1
|
Annamalai S, Muthukumar V, Alkhulaifi MM. A converged approach of electro-biological process for decolorization and degradation of toxic synthetic dyes. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:14. [PMID: 36271209 DOI: 10.1007/s10661-022-10583-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/20/2021] [Indexed: 06/16/2023]
Abstract
Being one of the leading industries worldwide, the textile industry has been consuming large quantities of groundwater and discharging huge volumes of dye-contaminated effluents into our aquatic environment. Augmentation of water sources via reuse of treated effluents is therefore highly necessary. In the present study, the decolorization and degradation of synthetic toxic dye from an aqueous solution were investigated through an electro-biological route. Initially, decolorization of synthetic dye solutions (100, 500, and 1000 mg L-1) was carried out by electrooxidation process using mixed metal oxide and titanium as anode and cathode, respectively. The electrooxidation solutions were further treated using bacteria (Pseudomonas aeruginosa) that were isolated from petroleum-transporting pipelines. UV-Vis, TOC, chemical oxygen demand, and NMR analyses revealed that the biodegradation process with electrooxidation enhanced the mineralization of the synthetic dye solutions. An optimum NaCl electrolyte concentration of 3 g L-1 was sufficient to produce reactive species viz., free chlorine and hypochlorite, which are responsible for the Reactive Blue 19 (RB-19) decolorization. Among the three RB-19 concentrations, the highest removal percentage was noticed at 100 mg L-1 (100%) with energy consumption and energy costs equal to 5.44 kWh m-3 and 0.65 USD m-3, respectively.
Collapse
Affiliation(s)
- Sivasankar Annamalai
- CSIR-Central Electrochemical Research Institute, Karaikudi, 630 003, India.
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Venkatesan Muthukumar
- Department of Chemistry, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Manal M Alkhulaifi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
2
|
Modeling-Guided Amendments Lead to Enhanced Biodegradation in Soil. mSystems 2022; 7:e0016922. [PMID: 35913191 PMCID: PMC9426591 DOI: 10.1128/msystems.00169-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extensive use of agrochemicals is emerging as a serious environmental issue coming at the cost of the pollution of soil and water resources. Bioremediation techniques such as biostimulation are promising strategies used to remove pollutants from agricultural soils by supporting the indigenous microbial degraders. Though considered cost-effective and eco-friendly, the success rate of these strategies typically varies, and consequently, they are rarely integrated into commercial agricultural practices. In the current study, we applied metabolic-based community-modeling approaches for promoting realistic in terra solutions by simulation-based prioritization of alternative supplements as potential biostimulants, considering a collection of indigenous bacteria. Efficacy of biostimulants as enhancers of the indigenous degrader Paenarthrobacter was ranked through simulation and validated in pot experiments. A two-dimensional simulation matrix predicting the effect of different biostimulants on additional potential indigenous degraders (Pseudomonas, Clostridium, and Geobacter) was crossed with experimental observations. The overall ability of the models to predict the compounds that act as taxa-selective stimulants indicates that computational algorithms can guide the manipulation of the soil microbiome in situ and provides an additional step toward the educated design of biostimulation strategies. IMPORTANCE Providing the food requirements of a growing population comes at the cost of intensive use of agrochemicals, including pesticides. Native microbial soil communities are considered key players in the degradation of such exogenous substances. Manipulating microbial activity toward an optimized outcome in efficient biodegradation processes conveys a promise of maintaining intensive yet sustainable agriculture. Efficient strategies for harnessing the native microbiome require the development of approaches for processing big genomic data. Here, we pursued metabolic modeling for promoting realistic in terra solutions by simulation-based prioritization of alternative supplements as potential biostimulants, considering a collection of indigenous bacteria. Our genomic-based predictions point at strategies for optimizing biodegradation by the native community. Developing a systematic, data-guided understanding of metabolite-driven targeted enhancement of selected microorganisms lays the foundation for the design of ecologically sound methods for optimizing microbiome functioning.
Collapse
|
3
|
Recent Developments in Advanced Oxidation Processes for Organics-Polluted Soil Reclamation. Catalysts 2022. [DOI: 10.3390/catal12010064] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Soil pollution has become a substantial environmental problem which is amplified by overpopulation in different regions. In this review, the state of the art regarding the use of Advanced Oxidation Processes (AOPs) for soil remediation is presented. This review aims to provide an outline of recent technologies developed for the decontamination of polluted soils by using AOPs. Depending on the decontamination process, these techniques have been presented in three categories: the Fenton process, sulfate radicals process, and coupled processes. The review presents the achievements of, and includes some reflections on, the status of these emerging technologies, the mechanisms, and influential factors. At the present, more investigation and development actions are still desirable to bring them to real full-scale implementation.
