA, Rodríguez-Saravia S, Villegas-Solano D. Occurrence of pharmaceuticals in Latin America: case study on hazard assessment and prioritization in Costa Rica. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:739. [PMID: 39012428 DOI: 10.1007/s10661-024-12872-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/28/2024] [Indexed: 07/17/2024]
Abstract
Pharmaceuticals are considered as contaminants of emerging concern, and their occurrence in diverse environmental matrices has been described during the last 25 years. Nonetheless, pharmaceutical occurrence has not been evenly described worldwide, and reports from some geographical areas such as most parts of Latin America are scarce. This work aims to address the situation of water pollution due to pharmaceuticals in Latin America by means of two main goals: i. First, reviewing the monitoring studies performed in Latin America on this topic (period 2009-2024), which were conducted in Brazil, Mexico, Colombia, Ecuador, Peru and Argentina, to highlight the most frequently detected compounds from each therapeutic group in the region. ii. Second, analyzing the case of Costa Rica through the hazard assessment and prioritization of pharmaceuticals based on the monitoring performed in this country (years 2011; 2018-2019). The monitoring in Costa Rica comprised a total of 163 sampling points: wastewater treatment plants (WWTPs) (14 urban WWTPs plus two landfill WWTPs; total samples n = 44 influents and n = 34 effluents), nine hospital effluents (n = 32), wastewater from livestock farms (six swine farms and seven dairy farms; n = 23 influents and n = 37 effluents), 64 continental surface water sampling points (n = 137), and 61 coastal seawater sampling points (n = 61). Risk assessment of detected concentrations by the hazard quotient (HQ) approach (period 2018-2019) revealed a total of 25 medium or high-hazard compounds (out of 37 detected compounds). The prioritization approach (which included the Frequency of Appearance (FoA), the Frequency of PNEC exceedance (FoE), and the Extent of predicted no-effect concentration (PNEC) exceedance (EoE)), showed a critical list of nine pharmaceuticals: caffeine, diphenhydramine, acetaminophen, lovastatin, gemfibrozil, ciprofloxacin, ibuprofen, doxycycline and norfloxacin. These compounds should be taken into account as a first concern during the implementation of environmental policies related to pharmaceutical products in the region.
Collapse
Grants
- 802-B8-510 Vicerrectoría de Investigación, Universidad de Costa Rica
- 802-B8-510 Vicerrectoría de Investigación, Universidad de Costa Rica
- 802-C1-034 Vicerrectoría de Investigación, Universidad de Costa Rica,Costa Rica
- 802-C1-034 Vicerrectoría de Investigación, Universidad de Costa Rica,Costa Rica
- FI-197B-17 Ministerio de Ciencia Tecnología y Telecomunicaciones,Costa Rica
- FI-197B-17 Ministerio de Ciencia Tecnología y Telecomunicaciones,Costa Rica
- FI-197B-17 Ministerio de Ciencia Tecnología y Telecomunicaciones,Costa Rica
- FI-197B-17 Ministerio de Ciencia Tecnología y Telecomunicaciones,Costa Rica
Collapse
Affiliation(s)
- Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica.
| | - Didier Ramírez-Morales
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | | | - Sebastián Rodríguez-Saravia
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Diego Villegas-Solano
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| |
Collapse
|
21
|
Mac Loughlin TM, Bahl MF, Flores FM, Apartin CD, Marino DJG, Peluso ML. Assessment of sulfonamide contamination in aquatic environments: A first report for Argentina and environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173139. [PMID: 38744394 DOI: 10.1016/j.scitotenv.2024.173139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The global surge in pharmaceutical consumption, driven by increasing population and the demand for animal proteins, leads to the discharge of diverse pollutants, including antibiotic residues, into water bodies. Sulfonamides, being water-soluble compounds, can readily enter surface run-off, posing potential risks to non-target species despite their low environmental concentrations. Latin America has implemented intensive production systems highly dependent on antimicrobials for productivity and animal health, yet there is a paucity of information regarding their concentration in the region. The objective of this study was to evaluate the presence of sulfonamides in water and sediment samples and assess their potential ecological risks through an environmental risk assessment. The Río de la Plata basin collects the waters of the Paraguay, Paraná, and Uruguay rivers, together with their tributaries and various wetlands, passing through the provinces in Argentina known for their significant animal husbandry production. Two sampling campaigns were carried out for sediment, while only one campaign was conducted for surface waters. The samples were analyzed by high performance liquid chromatography tandem mass-spectrometry (HPLC-MS/MS). None of the examined sulfonamide antibiotics were detected in the sediment samples from both sampling campaigns. In contrast, sulfadiazine (95 %), sulfamethoxazole (91 %), and sulfathiazole (73 %) were detected in the water samples. Sulfadiazine was found in the concentration range of 8 to 128 ng/L, while sulfamethoxazole and sulfathiazole were observed at concentrations ranging from 3.0 to 32.5 ng/L and 2.9 to 8.1 ng/L, respectively. Based on the environmental risk assessment conducted using the sulfonamide concentrations, most samples indicated a medium risk for aquatic biota, with only one sample surpassing the high-risk threshold. This study represents the first report presenting data on the presence of sulfonamide antibiotics in the aquatic environment of Argentina.
Collapse
Affiliation(s)
- T M Mac Loughlin
- Centro de Investigaciones del Medio Ambiente (CIM), FCEx-UNLP-CONICET, La Plata, Buenos Aires, Argentina.
| | - Ma F Bahl
- Centro de Investigaciones del Medio Ambiente (CIM), FCEx-UNLP-CONICET, La Plata, Buenos Aires, Argentina
| | - F M Flores
- Centro de Investigaciones del Medio Ambiente (CIM), FCEx-UNLP-CONICET, La Plata, Buenos Aires, Argentina
| | - C D Apartin
- Centro de Investigaciones del Medio Ambiente (CIM), FCEx-UNLP-CONICET, La Plata, Buenos Aires, Argentina
| | - D J G Marino
- Centro de Investigaciones del Medio Ambiente (CIM), FCEx-UNLP-CONICET, La Plata, Buenos Aires, Argentina
| | - Ma L Peluso
- Centro de Investigaciones del Medio Ambiente (CIM), FCEx-UNLP-CONICET, La Plata, Buenos Aires, Argentina
| |
Collapse
|
22
|
Kariyawasam T, Helvig C, Petkovich M, Vriens B. Pharmaceutical removal from wastewater by introducing cytochrome P450s into microalgae. Microb Biotechnol 2024; 17:e14515. [PMID: 38925623 PMCID: PMC11197475 DOI: 10.1111/1751-7915.14515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Pharmaceuticals are of increasing environmental concern as they emerge and accumulate in surface- and groundwater systems around the world, endangering the overall health of aquatic ecosystems. Municipal wastewater discharge is a significant vector for pharmaceuticals and their metabolites to enter surface waters as humans incompletely absorb prescription drugs and excrete up to 50% into wastewater, which are subsequently incompletely removed during wastewater treatment. Microalgae present a promising target for improving wastewater treatment due to their ability to remove some pollutants efficiently. However, their inherent metabolic pathways limit their capacity to degrade more recalcitrant organic compounds such as pharmaceuticals. The human liver employs enzymes to break down and absorb drugs, and these enzymes are extensively researched during drug development, meaning the cytochrome P450 enzymes responsible for metabolizing each approved drug are well studied. Thus, unlocking or increasing cytochrome P450 expression in endogenous wastewater microalgae could be a cost-effective strategy to reduce pharmaceutical loads in effluents. Here, we discuss the challenges and opportunities associated with introducing cytochrome P450 enzymes into microalgae. We anticipate that cytochrome P450-engineered microalgae can serve as a new drug removal method and a sustainable solution that can upgrade wastewater treatment facilities to function as "mega livers".
Collapse
Affiliation(s)
- Thamali Kariyawasam
- Department of Geological Sciences and EngineeringQueen's UniversityKingstonOntarioCanada
- Beaty Water Research CenterQueen's UniversityKingstonOntarioCanada
| | - Christian Helvig
- Department of Biomedical EngineeringQueen's UniversityKingstonOntarioCanada
| | - Martin Petkovich
- Department of Biomedical EngineeringQueen's UniversityKingstonOntarioCanada
| | - Bas Vriens
- Department of Geological Sciences and EngineeringQueen's UniversityKingstonOntarioCanada
- Beaty Water Research CenterQueen's UniversityKingstonOntarioCanada
| |
Collapse
|
23
|
Mtetwa HN, Amoah ID, Kumari S, Bux F, Reddy P. Optimisation of analytical methods for tuberculosis drug detection in wastewater: A multinational study. Heliyon 2024; 10:e30720. [PMID: 38770326 PMCID: PMC11103419 DOI: 10.1016/j.heliyon.2024.e30720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
Wastewater-based epidemiology (WBE) is a robust tool for disease surveillance and monitoring of pharmaceutical consumption. However, monitoring tuberculosis (TB) drug consumption faces challenges due to limited data availability. This study aimed to optimise methods for detecting TB drugs in treated and untreated wastewater from four African countries: South Africa, Nigeria, Kenya, and Cameroon. The limit of detection (LOD) for these drugs ranged from a minimum of 2.20 (±1.02) for rifampicin to a maximum of 2.95 (±0.79) for pyrazinamide. A parallel trend was observed concerning the limit of quantification (LOQ), with rifampicin reporting the lowest average LOQ of 7.33 (±3.44) and pyrazinamide showing the highest average LOQ of 9.81 (±2.64). The variance in LOD and LOQ values could be attributed to factors such as drug polarity. Erythromycin and rifampicin exhibited moderately polar LogP values (2.6 and 2.95), indicating higher lipid affinity and lower water affinity. Conversely, ethambutol, pyrazinamide, and isoniazid displayed polar LogP values (-0.059, -0.6, and -0.7), suggesting lower lipid affinity and greater water affinity. The study revealed that storing wastewater samples for up to 5 days did not result in significant drug concentration loss, with concentration reduction remaining below 1 log throughout the storage period. Application of the optimised method for drug detection and quantification in both treated and untreated wastewater unveiled varied results. Detection frequencies varied among drugs, with ethambutol consistently most detected, while pyrazinamide and isoniazid were least detected in wastewater from only two countries. Most untreated wastewater samples had undetectable drug concentrations, ranging from 1.21 ng/mL for erythromycin to 54.61 ng/mL for isoniazid. This variability may suggest differences in drug consumption within connected communities. In treated wastewater samples, detectable drug concentrations ranged from 1.27 ng/mL for isoniazid to 10.20 ng/mL for ethambutol. Wastewater treatment plants exhibited variable removal efficiencies for different drugs, emphasising the need for further optimisation. Detecting these drugs in treated wastewater suggests potential surface water contamination and subsequent risks of human exposure, underscoring continued research's importance.
