1
|
Guo C, Wang X, Liu Z, Zhao H, Yin G, Lu Y, Qi P, Wang Z, Di S. Effects and Potential Risks of Chiral Penflufen on Pickled Cowpea: Combined Microbiome and Metabolomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7658-7668. [PMID: 40125728 DOI: 10.1021/acs.jafc.4c13144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Pesticide residues on vegetables may affect microbes and metabolites during the fermentation process, leading to effects and potential risks. Here, the enantioselective effects and potential risks of chiral penflufen on pickled cowpea were investigated by using microbiome and metabolomics analyses. Correlation analysis was conducted to construct bacterial-metabolite interaction networks. Penflufen enantiomers were degraded little during the fermentation process. Rac-penflufen treatment significantly decreased the relative abundance of Lactiplantibacillus while increasing Weissella, but the opposite effects were found in R- and S-penflufen treatments. These shifts were linked to content and functional changes of metabolites. R-/S-/Rac-penflufen upregulated rose aroma metabolites (e.g., β-damascenone), while R- and S-penflufen downregulated floral aroma metabolites (e.g., β-ionone, 2-nonenal) and green leaf aroma metabolites (e.g., (E)-2-hexenal). S-Penflufen reduced alcohols and increased esters more significantly, and altered a higher number of volatile organic compounds (VOCs) and chiral amino acids than R-penflufen, showing a greater risk to food flavor and nutritional quality.
Collapse
Affiliation(s)
- Chao Guo
- State Key Laboratory of Agricultural Products Safety/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- China Institute of Fermentation Engineering, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Xinquan Wang
- State Key Laboratory of Agricultural Products Safety/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Zhenzhen Liu
- State Key Laboratory of Agricultural Products Safety/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Huiyu Zhao
- State Key Laboratory of Agricultural Products Safety/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Ge Yin
- Shimadzu (China) Co., LTD, Shanghai 200233, P. R. China
| | - Yuele Lu
- China Institute of Fermentation Engineering, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Peipei Qi
- State Key Laboratory of Agricultural Products Safety/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Zhiwei Wang
- State Key Laboratory of Agricultural Products Safety/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Shanshan Di
- State Key Laboratory of Agricultural Products Safety/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| |
Collapse
|
2
|
Ni H, Ye Y, He W, Chen Q, Long Z, Huang Y, Zou L, Fu X. Role of Bacillus sp. TF-1 in the Degradation and Detoxification of Trifluralin. Microorganisms 2025; 13:520. [PMID: 40142413 PMCID: PMC11945047 DOI: 10.3390/microorganisms13030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Trifluralin, a widely utilized dinitroaniline herbicide, has emerged as a prevalent environmental contaminant that poses significant risks both to ecosystems and to human health. Microbial degradation represents the primary pathway for preventing trifluralin accumulation in the environment. Although much work has been conducted on the microbial breakdown of trifluralin, numerous challenges persist regarding the identification of efficient degrading strains, the elucidation of the metabolic pathways involved, and the application of bioremediation techniques. In this study, Bacillus sp. TF-1, a strain isolated from a paddy field that can utilize trifluralin as a source of carbon and energy, was applied. Remarkably, it eliminated 86.7% of 100 mg/L trifluralin within 6 h, and 99.7% of trifluralin was eliminated within 48 h. UPLC-MS analysis suggested that trifluralin degradation occurred first through mono-nitroreduction, followed by further nitroreduction and trifluoromethyl oxidation; trifluralin could also be metabolized through complete nitroreduction and N-dealkylation. Furthermore, Bacillus sp. TF-1 effectively mitigated the severe toxicity of trifluralin to sensitive crops. These findings not only expand the repertoire of efficient trifluralin-degrading microorganisms but also increase our understanding of trifluralin biodegradation pathways and highlight the biological importance of employing microbes to eradicate trifluralin residues from the environment.