Collapse
|
4
|
Mao W, Wang X, Hu X, Lin Z, Su Z. Activation of Peroxymonosulfate by Co-Metal–Organic Frameworks as Catalysts for Degradation of Organic Pollutants. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Wenjia Mao
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun 130022, China
| | - Xinting Wang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun 130022, China
| | - Xiaoli Hu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun 130022, China
| | - Zihan Lin
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Zhongmin Su
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun 130022, China
- Joint Sino-Russian Laboratory of Optical Materials and Chemistry, Changchun 130022, China
| |
Collapse
|
5
|
Ayyanar A, Thatikonda S. Enhanced electrokinetic remediation (EKR) for heavy metal-contaminated sediments focusing on treatment of generated effluents from EKR and recovery of EDTA. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:136-147. [PMID: 32495995 DOI: 10.1002/wer.1369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/17/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Electrokinetic remediation (EKR) is one of the most successful remediation techniques to treat the sediments contaminated with heavy metals. EDTA is the most widely used enhancing agent to improve the transport process in EKR. But often the generated effluents from EKR contains a high concentration of heavy metals, which cannot be disposed of without treatment. The major objective of this study includes the estimation of optimal concentration of chelating agent EDTA, followed by treatment of contaminated sediments by EKR technique for heavy metal removal. The effluents generated from EKR were further studied for recovery and reuse of EDTA and for safe discharge of heavy metals. The optimum concentration of EDTA was found as 0.05 M with a solid-to-liquid ratio as 1:10. When fresh EDTA was used as enhancing agent the average removal of heavy metals obtained as 74.8% with EKR, whereas the application of recovered EDTA in treatment process in first, second, and third cycle showed the slight reduction of heavy metals of about 71.1%, 63.5%, and 52.1%, respectively. The heavy metal removal by recovered EDTA was effective in reduction of heavy metals up to three cycles of re-use while reducing the ecological risk in sediments. PRACTITIONER POINTS: Treatment of contaminated sediments with heavy metals achieved by electrokinetic remediation (EKR) technique enhanced with EDTA. The recovery of EDTA and heavy metal reduction from the generated effluents during EKR treatment were performed by the addition of FeCl3 and Na2 PO4, and optimized concentration was evaluated. This study found that the use of recovered EDTA in EKR treatment has effectively reduced the risk associated with heavy metals.
Collapse
Affiliation(s)
- Arulpoomalai Ayyanar
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Shashidhar Thatikonda
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| |
Collapse
|
6
|
Wang J, Shih Y, Wang PY, Yu YH, Su JF, Huang CP. Hazardous waste treatment technologies. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1177-1198. [PMID: 31433896 DOI: 10.1002/wer.1213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 07/29/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
This is a review of the literature published in 2018 on topics related to hazardous waste management in water, soils, sediments, and air. The review covers treatment technologies applying physical, chemical, and biological principles for contaminated water, soils, sediments, and air. PRACTITIONER POINTS: The management of waters, wastewaters, and soils contaminated by various hazardous chemicals including inorganic (e.g., oxyanions, salts, and heavy metals), organic (e.g., halogenated, pharmaceuticals and personal care products, pesticides, and persistent organic chemicals) was reviewed according to the technology applied, namely, physical, chemical and biological methods. Physical methods for the management of hazardous wastes including adsorption, coagulation (conventional and electrochemical), sand filtration, electrosorption (or CDI), electrodialysis, electrokinetics, membrane (RO, NF, MF), photocatalysis, photoelectrochemical oxidation, sonochemical, non-thermal plasma, supercritical fluid, electrochemical oxidation, and electrochemical reduction processes were reviewed. Chemical methods including ozone-based, hydrogen peroxide-based, persulfate-based, Fenton and Fenton-like, and potassium permanganate processes for the management of hazardous were reviewed. Biological methods such as aerobic, anaerobic, bioreactor, constructed wetlands, soil bioremediation and biofilter processes for the management of hazardous wastes, in mode of consortium and pure culture were reviewed.