Collapse
Affiliation(s)
- Hlengiwe N. Mtetwa
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Isaac D. Amoah
- The University of Arizona, The Department of Environmental Science, Shantz Building Rm 4291177 E 4th St, Tucson, AZ, 85721, USA
| | - Sheena Kumari
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Poovendhree Reddy
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| |
Collapse
|
24
|
Onofre-Camarena DB, Elizalde-Velázquez GA, Gómez-Oliván LM, García-Medina S, Galar-Martínez M, Jerónimo Juárez JR, Herrera-Vázquez SE. Assessing the impact of COVID-19 era drug combinations on hepatic functionality: A thorough investigation in adult Danio rerio. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123997. [PMID: 38636837 DOI: 10.1016/j.envpol.2024.123997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Current and thorough information on the ecotoxicological consequences of pharmaceuticals is accessible globally. However, there remains a substantial gap in knowledge concerning the potentially toxic effects of COVID-19 used drugs, individually and combined, on aquatic organisms. Given the factors above, our investigation assumes pivotal importance in elucidating whether or not paracetamol, dexamethasone, metformin, and their tertiary mixtures might prompt histological impairment, oxidative stress, and apoptosis in the liver of zebrafish. The findings indicated that all treatments, except paracetamol, augmented the antioxidant activity of superoxide dismutase (SOD) and catalase (CAD), along with elevating the levels of oxidative biomarkers such as lipid peroxidation (LPX), hydroperoxides (HPC), and protein carbonyl content (PCC). Paracetamol prompted a reduction in the activities SOD and CAT and exhibited the most pronounced toxic response when compared to the other treatments. The gene expression patterns paralleled those of oxidative stress, with all treatments demonstrating overexpression of bax, bcl2, and p53. The above suggested a probable apoptotic response in the liver of the fish. Nevertheless, our histological examinations revealed that none of the treatments induced an apoptotic or inflammatory response in the hepatocytes. Instead, the observed tissue alterations encompassed leukocyte infiltration, sinusoidal dilatation, pyknosis, fatty degeneration, diffuse congestion, and vacuolization. In summary, the hepatic toxicity elicited by COVID-19 drugs in zebrafish was less pronounced than anticipated. This attenuation could be attributed to metformin's antioxidant and hormetic effects.
Collapse
Affiliation(s)
- Diana Belen Onofre-Camarena
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP, 50120, Toluca, Estado de México, Mexico
| | - Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP, 50120, Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP, 50120, Toluca, Estado de México, Mexico.
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP, 07700, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP, 07700, Mexico
| | - José Roberto Jerónimo Juárez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP, 50120, Toluca, Estado de México, Mexico
| | - Selene Elizabeth Herrera-Vázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP, 50120, Toluca, Estado de México, Mexico
| |
Collapse
|
25
|
Goyat R, Singh J, Umar A, Saharan Y, Ibrahim AA, Akbar S, Baskoutas S. Synthesis and characterization of nanocomposite based polymeric membrane (PES/PVP/GO-TiO 2) and performance evaluation for the removal of various antibiotics (amoxicillin, azithromycin & ciprofloxacin) from aqueous solution. CHEMOSPHERE 2024; 353:141542. [PMID: 38428535 DOI: 10.1016/j.chemosphere.2024.141542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
The escalating global concern regarding antibiotic pollution necessitates the development of advanced water treatment strategies. This study presents an innovative approach through the fabrication and evaluation of a Polyethersulfone (PES) membrane adorned with GO-TiO2 nanocomposites. The objective is to enhance the removal efficiency of various antibiotics, addressing the challenge of emerging organic compounds (EOCs) in water systems. The nanocomposite membranes, synthesized via the phase inversion method, incorporate hydrophilic agents, specifically GO-TiO2 nanocomposites and Polyvinylpyrrolidone (PVP). The resultant membranes underwent comprehensive characterization employing AFM, EDS, tensile strength testing, water contact angle measurements, and FESEM to elucidate their properties. Analysis revealed a substantial improvement in the hydrophilicity of the modified membranes attributed to the presence of hydroxyl groups within the GO-TiO2 structure. AFM images demonstrated an augmentation in surface roughness with increasing nanocomposite content. FESEM images unveiled structural modifications, leading to enhanced porosity and augmented water flux. The pure water flux elevated from 0.980 L/m2.h-1 for unmodified membranes to approximately 6.85 L/m2.h-1 for membranes modified with 2 wt% nanocomposites. Membrane performance analysis indicated a direct correlation between nanocomposite content and antibiotic removal efficiency, ranging from 66.52% to 89.81% with 4 wt% nanocomposite content. Furthermore, the nanocomposite-modified membrane exhibited heightened resistance to fouling. The efficacy of the membrane extended to displaying potent antibacterial properties against microbial strains, including S. aureus, E. coli, and Candida. This study underscores the immense potential of GO-TiO2 decorated PES membranes as a sustainable and efficient solution for mitigating antibiotic contamination in water systems. The utilization of nanocomposite membranes emerges as a promising technique to combat the presence of EOC pollutants, particularly antibiotics, in water bodies, thus addressing a critical environmental concern.
Collapse
Affiliation(s)
- Rohit Goyat
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India
| | - Joginder Singh
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India.
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, Najran University, Najran, 11001, Kingdom of Saudi Arabia; Department of Materials Science and Engineering, The Ohio State University, Columbus, 43210, OH, USA.
| | - Yajvinder Saharan
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India
| | - Ahmed A Ibrahim
- Department of Chemistry, Faculty of Science and Arts, Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, 43210, OH, USA
| | - Sotirios Baskoutas
- Department of Materials Science, University of Patras, 26500, Patras, Greece
| |
Collapse
|
26
|
Larrea Murrell JA, Alvarez BR, Petre A, Gómez AS, Moya DL, Rojas Badía MM, Boltes K. Presence of pharmaceutical contaminants of emerging concerns in two rivers of western Cuba and their relationship with the extracellular enzymatic activity of microbial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123589. [PMID: 38373626 DOI: 10.1016/j.envpol.2024.123589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/17/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
In recent years, the concern derived from the presence of emerging contaminants in the environment and the possible effects on the One Health trilogy has increased. This study determined the concentration of pharmaceutical contaminants of emerging concern and their relationship with the extracellular enzymatic activity of microbial communities from two rivers in western Cuba. Two sampling stations were analyzed; one in the Almendares River (urban) and the other in the San Juan River (rural), taking into account the pollution sources that arrive at these stations and previous physicochemical characterizations. Extracellular protease, acid phosphatase, alkaline phosphatase, lipase, and catalase activities in water and sediments were determined and correlated with contaminants of emerging concern determined by liquid chromatography with mass spectrometry. This study evidenced the presence of different pharmaceutical contaminants found in the categories of antihypertensives, stimulants, anti-inflammatories, and antibiotics in both rivers. Concentrations of contaminants of emerging concern were greater in the Almendares River compared to the San Juan River. In addition, through the canonical redundancy analysis, the influence of these contaminants on the extracellular enzymatic activities of microbial communities was documented, where in most cases they inhibit protease, phosphatase, and lipase activities and enhance catalase activity in response to oxidative stress. The present investigation constitutes the first report in Cuba of the presence of pharmaceutical contaminants of emerging concern and one of the few works that exist in the Latin American region.