Collapse
Affiliation(s)
- Haiyan Ni
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (H.N.); (Y.Y.); (W.H.); (Z.L.); (Y.H.); (L.Z.)
| | - Yue Ye
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (H.N.); (Y.Y.); (W.H.); (Z.L.); (Y.H.); (L.Z.)
| | - Weiwei He
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (H.N.); (Y.Y.); (W.H.); (Z.L.); (Y.H.); (L.Z.)
| | - Qing Chen
- College of Life Sciences, Zaozhuang University, Zaozhuang 277160, China;
| | - Zhong’er Long
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (H.N.); (Y.Y.); (W.H.); (Z.L.); (Y.H.); (L.Z.)
| | - Yunhong Huang
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (H.N.); (Y.Y.); (W.H.); (Z.L.); (Y.H.); (L.Z.)
| | - Long Zou
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (H.N.); (Y.Y.); (W.H.); (Z.L.); (Y.H.); (L.Z.)
| | - Xueqin Fu
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (H.N.); (Y.Y.); (W.H.); (Z.L.); (Y.H.); (L.Z.)
| |
Collapse
|
3
|
Zhao G, Wang J, Tian Y, Wang H, Huang X. Nitroreductase DnrA, Utilizing Strategies Secreted in Bacillus sp. Za and SCK6, Enhances the Detoxification of Acifluorfen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15633-15642. [PMID: 38950134 DOI: 10.1021/acs.jafc.4c03397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The residues of acifluorfen present a serious threat to the agricultural environment and sensitive crops. DnrA, a nitroreductase, is an intracellular enzyme that restricts the application of wild-type Bacillus sp. Za in environmental remediation. In this study, two strategies were employed to successfully secrete DnrA in strains SCK6 and Za, and the secretion expression conditions were optimized to achieve rapid degradation of acifluorfen. Under the optimal conditions, the relative activities of the DnrA supernatant from strains SCK6-D and Za-W were 3.06-fold and 3.53-fold higher than that of strain Za, respectively. While all three strains exhibited similar tolerance to different concentrations of acifluorfen, strains SCK6-D and Za-W demonstrated significantly faster degradation efficiency compared to strain Za. Furthermore, the DnrA supernatant from strains SCK6-D and Za-W could effectively reduce the toxicity of acifluorfen on maize and cucumber seedlings. This study provides an effective technical approach for the rapid degradation of acifluorfen.
Collapse
Affiliation(s)
- Guoqiang Zhao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Juanjuan Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yanning Tian
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Hancheng Wang
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou 550081, PR China
| | - Xing Huang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
4
|
Tian Y, Zhong F, Shang N, Yu H, Mao D, Huang X. Maize Root Exudates Promote Bacillus sp. Za Detoxification of Diphenyl Ether Herbicides by Enhancing Colonization and Biofilm Formation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:552-560. [PMID: 38619862 DOI: 10.1094/mpmi-02-24-0020-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Diphenyl ether herbicides are extensively utilized in agricultural systems, but their residues threaten the health of sensitive rotation crops. Functional microbial strains can degrade diphenyl ether herbicides in the rhizosphere of crops, facilitating the restoration of a healthy agricultural environment. However, the interplay between microorganisms and plants in diphenyl ether herbicides degradation remains unclear. Thus, the herbicide-degrading strain Bacillus sp. Za and the sensitive crop, maize, were employed to uncover the interaction mechanism. The degradation of diphenyl ether herbicides by strain Bacillus sp. Za was promoted by root exudates. The strain induced root exudate re-secretion in diphenyl ether herbicide-polluted maize. We further showed that root exudates enhanced the rhizosphere colonization and the biofilm biomass of strain Za, augmenting its capacity to degrade diphenyl ether herbicide. Root exudates regulated gene fliZ, which is pivotal in biofilm formation. Wild-type strain Za significantly reduced herbicide toxicity to maize compared to the ZaΔfliZ mutant. Moreover, root exudates promoted strain Za growth and chemotaxis, which was related to biofilm formation. This mutualistic relationship between the microorganisms and the plants demonstrates the significance of plant-microbe interactions in shaping diphenyl ether herbicide degradation in rhizosphere soils. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.
Collapse
Affiliation(s)
- Yanning Tian
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Fangya Zhong
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Na Shang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Houyu Yu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Dongmei Mao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xing Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
5
|
Fan Q, Shen Y, Yang Y, Zhang Q. A Review of Remediation Strategies for Diphenyl Ether Herbicide Contamination. TOXICS 2024; 12:397. [PMID: 38922077 PMCID: PMC11209214 DOI: 10.3390/toxics12060397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/12/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024]
Abstract
In agriculture, diphenyl ether herbicides are a broad-spectrum family of pesticides mainly used to control annual weeds in agriculture. Although diphenyl ether herbicides have a long-lasting effect in weed control, they can also be harmful to succeeding crops, as well as to the water and soil environment. Residual herbicides can also harm a large number of non-target organisms, leading to the death of pest predators and other beneficial organisms. Therefore, it is of great significance to control and remediate the contamination caused by diphenyl ether herbicide residues for the sake of environmental, nutritional, and biological safety. This review provides an overview of the techniques used for remediating diphenyl ether herbicide contamination, including biological, physical, and chemical remediation. Among these techniques, bioremediation, particularly microbial biodegradation technology, is extensively employed. The mechanisms and influencing factors of different remediation techniques in eliminating diphenyl ether herbicide contamination are discussed, together with a prospect for future development directions. This review serves as a scientific reference for the efficient remediation of residual contamination from diphenyl ether herbicides.