Collapse
Affiliation(s)
- Jianmin Wang
- Department of Civil, Architectural, and Environmental Engineering, Missouri University of Science & Technology, Rolla, Missouri
| | - Yujen Shih
- Graduate Institute of Environmental Engineering, National Sun yat-sen University, Kaohsiung, Taiwan
| | - Po Yen Wang
- Department of Civil Engineering, Weidner University, Chester, Pennsylvania
| | - Yu Han Yu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware
| | - Jenn Fang Su
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware
| |
Collapse
|
7
|
Chang JH, Wang YL, Shen SY. A specific configuration of circulation-enhanced electrokinetics (CEEK) to remediate real-site Cd and Pb contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:408-413. [PMID: 30055430 DOI: 10.1016/j.jhazmat.2018.07.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 06/08/2023]
Abstract
This study applied circulation-enhanced electrokinetics (CEEK) technique to remove Cd and Pb from the real-site contaminated soils. Soil samples were collected in certain polluted agricultural land in Yunlin, Taiwan. The CEEK system mainly composed of a reactor fulfilling soil samples, one pair of electrodes, a circulation system of working solution and DC power supply. Results demonstrate that the real-site Cd and Pb contaminated soils can be effectively treated by the CEEK technique; the removal efficiency of Cd and Pb can reach 91% and 85%, respectively. The CEEK system can maintain relatively neutral pH of treated soils. The bonding patterns of heavy metals and H+ produced on the anode play the critical roles for removal efficiency. The recovery efficiency of Cd and Pb in the CEEK system can reach 85% and 70%; the species of recovered heavy metals is Cd(OH)2 and Pb5O8, respectively.
Collapse
Affiliation(s)
- Jih-Hsing Chang
- Department of Environmental Engineering and Management, Chaoyang University and Technology, 168, Jifong E. Rd., Wufong District, Taichung, 41349, Taiwan.
| | - Yong-Li Wang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Shan-Yi Shen
- Department of Environmental Engineering and Management, Chaoyang University and Technology, 168, Jifong E. Rd., Wufong District, Taichung, 41349, Taiwan.
| |
Collapse
|
8
|
Chen Y, Zuo Z, Dai X, Xiao P, Fang X, Wang X, Wang W, Ding CF. Gas-phase complexation of α-/β-cyclodextrin with amino acids studied by ion mobility-mass spectrometry and molecular dynamics simulations. Talanta 2018; 186:1-7. [DOI: 10.1016/j.talanta.2018.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/28/2018] [Accepted: 04/01/2018] [Indexed: 01/11/2023]
|
9
|
Ramadan BS, Sari GL, Rosmalina RT, Effendi AJ. An overview of electrokinetic soil flushing and its effect on bioremediation of hydrocarbon contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 218:309-321. [PMID: 29689534 DOI: 10.1016/j.jenvman.2018.04.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 04/08/2018] [Accepted: 04/14/2018] [Indexed: 06/08/2023]
Abstract
Combination of electrokinetic soil flushing and bioremediation (EKSF-Bio) technology has attracted many researchers attention in the last few decades. Electrokinetic is used to increase biodegradation rate of microorganisms in soil pores. Therefore, it is necessary to use solubilizing agents such as surfactants that can improve biodegradation process. This paper describes the basic understanding and recent development associated with electrokinetic soil flushing, bioremediation, and its combination as innovative hybrid solution for treating hydrocarbon contaminated soil. Surfactant has been widely used in many studies and practical applications in remediation of hydrocarbon contaminant, but specific review about those combination technology cannot be found. Surfactants and other flushing/solubilizing agents have significant effects to increase hydrocarbon remediation efficiency. Thus, this paper is expected to provide clear information about fundamental interaction between electrokinetic, flushing agents and bioremediation, principal factors, and an inspiration for ongoing and future research benefit.
Collapse
Affiliation(s)
- Bimastyaji Surya Ramadan
- Faculty of Environmental Engineering, Institut Teknologi Yogyakarta, Yogyakarta, 55171, Indonesia.
| | - Gina Lova Sari
- Faculty of Engineering, Universitas Singaperbangsa, Karawang, 41361, Indonesia.
| | | | - Agus Jatnika Effendi
- Department of Environmental Engineering, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia.
| |
Collapse
|
10
|
Wang N, Ma W, Ren Z, Zhang L, Qiang R, Lin KYA, Xu P, Du Y, Han X. Template synthesis of nitrogen-doped carbon nanocages–encapsulated carbon nanobubbles as catalyst for activation of peroxymonosulfate. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00256h] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nitrogen-doped carbon nanocages–encapsulated carbon nanobubbles were employed as high-performance peroxymonosulfate activators for the degradation of organic pollutants.
Collapse
Affiliation(s)
- Na Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Wenjie Ma
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Ziqiu Ren
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Leijiang Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Rong Qiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering
- National Chung Hsing University
- Taichung
- Taiwan
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Yunchen Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Xijiang Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| |
Collapse
|