Collapse
Affiliation(s)
- Jeny Adina Larrea Murrell
- Department of Microbiology and Virology. Biology Faculty. University of Havana. #455 25 Street between J and I. Vedado, Plaza de la Revolución, Havana, Cuba
| | - Beatriz Romeu Alvarez
- Department of Microbiology and Virology. Biology Faculty. University of Havana. #455 25 Street between J and I. Vedado, Plaza de la Revolución, Havana, Cuba
| | - Alice Petre
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain; IMDEA Water, Avda. Punto Com, 2, 28805, Alcalá de Henares, Madrid, Spain
| | - Adrian Salcedo Gómez
- Department of Microbiology and Virology. Biology Faculty. University of Havana. #455 25 Street between J and I. Vedado, Plaza de la Revolución, Havana, Cuba
| | - Daysi Lugo Moya
- Department of Microbiology and Virology. Biology Faculty. University of Havana. #455 25 Street between J and I. Vedado, Plaza de la Revolución, Havana, Cuba
| | - Marcia María Rojas Badía
- Department of Microbiology and Virology. Biology Faculty. University of Havana. #455 25 Street between J and I. Vedado, Plaza de la Revolución, Havana, Cuba
| | - Karina Boltes
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain; IMDEA Water, Avda. Punto Com, 2, 28805, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
27
|
Sohn S, Kim MK, Lee YM, Sohn EJ, Choi GY, Chae SH, Zoh KD. Removal characteristics of 53 micropollutants during ozonation, chlorination, and UV/H 2O 2 processes used in drinking water treatment plant. CHEMOSPHERE 2024; 352:141360. [PMID: 38325620 DOI: 10.1016/j.chemosphere.2024.141360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
The removal of 53 emerging micropollutants (MPs), including 10 per- and polyfluorinated substances (PFASs), 25 pharmaceuticals and personal care products (PPCPs), 7 pesticides, 5 endocrine disrupters (EDCs), 3 nitrosamines, and 3 taste and odor compounds (T&Os), by chlorination, ozonation, and UV/H2O2 treatment was examined in deionized water and surface waters used as the raw waters in drinking water treatment plants (DWTPs) in South Korea. The UV/H2O2 treatment was effective in the removal of most MPs, whereas chlorination was selectively effective for 19 MPs, including EDCs (>70 %). MPs containing aromatic ring with electron-donating functional group, or primary and secondary amines were effectively removed by chlorination immediately upon reaction initiation. The removal of MPs by ozonation was generally lower than that of the other two processes at a low ozone dose (1 mg L-1), but higher than chlorination at a high ozone dose (3 mg L-1), particularly for 16 MPs, including T&Os. Compared in deionized water, the removals of MPs in the raw water samples were lower in all three processes. The regression models predicting the rate constants (kobs) of 53 MPs showed good agreement between modeled and measured value for UV/H2O2 treatment (R2 = 0.948) and chlorination (R2 = 0.973), despite using only dissolved organic carbon (DOC) and oxidant concentration as variables, whereas the ozonation model showed a variation (R2 = 0.943). Our results can provide the resources for determining which oxidative process is suitable for treating specific MPs present in the raw waters of DWTPs.
Collapse
Affiliation(s)
- Seungwoon Sohn
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Moon-Kyung Kim
- Institute of Health & Environment, Seoul National University, Seoul, South Korea
| | - Young-Min Lee
- Institute of Health & Environment, Seoul National University, Seoul, South Korea
| | - Erica Jungmin Sohn
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Grace Y Choi
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Seon-Ha Chae
- Korea Water Resources Corporation, K-water Institute, Deajeon, South Korea
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea.
| |
Collapse
|
28
|
Ngin P, Haglund P, Proum S, Fick J. Pesticide screening of surface water and soil along the Mekong River in Cambodia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169312. [PMID: 38104830 DOI: 10.1016/j.scitotenv.2023.169312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Widespread use of pesticides globally has led to serious concerns about environmental contamination, particularly with regard to aquatic and soil ecosystems. This work involved investigating concentrations of 64 pesticides in surface-water and soil samples collected in four provinces along the Mekong River in Cambodia during the dry and rainy seasons (276 samples in total), and conducting semi-structured interviews with local farmers about pesticide use. Furthermore, an ecological risk assessment of the detected pesticides was performed. In total, 56 pesticides were detected in surface water and 43 in soil, with individual pesticides reaching maximum concentrations of 1300 ng/L in the surface-water samples (tebufenozide) and 1100 ng/g dry weight in the soil samples (bromophos-ethyl). The semi-structured interviews made it quite evident that the instructions that farmers are provided regarding the use of pesticides are rudimentary, and that overuse is common. The perceived effect of pesticides was seen as an end-point, and there was a limited process of optimally matching pesticides to pests and crops. Several pesticides were used regularly on the same crop, and the period between application and harvest varied. Risk analysis showed that bromophos-ethyl, dichlorvos, and iprobenfos presented a very high risk to aquatic organisms in both the dry and rainy seasons, with risk quotient values of 850 for both seasons, and of 67 in the dry season and 78 in the rainy season for bromophos-ethyl, and 49 in the dry season and 16 in the rainy season for dichlorvos. Overall, this work highlights the occurrence of pesticide residues in surface water and soil along the Mekong River in Cambodia, and emphasizes the urgent need for monitoring and improving pesticide practices and regulations in the region.
Collapse
Affiliation(s)
- Putheary Ngin
- Department of Chemistry, Umeå University, Umeå, Sweden; Department of Chemistry, Royal University of Phnom Penh, Phnom Penh, Cambodia.
| | - Peter Haglund
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Sorya Proum
- Department of Chemistry, Royal University of Phnom Penh, Phnom Penh, Cambodia
| | - Jerker Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| |
Collapse
|
29
|
Vaudreuil MA, Munoz G, Vo Duy S, Sauvé S. Tracking down pharmaceutical pollution in surface waters of the St. Lawrence River and its major tributaries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168680. [PMID: 37996029 DOI: 10.1016/j.scitotenv.2023.168680] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/17/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
A reconnaissance survey was undertaken to evaluate the occurrence and risks of 27 pharmaceuticals and metabolites in the St. Lawrence watershed. Surface water samples were collected over a five-year period (2017-2021) along a 700-km reach of the St. Lawrence River as well as 55 tributary rivers (overall N = 406 samples). Additionally, depth water samples and sediments were collected near a major wastewater effluent. Caffeine, diclofenac, and venlafaxine were the most recurrent substances (detection rates >80 %), and extremely high levels were found near a municipal effluent (e.g., ibuprofen (860 ng/L), hydroxyibuprofen (1800 ng/L) and caffeine (7200 ng/L)). Geographical mapping and statistical analyses indicated that the St. Lawrence River water mass after the Montreal City effluent was significantly more contaminated than the other water masses, and that contamination could extend up to 70 km further downstream. This phenomenon was repeatedly observed over the five years of sampling, confirming that this is not a random trend. A slight increase in contamination was also observed near Quebec City, but concentrations rapidly declined in the estuarine transition zone. Tributaries with the highest pharmaceutical levels (ΣPharmas ∼400-900 ng/L) included the Mascouche, Saint-Régis, and Bertrand rivers, all located in the densely populated Greater Montreal area. When flowrate was factored in, the top five tributaries in terms of mass load (ΣPharmas ∼200-2000 kg/year) were the Des Prairies, Saint-François, Richelieu, Ottawa, and Yamaska rivers. All samples met the Canadian Water Quality Guideline for carbamazepine. Despite the large dilution effect of the St. Lawrence River, a risk quotient approach based on freshwater PNEC values suggested that four compounds (caffeine, carbamazepine, diclofenac, and ibuprofen) could present intermediate to high risks for aquatic organisms in terms of chronic exposure.
Collapse
Affiliation(s)
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
30
|
Mofijur M, Hasan MM, Ahmed SF, Djavanroodi F, Fattah IMR, Silitonga AS, Kalam MA, Zhou JL, Khan TMY. Advances in identifying and managing emerging contaminants in aquatic ecosystems: Analytical approaches, toxicity assessment, transformation pathways, environmental fate, and remediation strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122889. [PMID: 37972679 DOI: 10.1016/j.envpol.2023.122889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Emerging contaminants (ECs) are increasingly recognized as threats to human health and ecosystems. This review evaluates advanced analytical methods, particularly mass spectrometry, for detecting ECs and understanding their toxicity, transformation pathways, and environmental distribution. Our findings underscore the reliability of current techniques and the potential of upcoming methods. The adverse effects of ECs on aquatic life necessitate both in vitro and in vivo toxicity assessments. Evaluating the distribution and degradation of ECs reveals that they undergo physical, chemical, and biological transformations. Remediation strategies such as advanced oxidation, adsorption, and membrane bioreactors effectively treat EC-contaminated waters, with combinations of these techniques showing the highest efficacy. To minimize the impact of ECs, a proactive approach involving monitoring, regulations, and public education is vital. Future research should prioritize the refining of detection methods and formulation of robust policies for EC management.
Collapse
Affiliation(s)
- M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - M M Hasan
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Engineering and Technology, Central Queensland University, QLD, 4701, Australia
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - F Djavanroodi
- Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - I M R Fattah
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - A S Silitonga
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - M A Kalam
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - John L Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - T M Yunus Khan
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
31
|
Ramírez-Morales D, Masís-Mora M, Montiel-Mora JR, Méndez-Rivera M, Gutiérrez-Quirós JA, Brenes-Alfaro L, Rodríguez-Rodríguez CE. Pharmaceuticals, hazard and ecotoxicity in surface and wastewater in a tropical dairy production area in Latin America. CHEMOSPHERE 2024; 346:140443. [PMID: 38303394 DOI: 10.1016/j.chemosphere.2023.140443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 02/03/2024]
Abstract
Pharmaceuticals comprise a complex group of emerging pollutants. Despite the significant number of pharmaceuticals used in veterinary medicine, the input of these compounds into the environment due to livestock activities has been scarcely described. This work assays for the first time in Central America the occurrence of pharmaceuticals in farm wastewater in an area devoted to dairy production, and in the surrounding surface waters. Among 69 monitored pharmaceuticals, a total of eight compounds were detected in wastewater samples collected from seven dairy farms after three sampling campaigns. Six pharmaceuticals were considered either of high (albendazole, lovastatin and caffeine) or intermediate estimated hazard (ciprofloxacin, acetaminophen and ketoprofen) based on the HQ approach, while 26% of the samples were considered of high estimated hazard according to the cumulative ∑HQ approach. Similarly, when ecotoxicological tests were applied, all the samples showed some level of toxicity towards Daphnia magna, and most samples towards Vibrio fischeri and Lactuca sativa. Fourteen pharmaceuticals were detected in surface water samples collected in the surroundings of the dairy production farms, including rural and urban areas. Seven out of these compounds showed high estimated risk (risperidone, diphenhydramine, trimethoprim, fluoxetine, ofloxacin, caffeine and ibuprofen), while three (gemfibrozil, ciprofloxacin and cephalexin) exhibited intermediate estimated risk. In a similar worrisome way, 27% of these samples were estimated to pose high environmental risk according to the pharmaceutical content. Despite being nontoxic for D. magna or V. fischeri, frequent inhibition (>20%) of GI in L. sativa was determined in 34% of surface water samples; such findings raise concern on the apparent inceptive environmental pollution and risk within the area. According to the pharmaceutical content patterns in both kinds of studied matrices, no clear evidence of significant contamination in surface water due to livestock activities could be retrieved, suggesting a main role of urban influence.