Collapse
Affiliation(s)
| | | | | | - Qingming Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (Q.F.); (Y.S.); (Y.Y.)
| |
Collapse
|
6
|
Park J, Lee H, Kweon J, Park S, Ham J, Bazer FW, Song G. Mechanisms of female reproductive toxicity in pigs induced by exposure to environmental pollutants. Mol Cells 2024; 47:100065. [PMID: 38679414 PMCID: PMC11143778 DOI: 10.1016/j.mocell.2024.100065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024] Open
Abstract
Environmental pollutants, including endocrine disruptors, heavy metals, nanomaterials, and pesticides, have been detected in various ecosystems and are of growing global concern. The potential for toxicity to non-target organisms has consistently been raised and is being studied using various animal models. In this review, we focus on pesticides frequently detected in the environment and investigate their potential exposure to livestock. Owing to the reproductive similarities between humans and pigs, various in vitro porcine models, such as porcine oocytes, trophectoderm cells, and luminal epithelial cells, are used to verify reproductive toxicity. These cell lines are being used to study the toxic mechanisms induced by various environmental toxicants, including organophosphate insecticides, pyrethroid insecticides, dinitroaniline herbicides, and diphenyl ether herbicides, which persist in the environment and threaten livestock health. Collectively, these results indicate that these pesticides can induce female reproductive toxicity in pigs and suggest the possibility of adverse effects on other livestock species. These results also indicate possible reproductive toxicity in humans, which requires further investigation.
Collapse
Affiliation(s)
- Junho Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hojun Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junhun Kweon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sunwoo Park
- Department of Plant & Biomaterials Science, Gyeongsang National University, Jinju-si, Gyeongnam 52725, Republic of Korea
| | - Jiyeon Ham
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
7
|
Yang Y, Zhong W, Wang Y, Yue Z, Zhang C, Sun M, Wang Z, Xue X, Gao Q, Wang D, Zhang Y, Zhang J. Isolation, identification, degradation mechanism and exploration of active enzymes in the ochratoxin A degrading strain Acinetobacter pittii AP19. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133351. [PMID: 38150759 DOI: 10.1016/j.jhazmat.2023.133351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
Ochratoxin A (OTA) is a polyketide mycotoxin that commonly contaminates agricultural products and causes significant economic losses. In this study, the efficient OTA-degrading strain AP19 was isolated from vineyard soil and was identified as Acinetobacter pittii. Compared with growth in nutrient broth supplemented with OTA (OTA-NB), strain AP19 grew faster in nutrient broth (NB), but the ability of the resulting cell lysates to remove OTA was weaker. After cultivation in NB, the cell lysate of strain AP19 was able to remove 100% of 1 mg/L OTA within 18 h. The cell lysate fraction > 30 kDa degraded 100% of OTA within 12 h, while the fractions < 30 kDa were practically unable to degrade OTA. Further anion exchange chromatography of the > 30 kDa fraction yielded two peaks exhibiting significant OTA degradation activity. The degradation product was identified as OTα. Amino acid metabolism exhibited major transcriptional trends in the response of AP19 to OTA. The dacC gene encoding carboxypeptidase was identified as one of the contributors to OTA degradation. Soil samples inoculated with strain AP19 showed significant OTA degradation. These results provide significant insights into the discovery of novel functions in A. pittii, as well as its potential as an OTA decomposer.