Collapse
Affiliation(s)
- Didier Ramírez-Morales
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - José R Montiel-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Michael Méndez-Rivera
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | | | - Laura Brenes-Alfaro
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica.
| |
Collapse
|
32
|
Aguilar-Aguilar A, de León-Martínez LD, Forgionny A, Acelas Soto NY, Mendoza SR, Zárate-Guzmán AI. A systematic review on the current situation of emerging pollutants in Mexico: A perspective on policies, regulation, detection, and elimination in water and wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167426. [PMID: 37774864 DOI: 10.1016/j.scitotenv.2023.167426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Emerging pollutants (EPs) emerged as a group of new compounds whose presence in the environment has been widely detected in Mexico. In this country, different concentrations of pharmaceutical compounds, pesticides, dyes, and microplastics have been reported, which vary depending on the region and the analyzed matrix (i.e., wastewater, surface water, groundwater). The evidence of the EPs' presence focuses on the detection of them, but there is a gap in information regarding is biomonitoring and their effects in health in Mexico. The presence of these pollutants in the country associated with lack of proper regulations in the discharge and disposal of EPs. Therefore, this review aims to provide a comprehensive view of the current environmental status, policies, and frameworks regarding Mexico's situation. The review also highlights the lack of information about biomonitoring since EPs are present in water even after their treatment, leading to a critical situation, which is high exposure to humans and animals. Although, technologies to efficiently eliminate EPs are available, their application has been reported only at a laboratory scale thus far. Here, an overview of health and environmental impacts and a summary of the research works reported in Mexico from 2014 to 2023 were presented. This review concludes with a concrete point of view and perspective on the status of the EPs' research in Mexico as an alert for government entities about the necessity of measures to control the EPs disposal and treatment.
Collapse
Affiliation(s)
- Angélica Aguilar-Aguilar
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| | | | - Angélica Forgionny
- Grupo de Materiales con Impacto, Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín 55450, Colombia
| | - Nancy Y Acelas Soto
- Grupo de Materiales con Impacto, Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín 55450, Colombia
| | - Sergio Rosales Mendoza
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava No. 201, San Luis Potosí 78210, Mexico
| | - Ana I Zárate-Guzmán
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico.
| |
Collapse
|
33
|
Khan NA, López-Maldonado EA, Majumder A, Singh S, Varshney R, López JR, Méndez PF, Ramamurthy PC, Khan MA, Khan AH, Mubarak NM, Amhad W, Shamshuddin SZM, Aljundi IH. A state-of-art-review on emerging contaminants: Environmental chemistry, health effect, and modern treatment methods. CHEMOSPHERE 2023; 344:140264. [PMID: 37758081 DOI: 10.1016/j.chemosphere.2023.140264] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Pollution problems are increasingly becoming e a priority issue from both scientific and technological points of view. The dispersion and frequency of pollutants in the environment are on the rise, leading to the emergence have been increasing, including of a new class of contaminants that not only impact the environment but also pose risks to people's health. Therefore, developing new methods for identifying and quantifying these pollutants classified as emerging contaminants is imperative. These methods enable regulatory actions that effectively minimize their adverse effects to take steps to regulate and reduce their impact. On the other hand, these new contaminants represent a challenge for current technologies to be adapted to control and remove emerging contaminants and involve innovative, eco-friendly, and sustainable remediation technologies. There is a vast amount of information collected in this review on emerging pollutants, comparing the identification and quantification methods, the technologies applied for their control and remediation, and the policies and regulations necessary for their operation and application. In addition, This review will deal with different aspects of emerging contaminants, their origin, nature, detection, and treatment concerning water and wastewater.
Collapse
Affiliation(s)
- Nadeem A Khan
- Interdisciplinary Research Center for Membranes and Water Security (IRC-MWS), King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja, California, CP 22390, Tijuana, Baja California, México.
| | - Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - Radhika Varshney
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - J R López
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Las Américas S/N, C.P. 80000, Culiacán, Sinaloa, México
| | - P F Méndez
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Las Américas S/N, C.P. 80000, Culiacán, Sinaloa, México
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - Mohammad Amir Khan
- Department of Civil Engineering, Galgotias College of Engineering and Technology, Knowledge Park I, Greater Noida, 201310, Uttar Pradesh, India
| | - Afzal Husain Khan
- Department of Civil Engineering, College of Engineering, Jazan University, P.O. Box. 706, Jazan, 45142, Saudi Arabia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam; Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Waqas Amhad
- Institute of Fundamental and Frontier Sciences, University of Electonic Science and Technology of China, Chengdu, 610054 China
| | - S Z M Shamshuddin
- Chemistry Research Laboratory, HMS Institute of Technology, Tumakuru, 572104, Karnataka, India
| | - Isam H Aljundi
- Interdisciplinary Research Center for Membranes and Water Security (IRC-MWS), King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia; Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
34
|
Subramanian A, Saravanan M, Rajasekhar B, Chakraborty S, Sivagami K, Tamizhdurai P, Mangesh VL, Selvaraj M, Kumar NS, Al-Fatesh AS. Comparative risk assessment studies estimating the hazard posed by long-term consumption of PPCPs in river water. Food Chem Toxicol 2023; 182:114169. [PMID: 37940032 DOI: 10.1016/j.fct.2023.114169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/14/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
This study assesses the risk due to Emerging Contaminants (ECs), present in Indian rivers - Ganga (650 million inhabitants), Yamuna (57 million inhabitants), and Musi (7,500,000 inhabitants), 13 ECs in total, have been used for risk assessment studies. Their concentrations (e.g., Fluconazole: 236950 μg/l, Ciprofloxacin: 31000 μg/l, Caffeine: 21.57 μg/l, etc.) were higher than the threshold concentrations for safe consumption (e.g. Fluconazole allowable level is 3.8 μg/l, and Ciprofloxacin allowable level is 0.51 μg/l). Three different pathways of emerging contaminants (ECs) transfer (oral water ingestion, oral fish ingestion, and dermal water contact) have been considered and the study is carried out in 2 ways: (i) deterministic and (ii) probabilistic approaches (using Monte Carlo iterative methods with 10000 simulations) with the aid of a software - Risk (version 7.5). The risk value, quantified by Hazard Quotient (HQ) is higher than the allowable limit of 1 for several compounds in the three rivers like Fluconazole (HQ = 18276.713), Ciprofloxacin (HQ = 278.675), Voriconazole (HQ = 14.578), Cetirizine (HQ = 1006.917), Moxifloxacin (HQ = 8.076), Caffeine (HQ = 55.150), and Ibuprofen (HQ = 9.503). Results show that Fluconazole and Caffeine pose the maximum risk in the rivers via the "oral pathway" that allows maximum transfer of the ECs present in the river (93% and 82% contribution to total risk). The risk values vary from nearly 25 times to 19000 times the United States Environmental Protection Agency (USEPA) threshold limit of 1 (e.g., Caffeine Infant Risk = 25.990 and Fluconazole Adult Risk = 18276.713). The most susceptible age group, from this study, is "Adults" (19-70 years old), who stand the chance of experiencing the adverse health hazards associated with prolonged over-exposure to the ECs present in the river waters. Musi has the maximum concentration of pollutants and requires immediate remediation measures. Further, both methods indicate that nearly 60-70% of the population in all the three study areas are at risk of developing health hazards associated with over-exposure to ECs regularly, making the areas inhabitable.
Collapse
Affiliation(s)
- Aishwarya Subramanian
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India
| | - Mridula Saravanan
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India
| | - Bokam Rajasekhar
- Research Associate, Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology, Madras, Chennai, India
| | - Samarshi Chakraborty
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India
| | - Krishanasamy Sivagami
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India.
| | - Perumal Tamizhdurai
- Department of Chemistry, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous) (Affiliated to the University of Madras, Chennai), 833, Gokul Bagh, E.V.R. Periyar Road, Arumbakkam, Chennai, 600 106, Tamil Nadu, India.
| | - V L Mangesh
- Department of Marine Engineering, Indian Maritime University, 600119, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia; Research Centre for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha, 61413, Saudi Arabia
| | - Nadavala Siva Kumar
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| | - Ahmed S Al-Fatesh
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| |
Collapse
|
35
|
Van Nguyen T, Bořík A, Sims JL, Kouba A, Žlábek V, Koubová A. Toxicological effects of diclofenac on signal crayfish (Pacifastacus leniusculus) as related to weakly acidic and basic water pH. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106777. [PMID: 38035650 DOI: 10.1016/j.aquatox.2023.106777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
The widespread use and continuous discharge of pharmaceuticals to environmental waters can lead to potential toxicity to aquatic biota. Pharmaceuticals and their metabolites are often complex organic and environmentally persistent compounds that are bioactive at low doses. This study aimed to investigate the effects of diclofenac (DCF) on the antioxidant defence system and neurotoxicity biomarkers in signal crayfish (Pacifastacus leniusculus) under weakly acidic and basic conditions. Crayfish were exposed to 200 µg/L of DCF at pH 6 and 8 for 96 h and subsequently underwent the depuration phase for 96 h. Gills, hepatopancreas, and muscle were sampled after the exposure and depuration phases to assess the toxicological biomarker responses of DCF in crayfish by evaluating lipid peroxidation (LPO) levels, activities of antioxidant enzymes and acetylcholinesterase. After the exposure phase, the hemolymph DCF concentration was detected one order higher at pH 6 than at pH 8. The DCF was subsequently fully eliminated from the hemolymph during the depuration phase. Our results showed that DCF caused alteration in the activities of six of the seven tested biomarkers in at least one crayfish tissue. Although exposure to DCF caused imbalances in the detoxification system on multiple tissue levels, it was regenerated to a balanced state after the depuration phase. Integrated biomarker response (IBRv2) showed that the highest toxicological response to DCF exposure was elicited in the gills, whereas the hepatopancreas was the highest-responding tissue after the depuration phase. Exposure to DCF at pH 6 caused higher toxicological effects than at pH 8; however, crayfish antioxidant mechanisms recovered more quickly at pH 6 than at pH 8 after the depuration phase. Our results showed that water pH influenced the toxicological effects of DCF, an ionisable compound in crayfish.
Collapse
Affiliation(s)
- Tuyen Van Nguyen
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany CZ-389 25, Czech Republic
| | - Adam Bořík
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany CZ-389 25, Czech Republic
| | - Jaylen L Sims
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany CZ-389 25, Czech Republic; Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Antonín Kouba
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany CZ-389 25, Czech Republic
| | - Vladimír Žlábek
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany CZ-389 25, Czech Republic
| | - Anna Koubová
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany CZ-389 25, Czech Republic.
| |
Collapse
|
36
|
Ehrhart AL, Granek EF. PPCPs in coastal wastewater treatment plant effluent and uptake by Pacific oysters (Crassostrea gigas): Findings from a laboratory experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165728. [PMID: 37495135 DOI: 10.1016/j.scitotenv.2023.165728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Municipal wastewater treatment plant (WWTP) effluent is a primary source of pharmaceuticals and personal care products (PPCPs) to the marine environment, as most of these compounds are not fully removed during the treatment process. Continual discharge from WWTPs into coastal areas may act as a stressor by continually exposing organisms to a suite of PPCPs. To quantify organismal exposure to PPCP mixtures, we conducted a 12-week lab experiment that exposed Pacific oysters to effluent from two Oregon coastal WWTPs of different discharge capacities (permitted as <1 million gallons/day and >1 million gallons/day; or < or >3.785 million liters/day) at a dilution of 25 %. Composite samples of weekly collected effluent and a subset of freeze-dried oysters from experiment week 12 were analyzed for PPCPs. Though challenges with food availability inhibited our ability to confidently identify effects of the contaminants on growth and fitness, the experiment allowed us to examine uptake of contaminants from effluent into an estuarine bivalve of commercial importance. We detected 30 PPCPs and three alkylphenols in effluent and 13 PPCPs and four alkylphenols in oyster tissue, indicating high rates of release from secondary treatment and significant potential for marine organism exposure to and uptake of PPCPs in rural coastal areas.
Collapse
Affiliation(s)
- Amy L Ehrhart
- Portland State University, Department of Environmental Science and Management, Science Research and Teaching Center, Rm. 218, 1719 SW 10th Ave, Portland, OR 97201, USA.
| | - Elise F Granek
- Portland State University, Department of Environmental Science and Management, Science Research and Teaching Center, Rm. 218, 1719 SW 10th Ave, Portland, OR 97201, USA.
| |
Collapse
|
37
|
Campos LB, González Núñez AA, Palacio MJ, Ferro JP, Castañé PM, Ferrari L, Ossana NA. Acute and subchronic effects of ibuprofen on the ten spotted live-bearer fish Cnesterodon decemmaculatus (Jenyns, 1842). CHEMOSPHERE 2023; 340:139895. [PMID: 37604345 DOI: 10.1016/j.chemosphere.2023.139895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Ibuprofen (IBP) is an anti-inflammatory drug found in aquatic environments, potentially toxic for the biota. We exposed the test fish C. decemmaculatus to two environmentally relevant concentrations (50 and 100 μg IBP/L) for 4 and 12 d and evaluated the effect on some biomarkers. Micronucleus test, nuclear abnormality test and comet assay indicated cyto-genotoxicity at both concentrations and exposure periods. Oxidative stress and biochemical biomarkers were not affected, excepting muscle AChE activity for 4 d. Muscle metabolic biomarkers showed significant decrease in ETS, lipid and protein content, while carbohydrate content was not affected. The CEA index increased at the lower IBP concentration for 4 and 12 d, possibly due to changes in body energy reserves. A full-factorial GLM performed to assess the effects of IBP and exposure times showed that the metabolic and genotoxicity biomarkers were the most sensitive to IBP toxicity, mainly at 50 μg IBP/L for 4 d.
Collapse
Affiliation(s)
- L B Campos
- Programa de Ecofisiología Aplicada (PRODEA) Instituto de Ecología y Desarrollo Sustentable (INEDES, CONICET-UNLu), Departamento de Cs. Básicas, Universidad Nacional de Luján, B6700ZBA, Luján, Argentina
| | - A A González Núñez
- Programa de Ecofisiología Aplicada (PRODEA) Instituto de Ecología y Desarrollo Sustentable (INEDES, CONICET-UNLu), Departamento de Cs. Básicas, Universidad Nacional de Luján, B6700ZBA, Luján, Argentina
| | - M J Palacio
- Programa de Ecofisiología Aplicada (PRODEA) Instituto de Ecología y Desarrollo Sustentable (INEDES, CONICET-UNLu), Departamento de Cs. Básicas, Universidad Nacional de Luján, B6700ZBA, Luján, Argentina
| | - J P Ferro
- Programa de Ecofisiología Aplicada (PRODEA) Instituto de Ecología y Desarrollo Sustentable (INEDES, CONICET-UNLu), Departamento de Cs. Básicas, Universidad Nacional de Luján, B6700ZBA, Luján, Argentina
| | - P M Castañé
- Programa de Ecofisiología Aplicada (PRODEA) Instituto de Ecología y Desarrollo Sustentable (INEDES, CONICET-UNLu), Departamento de Cs. Básicas, Universidad Nacional de Luján, B6700ZBA, Luján, Argentina
| | - L Ferrari
- Programa de Ecofisiología Aplicada (PRODEA) Instituto de Ecología y Desarrollo Sustentable (INEDES, CONICET-UNLu), Departamento de Cs. Básicas, Universidad Nacional de Luján, B6700ZBA, Luján, Argentina
| | - N A Ossana
- Programa de Ecofisiología Aplicada (PRODEA) Instituto de Ecología y Desarrollo Sustentable (INEDES, CONICET-UNLu), Departamento de Cs. Básicas, Universidad Nacional de Luján, B6700ZBA, Luján, Argentina.
| |
Collapse
|
38
|
Zhang C, Yu Q, Wu G, Fang Y, Shen G, Fan F, Xu K, Ren H, Geng J. Combining large-scale investigation and quantum chemical calculation of pharmaceuticals: Spatiotemporal patterns of occurrence and structural insights into removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 908:168081. [PMID: 39492529 DOI: 10.1016/j.scitotenv.2023.168081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/05/2024]
Abstract
This study investigated the spatiotemporal distribution of 17 pharmaceuticals in wastewater treatment plants (WWTPs) from 17 provinces across China, and explored structural insights into their removal in full-scale wastewater treatment processes by quantum chemistry. Briefly, 10 pharmaceuticals were detected in above 85 % of samples, of which ibuprofen and sulfamethoxazole dominated with concentrations up to the μg/L level. Seasonally, concentrations of psychoactive drugs (PDs) were 1.3-2.6 times higher in summer than in other seasons. Spatially, higher average concentrations were detected in northern WWTPs, and regions with similar economic levels exhibited similar contamination patterns. Pharmaceutical removal in WWTPs ranged from 41.4 % (carbamazepine) to 87.2 % (sulfamethizole), with the secondary treatment segment, especially aerobic treatment units, maintaining an important position. Molecular structural mechanisms behind these removal performances were further revealed. Firstly, we demonstrated a significant association of pharmaceutical overall removal with electrophilicity index (ωcubic) as well as the lowest unoccupied molecular orbital energy (ELUMO). Highly electrophilic pharmaceuticals may persist in WWTPs and their sensitivity to electron exchange reactions accounted for the discrepant removal. In terms of treatment segments, pharmaceuticals with reaction sites masked in molecular structure, such as ibuprofen and venlafaxine, showed a propensity for tertiary treatment suitability. Furthermore, enzymes of aerobic units exhibited excellent docking affinity to pharmaceutical molecules with an average affinity of -7.2 kcal/mol, and hydrogen-bond interactions played an important factor in promoting biodegradation. Our results emphasize the necessity of assessing pharmaceutical contamination on a larger spatiotemporal scale. Moreover, the structural insights into removal phenomena offer scientific molecular-level justification for the design and optimization of pharmaceutical treatment technologies in WWTPs.