Collapse
Affiliation(s)
- Yan Yang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Weitong Zhong
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanning Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhiwen Yue
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chen Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mi Sun
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhao Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xianli Xue
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qiang Gao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Depei Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ying Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jian Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
8
|
Gao Q, Chen L, An Z, Wang Y, Yang D, Wang Z, Kang J, Barnych B, Hammock BD, Huo J, Zhang J. Development of an immunoassay based on a specific antibody for the detection of diphenyl ether herbicide fomesafen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169858. [PMID: 38190900 PMCID: PMC10871040 DOI: 10.1016/j.scitotenv.2023.169858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024]
Abstract
Fomesafen belongs to the diphenyl ether herbicide, and is widely used in the control of broadleaf weeds in crop fields due to its high efficiency and good selectivity. The residual of fomesafen in soil has a toxic effect on subsequent sensitive crops and the microbial community structure because of its long residual period. Therefore, an efficient method for detecting fomesafen is critical to guide the correct and reasonable use of this herbicide. Rapid and sensitive immunoassay methods for fomesafen is unavailable due to the lack of specific antibody. In this study, a specific antibody for fomesafen was generated based on rational design of haptens and a sensitive immunoassay method was established. The half maximal inhibitory concentration (IC50) of the immunoassay was 39 ng/mL with a linear range (IC10-90) of 1.92-779.8 ng/mL. In addition, the developed assay had a good correlation with the standard UPLC-MS/MS both in the spike-recovery studies and in the detection of real soil samples. Overall, the developed indirect competitive enzyme immunoassay reported here is important for detecting and quantifying fomesafen contamination in soil and other environmental samples with good sensitivity and high reproducibility.
Collapse
Affiliation(s)
- Qingqing Gao
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China
| | - Zexiu An
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China
| | - Yasen Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China
| | - Dongchen Yang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China
| | - Zhengzhong Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China
| | - Jia Kang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China
| | - Bogdan Barnych
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, United States of America
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, United States of America
| | - Jingqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China.
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China.
| |
Collapse
|
9
|
Cai Y, Tian T, Huang Y, Yao H, Qi X, Fan J, Kuang Y, Chen J, Li X, Kadokami K. Occurrence and Health Risks of Organic Micropollutants in Tap Water in Dalian. Chem Res Toxicol 2023; 36:1938-1946. [PMID: 38039423 DOI: 10.1021/acs.chemrestox.3c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Organic micropollutants (OMPs) in tap water may pose risks to human health. Previous studies on the potential health risks of OMPs in tap water may have underestimated the potential health risks of OMPs due to their limited coverage in target pollutants and incomplete toxicity data. In this study, tap water samples were collected in 37 sampling sites in Dalian, China. More than 1,200 target pollutants were screened by combining screening analysis and target analysis. A total of 93 OMPs were detected, with concentration summation ranging from 157 to 1.7 × 104 ng/L among different sampling sites. A total of 17 OMPs (12 agrochemicals, 3 pharmaceuticals and personal care products, and 2 other compounds) were detected in over 80% of the sampling sites. Especially, imidacloprid, tebuconazole, and atrazine-desethyl were found in all the sampling sites. Computational toxicology models were adopted to predict the missing toxicity threshold values of the identified chemicals. Noncarcinogenic risks were estimated to be negligible among all the sampling sites, while carcinogenic risks at six sites were above 10-6 but below 10-4, indicating non-negligible risks. Griseofulvin contributed the most to the carcinogenic risk. This study offers valuable insights that can guide future initiatives to safeguard tap water safety.
Collapse
Affiliation(s)
- Yuantian Cai
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Tian Tian
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yang Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongye Yao
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaojuan Qi
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jun Fan
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yidan Kuang
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xuehua Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Kiwao Kadokami
- Institute of Environmental Science and Technology, University of Kitakyushu, Kitakyushu, Fukuoka 808-0135, Japan
| |
Collapse
|
10
|
Zhao G, Zhou J, Tian Y, Chen Q, Mao D, Zhu J, Huang X. Remediation of fomesafen contaminated soil by Bacillus sp. Za: Degradation pathway, community structure and bioenhanced remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122460. [PMID: 37634569 DOI: 10.1016/j.envpol.2023.122460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Fomesafen is a diphenyl ether herbicide used to control the growth of broadleaf weeds in bean fields. The persistence, phytotoxicity, and negative impact on crop rotation associated with this herbicide have led to an increasing concern about the buildup of fomesafen residues in agricultural soils. The exigent matter of treatment and remediation of soils contaminated with fomesafen has surfaced. Nevertheless, the degradation pathway of fomesafen in soil remains nebulous. In this study, Bacillus sp. Za was utilized to degrade fomesafen residues in black and yellow brown soils. Fomesafen's degradation rate by strain Za in black soil reached 74.4%, and in yellow brown soil was 69.2% within 30 days. Twelve intermediate metabolites of fomesafen were identified in different soils, with nine metabolites present in black soil and eight found in yellow brown soil. Subsequently, the degradation pathway of fomesafen within these two soils was inferred. The dynamic change process of soil bacterial community structure in the degradation of fomesafen by strain Za was analyzed. The results showed that strain Za potentially facilitate the restoration of bacterial community diversity and richness in soil samples treated with fomesafen, and there were significant differences in species composition at phylum and genus levels between these two soils. However, both soils shared a dominant phylum and genus, Actinobacteriota, Proteoobacteria, Firmicutes and Chloroflexi dominated in two soils, with a high relative abundance of Sphingomonas and Bacillus. Moreover, an intermediate metabolite acetaminophen degrading bacterium, designated as Pseudomonas sp. YXA-1, was isolated from yellow brown soil. When strain YXA-1 was employed in tandem with strain Za to remediate fomesafen contaminated soil, the degradation rate of fomesafen markedly increased. Overall, this study furnishes crucial insights into the degradation pathway of fomesafen in soil, and presents bacterial strain resources potentially beneficial for soil remediation in circumstances of fomesafen contamination.