Collapse
Affiliation(s)
- Chunqiu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Qingmiao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China
| | - Gang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yushi Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Guochen Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Fan Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
39
|
Hidayati NV, Asia L, Lebarillier S, Widowati I, Sabdono A, Piram A, Hidayat RR, Fitriyah D, Almanar IP, Doumenq P, Syakti AD. Environmental Sample Stability for Pharmaceutical Compound Analysis: Handling and Preservation Recommendations. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2023; 2023:5526429. [PMID: 37901345 PMCID: PMC10602706 DOI: 10.1155/2023/5526429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/09/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023]
Abstract
Efficient and resilient techniques for handling samples are essential for detecting pharmaceutical compounds in the environment. This study explores a method for preserving water samples during transport before quantitative analysis. The study investigates the stability of 17α-ethynylestradiol (EE2), acetaminophen (ACM), oxytetracycline (OTC), sulfamethoxazole (SMX), and trimethoprim (TMP) after preconcentration within solid-phase extraction (SPE) cartridges. Through various experiments involving different holding times and storage temperatures, it was determined that four pharmaceutical compounds remained stable when stored for a month at 4°C and for six months when stored at -18°C in darkness. Storing these compounds in SPE cartridges at -18°C seemed effective in preserving them for extended periods. In addition, ACM, TMP, OTC, EE2, and SMX remained stable for three days at room temperature. These findings establish guidelines for appropriate storage and handling practices of pharmaceutical compounds preconcentrated from aqueous environmental samples using SPE.
Collapse
Affiliation(s)
- Nuning Vita Hidayati
- Fisheries and Marine Sciences Faculty, Jenderal Soedirman University, Kampus Karangwangkal, Jl. Dr. Suparno, Purwokerto 53123, Indonesia
- Center for Maritime Biosciences Studies, Institute for Research and Community Service, Jenderal Soedirman University, Kampus Karangwangkal, Jl. Dr. Suparno, Purwokerto 53123, Indonesia
| | - Laurence Asia
- Aix Marseille University, CNRS, LCE, Marseille, France
| | | | - Ita Widowati
- Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Jl. Prof. Soedharto, SH, Tembalang, Semarang 50275, Indonesia
| | - Agus Sabdono
- Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Jl. Prof. Soedharto, SH, Tembalang, Semarang 50275, Indonesia
| | - Anne Piram
- Aix Marseille University, CNRS, LCE, Marseille, France
| | - Rizqi Rizaldi Hidayat
- Fisheries and Marine Sciences Faculty, Jenderal Soedirman University, Kampus Karangwangkal, Jl. Dr. Suparno, Purwokerto 53123, Indonesia
| | - Dina Fitriyah
- Maritime Technique and Technology Faculty, Raja Ali Haji Maritime University, Jl. Politeknik Senggarang, Tanjungpinang, Riau Islands 29100, Indonesia
| | - Indra Putra Almanar
- Maritime Technique and Technology Faculty, Raja Ali Haji Maritime University, Jl. Politeknik Senggarang, Tanjungpinang, Riau Islands 29100, Indonesia
| | | | - Agung Dhamar Syakti
- Center for Maritime Biosciences Studies, Institute for Research and Community Service, Jenderal Soedirman University, Kampus Karangwangkal, Jl. Dr. Suparno, Purwokerto 53123, Indonesia
- Marine Sciences and Fisheries Faculty, Raja Ali Haji Maritime University, Jl. Politeknik Senggarang, Tanjungpinang, Riau Islands 29100, Indonesia
| |
Collapse
|
40
|
Liu J, Ge S, Shao P, Wang J, Liu Y, Wei W, He C, Zhang L. Occurrence and removal rate of typical pharmaceuticals and personal care products (PPCPs) in an urban wastewater treatment plant in Beijing, China. CHEMOSPHERE 2023; 339:139644. [PMID: 37495050 DOI: 10.1016/j.chemosphere.2023.139644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/26/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
The occurrence and removal rate of 52 typical pharmaceuticals and personal care products (PPCPs) were investigated in a wastewater treatment plant in Beijing, China. Thirty-three PPCPs were found in the influent, with caffeine (CF, 11387.0 ng L-1) being the most abundant, followed by N,N-diethyl-meta-toluamide (DEET, 9568.4 ng L-1), metoprolol (MTP, 930.2 ng L-1), and diclofenac (DF, 710.3 ng L-1). After treatment processes, the cumulative concentration of PPCPs decreased from 2.54 × 104 ng L-1 to 1.44 × 103 ng L-1, with the overall removal efficiency (RE) of 94.3%. Different treatment processes showed varying contributions in removing PPCPs. PPCPs were efficiently removed in sedimentation, anoxic, and ultraviolet units. For individual compounds, a great variation in RE (52.1-100%) was observed. Twenty-two PPCPs were removed by more than 90%. The highly detected PPCPs in the influent were almost completely removed. Aerated grit chamber removed nearly 50% of fluoroquinolone (FQs) and more than 60% of sulfonamides. Most PPCPs showed low or negative removals during anaerobic treatment, except for CF which was eliminated by 64.9%. Anoxic treatment demonstrated positive removals for most PPCPs, with the exceptions of DF, MTP, bisoprolol, carbamazepine (CBZ), and sibutramine. DEET and bezafibrate were efficiently removed during the secondary sedimentation. Denitrification biological filter and membrane filtration also showed positive effect on most PPCPs removals. The remaining compounds were oxidized by 16-100% in ozonation. DF, sulpiride, ofloxacin (OFL), trimethoprim, and phenolphthalein were not amenable to ultraviolet. After the treatment, the residue OFL, CBZ, and CF in receiving water were identified to pose high risk to aquatic organisms. Considering the complex mixtures emitted into the environment, therapeutic groups psychotropics, stimulant, and FQs were classified as high risk. These findings provide valuable insights into adopting appropriate measures for more efficient PPCPs removals, and emphasize the importance of continued monitoring specific PPCPs and mixtures thereof to safeguard the ecosystem.
Collapse
Affiliation(s)
- Jia Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing Center for Physical & Chemical Analysis, Beijing, 100089, People's Republic of China.
| | - Simin Ge
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing Center for Physical & Chemical Analysis, Beijing, 100089, People's Republic of China
| | - Peng Shao
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing Center for Physical & Chemical Analysis, Beijing, 100089, People's Republic of China.
| | - Jianfeng Wang
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing Center for Physical & Chemical Analysis, Beijing, 100089, People's Republic of China
| | - Yanju Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing Center for Physical & Chemical Analysis, Beijing, 100089, People's Republic of China
| | - Wei Wei
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing Center for Physical & Chemical Analysis, Beijing, 100089, People's Republic of China
| | - Can He
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, People's Republic of China
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
| |
Collapse
|
41
|
Ivantsova E, Martyniuk CJ. A synthesis on the sub-lethal toxicity of atenolol, a beta-blocker, in teleost fish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104236. [PMID: 37481051 DOI: 10.1016/j.etap.2023.104236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Blood pressure medications like atenolol are detected in aquatic ecosystems. The objectives here were to (1) map the global presence of atenolol in surface water and sewage; (2) present current knowledge regarding removal efficiency and degradation of atenolol; (3) identify biological endpoints sensitive to exposure; (4) reveal molecular biomarkers that may be useful for exposure studies in fish; (5) determine whether toxicology studies are within environmental relevance. In fish, atenolol exposure affects endocrine and immune systems, metabolism, and epigenetics. Fewer than half of all studies measuring biological responses use environmentally-relevant concentrations. Heart rate appeared most sensitive to atenolol exposure relative to other endpoints. Data are lacking for behavioral responses to atenolol. Molecular biomarkers for atenolol may include those associated with acute kidney injury, cholestasis, and hypertriglyceridemia. Head kidney and liver may therefore be useful for detecting atenolol-induced effects. This review synthesizes knowledge regarding atenolol-induced toxicity in fish.
Collapse
Affiliation(s)
- Emma Ivantsova
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA; UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, USA.
| |
Collapse
|
42
|
Tyumina E, Subbotina M, Polygalov M, Tyan S, Ivshina I. Ketoprofen as an emerging contaminant: occurrence, ecotoxicity and (bio)removal. Front Microbiol 2023; 14:1200108. [PMID: 37608946 PMCID: PMC10441242 DOI: 10.3389/fmicb.2023.1200108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
Ketoprofen, a bicyclic non-steroidal anti-inflammatory drug commonly used in human and veterinary medicine, has recently been cited as an environmental contaminant that raises concerns for ecological well-being. It poses a growing threat due to its racemic mixture, enantiomers, and transformation products, which have ecotoxicological effects on various organisms, including invertebrates, vertebrates, plants, and microorganisms. Furthermore, ketoprofen is bioaccumulated and biomagnified throughout the food chain, threatening the ecosystem function. Surprisingly, despite these concerns, ketoprofen is not currently considered a priority substance. While targeted eco-pharmacovigilance for ketoprofen has been proposed, data on ketoprofen as a pharmaceutical contaminant are limited and incomplete. This review aims to provide a comprehensive summary of the most recent findings (from 2017 to March 2023) regarding the global distribution of ketoprofen in the environment, its ecotoxicity towards aquatic animals and plants, and available removal methods. Special emphasis is placed on understanding how ketoprofen affects microorganisms that play a pivotal role in Earth's ecosystems. The review broadly covers various approaches to ketoprofen biodegradation, including whole-cell fungal and bacterial systems as well as enzyme biocatalysts. Additionally, it explores the potential of adsorption by algae and phytoremediation for removing ketoprofen. This review will be of interest to a wide range of readers, including ecologists, microbiologists, policymakers, and those concerned about pharmaceutical pollution.