Collapse
Affiliation(s)
- Guoqiang Zhao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Jing Zhou
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Yanning Tian
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Qifeng Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Dongmei Mao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Jianchun Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Xing Huang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
11
|
Han L, Xu H, Wang Q, Liu X, Li X, Wang Y, Nie J, Liu M, Ju C, Yang C. Deciphering the degradation characteristics of the fungicides imazalil and penflufen and their effects on soil bacterial community composition, assembly, and functional profiles. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132379. [PMID: 37643571 DOI: 10.1016/j.jhazmat.2023.132379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
The adsorption-desorption and degradation characteristics of two widely applied fungicides, imazalil and penflufen, and the responses of soil bacterial diversity, structure, function, and interaction after long-term exposure were systemically studied in eight different soils. The adsorption ability of imazalil in soil was significantly higher than that of penflufen. Both imazalil and penflufen degraded slowly in most soils following the order: imazalil > penflufen, with soil pH, silt, and clay content being the potential major influencing factors. Both imazalil and penflufen obviously inhibited the soil microbial functional diversity, altered the soil bacterial community and decreased its diversity. Although exposure to low and high concentrations of imazalil and penflufen strengthened the interactions among the soil bacterial communities, the functional diversity of the co-occurrence network tended to be simple at high concentrations, especially in penflufen treatment. Both imazalil and penflufen markedly disturbed soil nitrogen cycling, especially penflufen seriously inhibited most nitrogen cycling processes, such as nitrogen fixation and nitrification. Meanwhile, sixteen and ten potential degradative bacteria of imazalil and penflufen, respectively, were found in soils, including Kaistobacter and Lysobacter. Collectively, the long-term application of imazalil and penflufen could cause residual accumulation in soils and subsequently result in serious negative effects on soil ecology.
Collapse
Affiliation(s)
- Lingxi Han
- College of Horticulture, Qingdao Agricultural University, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China.
| | - Han Xu
- College of Horticulture, Qingdao Agricultural University, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Qianwen Wang
- Central Laboratory, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoli Liu
- College of Horticulture, Qingdao Agricultural University, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Xiaoming Li
- College of Horticulture, Qingdao Agricultural University, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Yiran Wang
- College of Horticulture, Qingdao Agricultural University, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China.
| | - Mingyu Liu
- College of Horticulture, Qingdao Agricultural University, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Chao Ju
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Congjun Yang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
12
|
Jie Chen Z, Yan Zhai X, Liu J, Zhang N, Yang H. Detoxification and catabolism of mesotrione and fomesafen facilitated by a Phase II reaction acetyltransferase in rice. J Adv Res 2023; 51:1-11. [PMID: 36494064 PMCID: PMC10491983 DOI: 10.1016/j.jare.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 10/16/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The excessive dosage of pesticides required for agronomic reality results in growing contamination of pesticide residues in environment, thus bringing high risks to crop production and human health. OBJECTIVES This study aims to unveil a novel mechanism for catabolism of two pesticides MTR and FSA facilitated by an uncharacterized Phase II reaction enzyme termed acetyltransferase-1 (ACE1) in rice and to make assessment of its potential for bioremediation to minimize the risks to crop production and food safety. METHODS We developed genetically improved cultivars overexpressing OsACE1 (OE) and knockout mutant lines by CRISPR-Cas9 technology to identify the MTR and FSA detoxic and metabolic functions and characterized their metabolites and conjugates by HPLC-LTQ-MS/MS. RESULTS OsACE1 overexpression conferred rice resistance to toxicity of MTR/FSA compared to wild-type, manifested by improved plant elongation and biomass, attenuated cellular injury, and increased chlorophyll accumulation. The OE plants accumulated significantly less parent MTR/FSA and more degradative metabolites, and removed MTR/FSA from their growth medium by 1.38 and 1.61 folds over the wild-type. In contrast, knocking out OsACE1 led to compromised growth fitness and intensified toxic symptoms under MTR/FSA stress and accumulation of more toxic MTR and FSA in rice. The reduced metabolites of MTR and FSA detected in the Cas9 plants suggest the impaired capability of OsACE1 function. CONCLUSIONS These results signified that OsACE1 expression is required for detoxifying the two poisoning chemicals in rice and plays a critical role in accelerating breakdown of the pesticides mainly through Phase II reaction mechanism pathways.
Collapse
Affiliation(s)
- Zhao Jie Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Yan Zhai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jintong Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
13
|
Tian Y, Zhao G, Cheng M, Lu L, Zhang H, Huang X. A nitroreductase DnrA catalyzes the biotransformation of several diphenyl ether herbicides in Bacillus sp. Za. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12647-5. [PMID: 37395748 DOI: 10.1007/s00253-023-12647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/03/2023] [Accepted: 06/10/2023] [Indexed: 07/04/2023]
Abstract
Diphenyl ether herbicides, typical globally used herbicides, threaten the agricultural environment and the sensitive crops. The microbial degradation pathways of diphenyl ether herbicides are well studied, but the nitroreduction of diphenyl ether herbicides by purified enzymes is still unclear. Here, the gene dnrA, encoding a nitroreductase DnrA responsible for the reduction of nitro to amino groups, was identified from the strain Bacillus sp. Za. DnrA had a broad substrate spectrum, and the Km values of DnrA for different diphenyl ether herbicides were 20.67 μM (fomesafen), 23.64 μM (bifenox), 26.19 μM (fluoroglycofen), 28.24 μM (acifluorfen), and 36.32 μM (lactofen). DnrA also mitigated the growth inhibition effect on cucumber and sorghum through nitroreduction. Molecular docking revealed the mechanisms of the compounds fomesafen, bifenox, fluoroglycofen, lactofen, and acifluorfen with DnrA. Fomesafen showed higher affinities and lower binding energy values for DnrA, and residue Arg244 affected the affinity between diphenyl ether herbicides and DnrA. This research provides new genetic resources and insights into the microbial remediation of diphenyl ether herbicide-contaminated environments. KEY POINTS: • Nitroreductase DnrA transforms the nitro group of diphenyl ether herbicides. • Nitroreductase DnrA reduces the toxicity of diphenyl ether herbicides. • The distance between Arg244 and the herbicides is related to catalytic efficiency.
Collapse
Affiliation(s)
- Yanning Tian
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Guoqiang Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Minggen Cheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Luyao Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Hao Zhang
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Xing Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
14
|
Zhao G, Tian Y, Yu H, Li J, Mao D, Faisal RM, Huang X. Development of solid agents of the diphenyl ether herbicide degrading bacterium Bacillus sp. Za based on a mixed organic fertilizer carrier. Front Microbiol 2022; 13:1075930. [PMID: 36504824 PMCID: PMC9729343 DOI: 10.3389/fmicb.2022.1075930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
The long-term and widespread use of diphenyl ether herbicides has caused serious soil residue problems and threatens the agricultural ecological environment. The development of biodegrading agents using high-efficiency degrading strains as pesticide residue remediation materials has been widely recognized. In this study, the strain Bacillus sp. Za was used to prepare solid agents for the remediation of diphenyl ether herbicides-contaminated soil. The ratio of organic fertilizer was 1:3 (pig manure: cow dung), the inoculum amount of Za was 10%, the application amount of solid agents was 7%, and the application mode was mixed application, all of which were the most suitable conditions for solid agents. After the solid agents were stored for 120 days, the amount of Za remained above 108 CFU/g. The degradation rates of the solid agents for lactofen, bifenox, fluoroglycofen, and fomesafen in soil reached 87.40, 82.40, 78.20, and 65.20%, respectively, on the 7th day. The application of solid agents alleviated the toxic effect of lactofen residues on maize seedlings. A confocal laser scanning microscope (CLSM) was used to observe the colonization of Za-gfp on the surface of maize roots treated in the solid agents, and Za-gfp mainly colonized the elongation zone and the mature area of maize root tips, and the colonization time exceeded 21 days. High-throughput sequencing analysis of soil community structural changes in CK, J (solid agents), Y (lactofen), and JY (solid agents + lactofen) groups showed that the addition of solid agents could restore the bacterial community structure in the rhizosphere soil of maize seedlings. The development of solid agents can facilitate the remediation of soil contaminated with diphenyl ether herbicide residues and improve the technical level of the microbial degradation of pesticide residues.