Collapse
Affiliation(s)
- Elena Tyumina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Maria Subbotina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Maxim Polygalov
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Semyon Tyan
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Irina Ivshina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| |
Collapse
|
43
|
Wang L, Xu Y, Qin T, Wu M, Chen Z, Zhang Y, Liu W, Xie X. Global trends in the research and development of medical/pharmaceutical wastewater treatment over the half-century. CHEMOSPHERE 2023; 331:138775. [PMID: 37100249 PMCID: PMC10123381 DOI: 10.1016/j.chemosphere.2023.138775] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/07/2023]
Abstract
The COVID-19 pandemic has severely impacted public health and the worldwide economy. The overstretched operation of health systems around the world is accompanied by potential and ongoing environmental threats. At present, comprehensive scientific assessments of research on temporal changes in medical/pharmaceutical wastewater (MPWW), as well as estimations of researcher networks and scientific productivity are lacking. Therefore, we conducted a thorough literature study, using bibliometrics to reproduce research on medical wastewater over nearly half a century. Our primary goal is systematically to map the evolution of keyword clusters over time, and to obtain the structure and credibility of clusters. Our secondary objective was to measure research network performance (country, institution, and author) using CiteSpace and VOSviewer. We extracted 2306 papers published between 1981 and 2022. The co-cited reference network identified 16 clusters with well-structured networks (Q = 0.7716, S = 0.896). The main trends were as follows: 1) Early MPWW research prioritized sources of wastewater, and this cluster was considered to be the mainstream research frontier and direction, representing an important source and priority research area. 2) Mid-term research focused on characteristic contaminants and detection technologies. Particularly during 2000-2010, a period of rapid developments in global medical systems, pharmaceutical compounds (PhCs) in MPWW were recognized as a major threat to human health and the environment. 3) Recent research has focused on novel degradation technologies for PhC-containing MPWW, with high scores for research on biological methods. Wastewater-based epidemiology has emerged as being consistent with or predictive of the number of confirmed COVID-19 cases. Therefore, the application of MPWW in COVID-19 tracing will be of great interest to environmentalists. These results could guide the future direction of funding agencies and research groups.
Collapse
Affiliation(s)
- Ling Wang
- Department of Nursing, The Second Hospital of Nanjing, Nursing, Nanjing Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, 210003, China
| | - Yixia Xu
- Department of Nursing, The Second Hospital of Nanjing, Nursing, Nanjing Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, 210003, China
| | - Tian Qin
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang, 330031, China
| | - Mengting Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang, 330031, China
| | - Zhiqin Chen
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang, 330031, China
| | - Yalan Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang, 330031, China
| | - Wei Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang, 330031, China.
| | - Xianchuan Xie
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
44
|
Alharbi OA, Jarvis E, Galani A, Thomaidis NS, Nika MC, Chapman DV. Assessment of selected pharmaceuticals in Riyadh wastewater treatment plants, Saudi Arabia: Mass loadings, seasonal variations, removal efficiency and environmental risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163284. [PMID: 37031940 DOI: 10.1016/j.scitotenv.2023.163284] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/01/2023]
Abstract
Despite increasing interest in pharmaceutical emissions worldwide, studies of environmental contamination with pharmaceuticals arising from wastewater discharges in Saudi Arabia are scarce. Therefore, this study examined occurrence, mass loads and removal efficiency for 15 pharmaceuticals and one metabolite (oxypurinol) from different therapeutic classes in three wastewater treatment plants (WWTPs), in Riyadh city in Saudi Arabia. A total of 144 samples were collected from the influents and effluents between March 2018 and July 2019 and analyzed using Solid Phase Extraction followed by triple quadrupole LC-MS/MS. The average concentrations in the influents and effluents were generally higher than their corresponding concentrations found either in previous Saudi Arabian or global studies. The four most dominant compounds in the influent were acetaminophen, ciprofloxacin, caffeine, and diclofenac, with caffeine and acetaminophen having the highest concentrations ranging between 943 and 2282 μg/L. Metformin and ciprofloxacin were the most frequently detected compounds in the effluents at concentrations as high as 33.2 μg/L. Ciprofloxacin had the highest mass load in the effluents of all three WWTPs, ranging between 0.20 and 20.7 mg/day/1000 inhabitants for different WWTPs. The overall average removal efficiency was estimated high (≥80), with no significant different (p > 0.05) between the treatment technology applied. Acetaminophen and caffeine were almost completely eliminated in all three WWTPs. The samples collected in the cold season generally had higher levels of detected compounds than those from the warm seasons, particularly for NSAID and antibiotic compounds. The estimated environmental risk from pharmaceutical compounds in the studied effluents was mostly low, except for antibiotic compounds. Thus, antibiotics should be considered for future monitoring programmes of the aquatic environment in Saudi Arabia.
Collapse
Affiliation(s)
- Obaid A Alharbi
- Water Management & Treatment Technologies Institute, Sustainability and Environment Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia; School of Biological, Earth and Environmental Sciences, University College Cork, T23 N73K, Ireland.
| | - Edward Jarvis
- School of Biological, Earth and Environmental Sciences, University College Cork, T23 N73K, Ireland
| | - Aikaterini Galani
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Maria-Christina Nika
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Deborah V Chapman
- School of Biological, Earth and Environmental Sciences, University College Cork, T23 N73K, Ireland; Environmental Research Institute, University College Cork, T23 XE10, Ireland
| |
Collapse
|
45
|
Castro-Campoy D, Vargas-Hernández D, Sánchez-Cruz M, Hernández-Huesca R. Photodegradation of acetaminophen and ibuprofen in iron supported in SBA-15 under UV irradiation. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
46
|
Garduño-Jiménez AL, Durán-Álvarez JC, Ortori CA, Abdelrazig S, Barrett DA, Gomes RL. Delivering on sustainable development goals in wastewater reuse for agriculture: Initial prioritization of emerging pollutants in the Tula Valley, Mexico. WATER RESEARCH 2023; 238:119903. [PMID: 37121200 DOI: 10.1016/j.watres.2023.119903] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
Wastewater reuse for agricultural irrigation is a widespread beneficial practice, in line with the sustainable development goals. However, contaminants of emerging concern (CECs) present in wastewater, such as pharmaceuticals, pose an environmental risk. The Tula Valley in Mexico is one of the world's largest agricultural areas reusing wastewater for agriculture. However, no untargeted CEC monitoring has been undertaken there, limiting the information available to prioritise local environmental risk assessment. Furthermore, CEC environmental presence in the Global South remains understudied, compared to the Global North. There is a risk that current research efforts focus on CECs predominantly found in the Global North, leading to strategies that may not be appropriate for the Global South where the pollution profile may be different. To address these knowledge gaps, a sampling campaign at five key sites in the Tula Valley was undertaken and samples analysed using multi-residue targeted and untargeted liquid chromatography mass spectrometry methods. Using the targeted data, ten CECs were found to be of environmental risk for at least one sampling site: 4‑tert-octylphenol, acetaminophen, bezafibrate, diclofenac, erythromycin, levonorgestrel, simvastatin, sulfamethoxazole, trimethoprim and tramadol as well as total estrogenicity (combination of three steroid hormones). Six of these have not been previously quantified in the Tula Valley. Over one hundred pollutants never previously measured in the area were identified through untargeted analysis supported by library spectrum match. Examples include diclofenac and carbamazepine metabolites and area-specific pollutants such as the herbicide fomesafen. This research contributes to characterising the presence of CECs in the Global South, as well as providing site-specific data for the Tula Valley.