Collapse
Affiliation(s)
- Guoqiang Zhao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yanning Tian
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Houyu Yu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jintao Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Dongmei Mao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Rayan Mazin Faisal
- Department of Biology, College of Science, University of Mosul, Mosul, Iraq
| | - Xing Huang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China,*Correspondence: Xing Huang,
| |
Collapse
|
15
|
Shang N, Chen L, Cheng M, Tian Y, Huang X. Biodegradation of diphenyl ether herbicide lactofen by Bacillus sp. YS-1 and characterization of two initial degrading esterases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151357. [PMID: 34742792 DOI: 10.1016/j.scitotenv.2021.151357] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
The extensive use of the diphenyl ether herbicide lactofen in recent years has caused serious environmental problems. Therefore, detoxification and elimination of lactofen from the environment are urgently required. In this study, the lactofen-degrading strain Bacillus sp. YS-1 was isolated, which achieved a 97.6% degradation rate of 50 mg/L lactofen within 15 h. The ester bond of lactofen was hydrolyzed, which generated acifluorfen, and then, the nitro group was reduced to the amino group, which generated aminoacifluorfen. Finally, the amino group was acetylated, which formed acetylated aminoacifluorfen, a novel end product in the degradation of lactofen. The toxicity of acetylated aminoacifluorfen to the root and seedling growth of cucumber and sorghum was significantly decreased compared with that of lactofen. The two esterase genes rhoE and rapE, encoding two esterases responsible for lactofen hydrolysis to acifluorfen, were cloned and expressed. The amino acid sequences encoded by rhoE and rapE were 27.78% and 88.21% identical with known esterases, respectively. The optimum temperatures for RhoE and RapE degradation of lactofen were 35 °C and 25 °C, respectively, and both esterases displayed maximal activity at pH 8.0. Both RhoE and RapE prioritized the degradation of (S)-(+)-lactofen, (S)-(-)-quizalofop-ethyl, and (S)-(-)-diclofop-methyl. This study provided the resources of bacterial strain and hydrolyzing enzyme for the removal of lactofen from the environment and the bioremediation of herbicide-contaminated soil.
Collapse
Affiliation(s)
- Na Shang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Lingling Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Minggen Cheng
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Yanning Tian
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Xing Huang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| |
Collapse
|
16
|
Alexandrino DAM, Mucha AP, Almeida CMR, Carvalho MF. Atlas of the microbial degradation of fluorinated pesticides. Crit Rev Biotechnol 2021; 42:991-1009. [PMID: 34615427 DOI: 10.1080/07388551.2021.1977234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fluorine-based agrochemicals have been benchmarked as the golden standard in pesticide development, prompting their widespread use in agriculture. As a result, fluorinated pesticides can now be found in the environment, entailing serious ecological implications due to their harmfulness and persistence. Microbial degradation might be an option to mitigate these impacts, though environmental microorganisms are not expected to easily cope with these fluoroaromatics due to their recalcitrance. Here, we provide an outlook on the microbial metabolism of fluorinated pesticides by analyzing the degradation pathways and biochemical processes involved, while also highlighting the central role of enzymatic defluorination in their productive metabolism. Finally, the potential contribution of these microbial processes for the dissipation of fluorinated pesticides from the environment is also discussed.