Collapse
Affiliation(s)
- Andrea-Lorena Garduño-Jiménez
- Food Water Waste Research Group. Faculty of Engineering, University of Nottingham, University Park, Nottinghamshire, NG7 2RD, United Kingdom
| | - Juan-Carlos Durán-Álvarez
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Coyoacan, Ciudad de México 04510, Mexico
| | - Catharine A Ortori
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, University Park, Nottinghamshire, NG7 2RD, United Kingdom
| | - Salah Abdelrazig
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, University Park, Nottinghamshire, NG7 2RD, United Kingdom
| | - David A Barrett
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, University Park, Nottinghamshire, NG7 2RD, United Kingdom
| | - Rachel L Gomes
- Food Water Waste Research Group. Faculty of Engineering, University of Nottingham, University Park, Nottinghamshire, NG7 2RD, United Kingdom.
| |
Collapse
|
47
|
Fabregat-Safont D, Botero-Coy AM, Nieto-Juárez JI, Torres-Palma RA, Hernández F. Searching for pharmaceutically active products and metabolites in environmental waters of Peru by HRMS-based screening: Proposal for future monitoring and environmental risk assessment. CHEMOSPHERE 2023; 337:139375. [PMID: 37391080 DOI: 10.1016/j.chemosphere.2023.139375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
The presence of pharmaceutical active products (PhACs) in the aquatic environment is a matter of current concern, and there is an increasing trend to include these compounds in water quality monitoring programs and environmental risk assessments. Several studies have reported the presence of PhACs in environmental waters worldwide, but only a few studies have focused on Latin American countries. Thus, available information on the occurrence of parent pharmaceuticals, especially their metabolites, is very scarce. Peru is one of the less monitored countries in terms of contaminants of emerging concern (CECs) in waters, and only one study has been found, which was focused on the quantification of selected PhACs in urban wastewater and surface water. The aim of this work is to complement the previous data reported on PhACs in the aquatic environment by application of a wide-scope high-resolution (HRMS)-based screening, making use of target and suspect approaches. In the present work, 30 pharmaceuticals, drugs or other compounds (sweeteners, UV filters, etc.) and 21 metabolites have been identified, with antibiotics (and metabolites) being the most prevalent compounds. The use of liquid chromatography (LC) coupled to ion mobility-HRMS allowed the tentative identification of parent compounds and metabolites, for which the analytical reference standard was not available, with a high level of confidence in their identification. Based on the results obtained, a strategy for the monitoring of PhACs and relevant metabolites in environmental waters from Peru and for subsequent risk assessment is proposed. Our data will also help to focus future studies to evaluate the removal efficiency of wastewater treatment plants and the impact of treated water in receiving water bodies.
Collapse
Affiliation(s)
- David Fabregat-Safont
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain; Applied Metabolomics Research Laboratory, IMIM-Hospital del Mar Medical Research Institute, 88 Doctor Aiguader, 08003, Barcelona, Spain.
| | - Ana M Botero-Coy
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain
| | - Jessica I Nieto-Juárez
- Research Group in Environmental Quality and Bioprocesses (GICAB), Faculty of Chemical Engineering and Textile, Universidad Nacional de Ingeniería UNI, Av. Túpac Amaru N° 210, Rímac, Lima, Peru
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquía UdeA, Calle 70 N° 52-21, Medellín, Colombia
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| |
Collapse
|
48
|
Aydın S, Ulvi A, Bedük F, Aydın ME. Efficient Removal of Analgesic and Anti-Inflammatory Drugs from Sewage Treatment Plant Effluents Using Magnetite Nanoparticles Synthesized Red Mud. WATER, AIR, AND SOIL POLLUTION 2023; 234:384. [PMID: 37323133 PMCID: PMC10249540 DOI: 10.1007/s11270-023-06404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Due to the COVID-19 epidemic, the consumption of pharmaceuticals, especially paracetamol, has sharply increased on a global scale. The increasing concentration of analgesic and anti-inflammatory drugs (AAIDs) in the aquatic medium is a global problem for human and aquatic life. Therefore, simple and effective treatment options for removing AAIDs from wastewater after the COVID-19 pandemic are needed. The removal of AAIDs (acetaminophen, acetylsalicylic acid, codeine, diclofenac, ibuprofen, indomethacin, ketoprofen, mefenamic acid, naproxen, and phenylbutazone) from sewage treatment plant (STP) effluents by the prepared magnetite nanoparticles synthesized from red mud (mNPs-RM) is presented for the first time in this study. The removal efficiencies of AAIDs onto mNPs-RM were determined to be between 90% (diclofenac) and 100% (naproxen, codeine, and indomethacin). Acetaminophen (paracetamol) was used as a model compound in kinetic and isotherm model studies. The adsorption of acetaminophen was matched well with the pseudo second order kinetic model. Film diffusion governed its rate mechanism. The Freundlich isotherm model preferably fitted the adsorption data with an adsorption capacity of 370 mg/g at 120 min contact time at pH 7.0 at 25 °C. Furthermore, the regenerated mNPs-RM were used four times without affecting the adsorption capacity and the magnetic separability. mNPs-RM can be used as a simple, inexpensive and effective adsorbent for removing AAIDs from STP effluents. Also, low cost adsorbent obtained from industrial waste could be employed to replace the high cost activated carbons for the adsorption of other micro pollutants in STP effluents. Supplementary Information The online version contains supplementary material available at 10.1007/s11270-023-06404-7.
Collapse
Affiliation(s)
- Senar Aydın
- Department of Environmental Engineering, Necmettin Erbakan University, Konya, Türkiye
| | - Arzu Ulvi
- Department of Environmental Engineering, Necmettin Erbakan University, Konya, Türkiye
| | - Fatma Bedük
- Department of Environmental Engineering, Necmettin Erbakan University, Konya, Türkiye
| | - Mehmet Emin Aydın
- Department of Civil Engineering, Necmettin Erbakan University, Konya, Türkiye
| |
Collapse
|
49
|
Herrera-Domínguez M, S Lambert A, Morales-Luna G, Pisano E, Aguilar-Hernandez I, Mahlknecht J, Cheng Q, Ornelas-Soto N. Development of a surface plasmon resonance based immunosensor for diclofenac quantification in water. CHEMOSPHERE 2023:139156. [PMID: 37290514 DOI: 10.1016/j.chemosphere.2023.139156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
A Surface Plasmon Resonance (SPR) biosensor based on an inhibition immunoassay was developed for the detection of diclofenac (DCF) in aqueous solution. Due to the small size of DCF, an hapten-protein conjugate was produced by coupling DCF to bovine serum albumin (BSA). DCF-BSA conjugate formation was confirmed via MALDI-TOF mass spectrometry. The resulting conjugate was immobilized onto the surface of a sensor fabricated via e-beam deposition of a 2 nm chromium adhesion layer followed by a 50 nm gold layer onto precleaned BK7 glass slides. Immobilization onto the nano thin gold surface was accomplished by covalent amide linkage through a self-assembled monolayer. Samples were composed of a mixture of antibody at a fixed concentration and DCF at different known concentrations in deionized water, causing the inhibition of anti-DCF on the sensor. The DCF-BSA was obtained with a ratio of 3 DCF molecules per BSA. A calibration curve was performed using concentrations between 2 and 32 μg L-1. The curve was fitted using the Boltzmann equation, reaching a limit of detection (LOD) of 3.15 μg L-1 and limit of quantification (LOQ) of 10.52 μg L-1, the inter-day precision was calculated and an RSD value of 1.96% was obtained; and analysis time of 10 min. The developed biosensor is a preliminary approach to the detection of DCF in environmental water samples, and the first SPR biosensor developed for DCF detection using a hapten-protein conjugate.
Collapse
Affiliation(s)
- Marcela Herrera-Domínguez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, NL, 64849, Mexico
| | - Alexander S Lambert
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Gesuri Morales-Luna
- Departamento de Física y Matemáticas, Universidad Iberoamericana, Ciudad de Mexico, Prolongación Paseo de La Reforma 880, Ciudad de Mexico, 01219, Mexico
| | - Eduardo Pisano
- CONACYT - Centro de Investigación en Materiales Avanzados, S.C., Monterrey, Parque PIIT, 66628, Apodaca, Nuevo León, Mexico
| | - Iris Aguilar-Hernandez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, NL, 64849, Mexico
| | - Jürgen Mahlknecht
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, NL, 64849, Mexico
| | - Quan Cheng
- Department of Chemistry, University of California, Riverside, CA, 92521, USA.
| | - Nancy Ornelas-Soto
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, NL, 64849, Mexico.
| |
Collapse
|
50
|
Warsi Khan H, Kaif Khan M, Moniruzzaman M, Al Mesfer MK, Danish M, Irshad K, Yusuf M, Kamyab H, Chelliapan S. Evaluating ionic liquids for its potential as eco-friendly solvents for naproxen removal from water sources using COSMO-RS: Computational and experimental validation. ENVIRONMENTAL RESEARCH 2023; 231:116058. [PMID: 37178749 DOI: 10.1016/j.envres.2023.116058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
An emerging contaminant of concern in aqueous streams is naproxen. Due to its poor solubility, non-biodegradability, and pharmaceutically active nature, the separation is challenging. Conventional solvents employed for naproxen are toxic and harmful. Ionic liquids (ILs) have attracted great attention as greener solubilizing and separating agent for various pharmaceuticals. ILs have found extensive usage as solvents in nanotechnological processes involving enzymatic reactions and whole cells. The employment of ILs can enhance the effectiveness and productivity of such bioprocesses. To avoid cumbersome experimental screening, in this study, conductor like screening model for real solvents (COSMO-RS) was used to screen ILs. Thirty anions and eight cations from various families were chosen. Activity coefficient at infinite dilution, capacity, selectivity, performance index, molecular interactions using σ-profiles and interaction energies were used to make predictions about solubility. According to the findings, quaternary ammonium cations, highly electronegative, and food-grade anions will form excellent ionic liquid combinations for solubilizing naproxen and hence will be better separating agents. This research will contribute easy designing of ionic liquid-based separation technologies for naproxen. In different separation technologies, ionic liquids can be employed as extractants, carriers, adsorbents, and absorbents.
Collapse
Affiliation(s)
- Huma Warsi Khan
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia.
| | | | - Muhammad Moniruzzaman
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia; Center of Research in Ionic Liquids, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
| | - Mohammed K Al Mesfer
- Chemical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Mohd Danish
- Chemical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Kashif Irshad
- Interdisciplinary Research Centre for Renewable Energy and Power Systems (IRC-REPS) Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohammad Yusuf
- Institute of Hydrocarbon Recovery, Department of Petroleum Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia.
| | - Hesam Kamyab
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Shreshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology & Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| |
Collapse
|