Collapse
Affiliation(s)
- Diogo A M Alexandrino
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, Matosinhos, Portugal.,School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Ana P Mucha
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, Matosinhos, Portugal.,Faculty of Sciences, University of Porto, Porto, Portugal
| | - C Marisa R Almeida
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, Matosinhos, Portugal
| | - Maria F Carvalho
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, Matosinhos, Portugal.,School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
17
|
Chen ZJ, Qiao YX, Zhang N, Liu J, Yang H. Insight into metabolism pathways of pesticide fomesafen in rice: Reducing cropping and environmental risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117128. [PMID: 33862343 DOI: 10.1016/j.envpol.2021.117128] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/20/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Fomesafen (FSA) is widely used in soybean fields for weed control. However, the persisting characteristics of FSA in the agricultural soil or water may become a hidden danger causing environmental pollution and phytotoxicity to succession crops. In this study, the growth and physiological responses of rice to FSA were investigated. It was found that the growth of rice seedlings was obviously inhibited by FSA exposure especially at over 0.1 mg L-1. To gain an insight into the molecular mechanisms for the potential ecotoxicology, four libraries of rice roots and shoots exposed to FSA were created and subjected to the global RNA-sequencing (RNA-Seq) combined with HRLC-Q-TOF-MS/MS analytical technologies to comprehensively characterize the biochemical processes and catalytic reactions involved in FSA metabolism in rice. Compared with those without FSA, 499 and 450 up-regulated genes in roots and shoots with FSA were detected. Many of them were closely correlated with the tolerance to environmental stress, detoxification of xenobiotics and molecular metabolism process including cytochrome P450, glutathione S-transferases and acetyltransferase. A total of eight metabolites and fourteen conjugates in the reactive pathways of hydrolysis, substitution, reduction, methylation, glycosylation, acetylation, and malonylation were characterized by HRLC-Q-TOF-MS/MS. The relationship between the metabolized derivatives of FSA and enhanced expression the corresponding enzymatic regulators was established. This study will help understand the mechanisms and pathways of FSA metabolism and inspire the further research on FSA degradation in the paddy crops and environmental or health risks.
Collapse
Affiliation(s)
- Zhao Jie Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Xin Qiao
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nan Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jintong Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
18
|
Zheng X, Aborisade MA, Wang H, He P, Lu S, Cui N, Wang S, Zhang H, Ding H, Liu K. Effect of lignin and plant growth-promoting bacteria (Staphylococcus pasteuri) on microbe-plant Co-remediation: A PAHs-DDTs Co-contaminated agricultural greenhouse study. CHEMOSPHERE 2020; 256:127079. [PMID: 32450351 DOI: 10.1016/j.chemosphere.2020.127079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/10/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Due to the ecological toxicity and environmental residues, how to remove the persistent organic pollutants (POPs), especially of polycyclic-aromatic-hydrocarbons (PAHs) and dichloro-diphenyl-trichloroethanes (DDTs), from agricultural soil has captured the attention of scholars for a long time. To develop an effective and low-cost in situ co-remediation technique, five independent but complementary treatments were used on an over-standard PAHs-DDTs co-contaminated soil in an agricultural greenhouse. Experimental results identified that the combination of microbe (Bacillus methylotrophicus) - plant (Brassica rapa) could remove rhamnolipid activated PAHs and DDTs effectively after enhanced by Staphylococcus pasteuri. Also, the Benzoapyrene and total DDTs residue in Brassica rapa was up to the standard of National (China) food safety. The lignin enhanced the removal of high-rings PAHs and p-p' DDE but reduced soil microbial biomass carbon and soil enzymes activity (polyphenol oxidase, invertase and acid phosphatase). Pearson correlation analysis showed that polyphenol oxidase activity was significantly related to the PAHs/DDTs dissipation rate. Our research suggested a new amendment that could remediate PAHs/DDTs co-contaminated agricultural soil without interrupting crop production, and the polyphenol oxidase activity should be considered as a micro-ecological indicator in this process.
Collapse
Affiliation(s)
- Xuehao Zheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | | | - Hui Wang
- Key Laboratory of Regional Environment and Eco-remediation, Shenyang University, Shenyang, 110044, China
| | - Peng He
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Shan Lu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Na Cui
- Sinochem Environment Science and Technology Engineering Co. Ltd., Shenyang, 110021, China
| | - Songyuan Wang
- School of Economics and Management, Shenyang Institute of Engineering, Shenyang, 110136, China
| | - Hongling Zhang
- Key Laboratory of Regional Environment and Eco-remediation, Shenyang University, Shenyang, 110044, China.
| | - Hui Ding
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | - Kebin Liu
- Key Laboratory of Regional Environment and Eco-remediation, Shenyang University, Shenyang, 110044, China.
| |
Collapse
|
19
|
Wang S, Zhang C, Lv Z, Huang H, Cao X, Song Z, Shao M. Degradation of 3,5,6-trichloro-2-pyridinol by a microbial consortium in dryland soil with anaerobic incubation. Biodegradation 2019; 30:161-171. [DOI: 10.1007/s10532-019-09873-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/25/2019] [Indexed: 02/05/2023]
|